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Big Picture and Motivation

A framework for analysis

What problems are we discussing here?

Turning unstructured or lightly structured data into clean,
highly-structured data

Merging distinct data sources that refer to the same entities

Examples:

linking property tax records to sales records by address

identifying an item by matching descriptions in two
different recording systems

associating information from two different surveys of
the same group of people by matching name
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Big Picture and Motivation

A framework for analysis

A Framework for Text Modelling

Semi-Structured
Text Data

Split Text

Clean Text
Compare
Records

Analyze
Comparisons

Structured
Text Data

Figure 1: Four stage text analysis diagram
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Big Picture and Motivation

A framework for analysis

Defining the framework

Split text = often a string can be broken into logical chunks

Clean text = synonyms, abbreviations etc can be standardized

Compare Records = most problems involve approximate
relationships, these need to be measured in a consistent way

quantitative similarity makes automation easier

contextualized meaning is hard to represent [5]

Analyze Comparisons = ML gives standard tools for turning
comparison data into practical decisions
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Big Picture and Motivation

A live example

Practical Archival Data Analysis

To illustrate these ideas we will take a classic example

In historical records, reliable standardization is unheard of

For more than one data source, tables must be “joined”
together using criteria for imperfect matching

Table 1: id1,
bibData1

Join:
bibData1∼
bibData2

Table 2: id2,
bibData2

Text Comparison
Result: id1, id2, score

Figure 2: Table Join
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Big Picture and Motivation

A live example

Bibliographic Data

To make our example manageable we will use a benchmark
matching data set taken from the Database Group at
University of Leipzig

https://dbs.uni-leipzig.de/en/research/projects/

object_matching/fever/benchmark_datasets_for_

entity_resolution

Sources: DBLP-Scholar

Sample:
”id”,”title”,”authors”,”venue”,”year”
”aKcZKwvwbQwJ”,”11578 Sorrento Valley Road”,”QD Inc”,”San Diego,”,
”conf/sigmod/AbadiC02”,”Visual COKO: a debugger for query optimizer development”,”D Abadi, M
Cherniack”,”SIGMOD Conference”,2002
”ixKfiTHoaDoJ”,”Initiation of crazes in polystyrene”,”AS Argon, JG Hannoosh”,”Phil. Mag,”,
”DMhfVNSDYD4J”,”The zero multiplicity of linear recurrence sequences”,”WM Schmidt”,”to”,
”xSv97kdDZU8J”,”The Photosynthetic Reaction Center”,”JR Norris, J Deisenhofer”,”San Diego: Academic,”,
”6TKMB5gO9EoJ”,”Multidimensional similarity structure analysis”,”I Borg, JC Lingoes”,,1987

”f2Lea-RN8dsJ”,”Visual COKO: a debugger for query optimizer development”,”DJ Abadi”,”SIGMOD

Conference,”,2002

https://dbs.uni-leipzig.de/en/research/projects/object_matching/fever/benchmark_datasets_for_entity_resolution
https://dbs.uni-leipzig.de/en/research/projects/object_matching/fever/benchmark_datasets_for_entity_resolution
https://dbs.uni-leipzig.de/en/research/projects/object_matching/fever/benchmark_datasets_for_entity_resolution
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Big Picture and Motivation

A live example

Bibliographic Data - Text Splitting

This data is formatted into a CSV file and so can (probably)
be easily split into a structured format
More complex partial structuring is possible and can be
handled using customized tools (yacc and lexx, pyparsing)
Taken at face value the sample data above becomes the
following table

id title authors venue year
aKcZKwvwbQwJ 11578 Sorrento Valley

Road
QD Inc San Diego,

conf/sigmod/AbadiC02 Visual COKO: a debugger
for query optimizer devel-
opment

D Abadi, M Cherniack SIGMOD Conference 2002

ixKfiTHoaDoJ Initiation of crazes in
polystyrene

AS Argon, JG Hannoosh Phil. Mag,

DMhfVNSDYD4J The zero multiplicity of lin-
ear recurrence sequences

WM Schmidt to

xSv97kdDZU8J The Photosynthetic Reac-
tion Center

JR Norris, J Deisenhofer San Diego: Academic,

6TKMB5gO9EoJ Multidimensional similarity
structure analysis

I Borg, JC Lingoes 1987

f2Lea-RN8dsJ Visual COKO: a debugger
for query optimizer devel-
opment

DJ Abadi SIGMOD Conference, 2002
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Big Picture and Motivation

A live example

Bibliographic Data - Further text Splitting

Questions:

Are these columns aligned correctly?

Can we split them further to good effect? (for
comparison)

Do any fields need to be merged? (have they been
incorrectly split)

The answers to questions like these drive an iterative process
of segmentation analysis
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Big Picture and Motivation

A live example

Why computational text analysis?

Partially structured text is ubiquitous in practical data systems

Manually cleaning and matching can be impractical. Why?

tedious work is error prone

life is finite

These tasks can be partly automated once you understand
your data

You can create simple rules that cover most cases

Often possible to detect cases that require a human
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Big Picture and Motivation

A live example

How hard would it be to do manually?

The bibliographic case has 2600*64200= 167 Million
comparisons

36 million records in each table (as for a data source about
the population of Canada) yield 1296 trillion comparisons

How do we make this manageable? We need a comparison
strategy that can be parallelized
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Big Picture and Motivation

A live example

What are our tools for this problem?

pandas - A set of tools for data cleaning, structuring and
analysis common to most Python data analysis libraries

re - A regular expressions dialect for Python

nltk (natural language toolkit) - A standard set of tools for
performing text comparisons in Python

scikit-learn or statsmodels - Standard tools for performing
statistical analysis on clean data sets in Python
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Text Splitting and Cleaning

The idea behind parsing

Unstructured data is all jumbled together

We need to break it up into manageable chunks - Splitting or
Parsing Text

We need to standardize the form of text that means the same
thing - Cleaning, Scrubbing, or Munging

We start by introducing data analysis tools for this purpose:
pandas and re
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Text Splitting and Cleaning

Simple text parsing

The shortest possible introduction to Pandas: Reading in a
File

Access python in Jupyter Notebooks

https://syzygy.ca/

import, from, and as keywords

read csv automatically handles the trivial parsing

db1.head() lists top 5 entries

https://syzygy.ca/
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Text Splitting and Cleaning

Simple text parsing

The shortest possible introduction to Pandas: Examining a
DataFrame

indexing with df[['col1', 'col2']]

examining a subset of rows with df.iloc[m:n]

examining a single column (Series) with df['col1']
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Text Splitting and Cleaning

Simple text parsing

The shortest possible introduction to Pandas: Map

Operations can be executed efficiently on every row of a
Series (or a single column of a DataFrame) using Map

map takes a function as an argument

To makes a single column lowercase and free of whitespace:

df['description']=df['description'].map(str.lower).map(x.strip)
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Text Splitting and Cleaning

Simple text parsing

The shortest possible introduction to Pandas: Splitting
further Columns

adding a column with df['newCol']=column

splitting string to a list with string.split('delimiter')
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Text Splitting and Cleaning

Simple text normalization

The shortest possible introduction to re: Pattern Matching

Regular Expressions is a notation for describing text

re uses regular expressions to systematically analyze text and
find matches to complex structures

p=re.compile('\d+') creates a pattern to match (in this
case any whole number)

p.findall(dataToSearch) returns a list of matches to the
pattern that can be found in the dataToSearch
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Text Splitting and Cleaning

Simple text normalization

The shortest possible introduction to re: splitting and Find
& Replace

enhanced splitting p=re.compile('\s+,\s+')
p.split(dataToSplit)

find and replace
re.sub(p,'newString',dataToReplacePatternIn)
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Text Splitting and Cleaning

Parallel cleaning of data

The idea of parallelizing parsing and cleaning

Everything that we have illustrates so far is good but is serial
and individual

We need a way of thinking about breaking our DataFrame
into manageable chunks

Once we have a strategy for that, we can apply it to the
creation of independent jobs
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Text Splitting and Cleaning

Parallel cleaning of data

Split-Apply-Combine as an overall strategy

Similar to (but more general than) GROUP BY in SQL
General tool for bulk changes
The splitting step breaks data into groups using any column
(including the row number) [6]
This can be accomplished using df.groupby('year')

year author

2002 R Barga
1995 K Subieta
2002 D Lomet
1995 F Ferrandina,
1995 T Meyer

year author

2002 R Barga
2002 D Lomet

year author

1995 K Subieta
1995 F Ferrandina,
1995 T Meyer

Figure 3: Table Split/Fork
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Text Splitting and Cleaning

Parallel cleaning of data

Split-Apply-Combine in more detail

Groups produced by the split can be individually transformed by an
arbitrary function [6]

This is the essence of Apply (the DataFrame extension of Map)

The result is combined back into a single DataFrame

year author
2002 R Barga, D Lomet
1995 K Subieta, F Ferran-

dina,T Meyer

year author
2002 R Barga,

D Lomet

year author
2002 R Barga
2002 D Lomet

year author
1995 K Subieta
1995 F Ferrandina,
1995 T Meyer

year author
1995 K Subieta, F

Ferrandina,T
Meyer

Figure 4: Table Apply + Combine for concatenation

All of this is performed by a single Python interpreter on a single machine.
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Text Splitting and Cleaning

Parallel cleaning of data

Split as a parallelization scheme

The idea presented in the last slides can be generalized
beyond pandas

By splitting the table efficiently we are producing smaller data
sets that can be treated separately

In an HPC context this lends itself to parallelization

Each data set can be handled on a separate node once the
data has been segregated on the basis of a key column
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Text Splitting and Cleaning

Parallel cleaning of data

Apply as a parallel job instruction set

Although this is overkill for a few rows of concatenation, text
cleaning often involves protracted parsing and synonym
normalization

These more complex operations can be used to produce
derived forms of the text that are more suited to analysis

We can write the data blocks/groups to separate files

Then, by saving the function f that you would use in
groupedDF.apply(f) to a separate python script it can be
used as an instruction set to run on each job in a separate
python interpreter
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Text Splitting and Cleaning

Parallel cleaning of data

Combine as output preparation

Finally, a script can be used to reassemble the separately
processed files into a single new DataFrame

This can be accomplished by:

creating an empty DataFrame with a fixed list of columns
df=DataFrame({'colName1':[], 'colName2':[]})

iteratively loading the data from the finished processing
jobs to a temporary DataFrame, say
dfTemp=pd.read csv(file jobNum)

using df=pd.concat([df,dfTemp]) to append the new
data to the bottom of the empty dataFrame
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Text Splitting and Cleaning

Parallel cleaning of data

Amdahl’s Law applied to Split-Apply-Combine

In a perfect world, parallel acceleration of a computation by
using 1000 cores takes 1

1000 the amount of time

In practice, every process has serial components that weigh
down the process by introducing non-parallelizable steps [2]

In the Split-Apply-Combine inspired approach given here, the
Split and Combine steps are both serial as they involve
breaking a single DataFrame into pieces or assembling it back
from them and they are both more expensive when used to
construct jobs to run in parallel than when they are are done
using the pandas on a single node.

Since parallelization imposes a burden, we need to justify that
the row by row computation is expensive enough to warrant
the additional cost
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Text Splitting and Cleaning

Parallel cleaning of data

Amdahl’s Law applied to Split-Apply-Combine

Main Point:

For simple calculations (like setting all letters to lowercase)
that can be done quickly in the first place or small data sets,
we are unlikely to see a good return on using HPC.

A large enough data set with easy splitting and difficult
calculations on each row will benefit significantly from using
HPC.
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Text Comparison - A Measurement Model

The idea of Text Comparison

Once each source is individually clean, text is ready to be
compared across data sources

Comparison consists of designing and applying a measurement
model to emphasize the most important features of our text
data

Ultimately, we will need to come up with an efficient way of
splitting the problem into smaller pieces that can be solved in
parallel
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Text Comparison - A Measurement Model

What computational text comparison is

Repeatable (the code used to do it is a well-defined procedure)

Scalable (can be done quickly to large data sets)

Literal (the negative aspect of Repeatable, it doesn’t add
anything that isn’t already part of the metric you design) [1]

Relies on selective similarity rather than holistic comparison [5]
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Text Comparison - A Measurement Model

What text comparison is not

Model-independent (every metric relies on a theory of the
semantic content of your data) [7] [4]

Adaptive to new context cues (algorithmic processing can’t
adjust in the way that a human would do while reading)

Human-feedback independent (if you want it to be any good,
hard cases need to be corrected manually and incorporated)
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Text Comparison - A Measurement Model

Feature extraction as measurement design

Quantitative Comparisons rely on Selective Similarity

Selective similarity = isolation of features of text that must
agree from features that can vary without significantly
changing the content

Returning to a familiar example of two alternate
representations of the same publication:

title authors venue year
'Visual COKO: a debugger for query
optimizer development '

['D Abadi','M Cherniack'] 'SIGMOD Conference' 2002

'Visual COKO: a debugger for query
optimizer development '

['DJ Abadi'] 'SIGMOD Conference,' 2002

presence or absence of comma in 'SIGMOD
Conference'doesn’t change the likely referent

'D Abadi'is probably 'DJ Abadi'given all of the other
matching terms

absence of 'M Cherniack'as second author probably shouldn’t
significantly impact match given that one author does match
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Text Comparison - A Measurement Model

Feature extraction as measurement design

Simple Example of Similarity: Bag Distance

one way of looking at string similarity identifies individual words and
compares them individually but discards any notion of words order

d=max(number of words in list 2 but not in list 1, number of words
in list 1 but nor in list 2)

removes any relational character in the comparison

bad approach if order is very important

good approach for lists (see author words) and for capturing possible
descriptive reorderings (big black cat ∼ big cat that is black)

D Abadi ∼ DJ Abadi

M Cherniack 6= DJ Abadi

d(['D Abadi','M Cherniack'], ['DJ
Abadi']) = 1
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Text Comparison - A Measurement Model

Feature extraction as measurement design

Simple Example of Similarity: Edit Distance

Levenshtein distance looks at strings that differ by
typographical errors

distance is the smallest number of single letter changes
(deletions, insertions, substitutions) to get from one word to
the other

dedit('DJ Abadi', 'D Abadi') = 1

preserves order but allows for small changes (like an extra
comma or an extra middle initial J in a name)
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Text Comparison - A Measurement Model

Feature extraction as measurement design

Simple Example of Similarity: Edit Distance

good for ignoring minor changes ('cat,'∼ 'cat'),

does nothing for synonyms and introduces real issues with
short words ('cat' 6='bat'but the two examples are
indistinguishable by edit distance)

computationally expensive in general and considerably harder
to write code for than bag distance

from nltk.metrics import *

edit distance(string1,string2) gives an efficient
implementation
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Text Comparison - A Measurement Model

Feature extraction as measurement design

Simple Example of Similarity: Edit Distance+Bag Distance

Implicitly, we suggested a two level model in our discussion of
Author Names

Compare the list of authors via a bag distance between the
parsed sequences of authors in each entry dbag(['D Abadi','M
Cherniack'], ['DJ Abadi'])
We require another measure of distance between individual
author names, above we have suggested edit distance
dedit('DJ Abadi', 'D Abadi') = 1
dedit('DJ Abadi', 'M Cherniack') = 9
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Text Comparison - A Measurement Model

Feature extraction as measurement design

Simple Example of Similarity: Edit Distance+Bag Distance

If we introduce a threshold for counting word level matches
(say and edit distance of 2 or 3) by fiat, then we will treat the
first pair as an exact match and the second pair as no match
at all

This completes the full specification of a combined measure of
difference that allows individual typos while recognizing that
the list of authors included may differ from record to record

The resulting measure of difference is typical of how
competing concerns are resolved in real record matching

The result can be computationally intensive for long name
lists and long names
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Text Comparison - A Measurement Model

Feature extraction as measurement design

What can go wrong?

If we design our metric to ignore important differences, we
can produce an excessive number of false positives

If we make our metric too sensitive to noise, we can find large
differences resulting from linguistically unimportant features

If we have to compare a very large number of entries, added
complexity can translate into big increases in computational
time

These competing concerns can be softened by using multiple
metrics that capture different kinds of similarity and then
using regression to obtain a combined classifier of matches
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Text Comparison - A Measurement Model

Key construction

The idea of Blocking Keys / Indexes

We need an efficient way to split off groups of records based
on a simple matching criterion

This strategy allows us to ignore most comparisons
immediately and focus on the pairs that have a chance of
matching

Each subset that matches on key can then be sent to a
different node for careful analysis

This only works if the key is well-designed
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Text Comparison - A Measurement Model

Key construction

Rough Similarity

Given the complexity of the (simple) comparisons that were
discussed above, there is a strong motive to not perform
needless comparisons

The below pair hardly needs to be compared in detail to
recognize the difference

What is so different about them? No author last names are
common, the year is different, the venue has no words in
common

Can we formalize this so that we only do fancy comparison for
things that are roughly similar?

id title authors venue year
conf/sigmod/AbadiC02 Visual COKO: a debugger

for query optimizer devel-
opment

D Abadi, M Cherniack SIGMOD Conference 2002

ixKfiTHoaDoJ Initiation of crazes in
polystyrene

AS Argon, JG Hannoosh Phil. Mag, 1995
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Text Comparison - A Measurement Model

Key construction

Indexes and Search Trees

How much speed up does this actually buy us? In principle, a lot.

Rough comparisons can be very fast and can be hierarchical so that
groups of comparable records can be binned together using a small
number of comparisons

Strong comparisons then only need to be done within the subgroups

6 Strong comparisons becomes 2 strong comparisons (this effect
grows substantially with table size)

year pub type author
2002 mag D Abadi
1995 conf proc K Subieta
1995 book F Ferrandina,

year pub type author
2002 mag DJ Abadi
1995 conf proc J Subeta

year pub type author
2002 mag D Abadi
2002 mag DJ Abadi

year pub type author
1995 conf proc K Subieta
1995 conf proc J Subeta

year pub type author
1995 book F Ferrandina,

Figure 5: Key Blocking



WestGrid Webinar

Text Comparison - A Measurement Model

Key construction

Designing a key

What makes a good key?

Over-estimate matches

Small relative to the overall data set

In the bibliographic case, we could use a combination of

publication year

type of publication

code for a subset of author last names

key design is a choice with real model consequences for the
classification system
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Text Comparison - A Measurement Model

Key construction

Risks of bad key design

Missed matches

Subgroups that are too big and so are slow to process

Key construction time is long compared to direct comparison
time
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Text Comparison - A Measurement Model

Block comparison as a parallelization strategy

Splitting Data by Key

The same idea that we applied to cleaning row by row data
can be used with comparison

The benefits are much more dramatic

By using a node for each blocking key value, we can reap the
maximum benefit of our strategy because fine computations
happen in parallel

This produces an enormous parallelization gain even for
expensive key calculations and splitting

Node 1
year pub type author
2002 mag D Abadi
2002 mag DJ Abadi

Node 2
year pub type author
1995 conf proc K Subieta
1995 conf proc J Subeta

Now 1 comparison happens in parallel and the problem is done!
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Text Comparison - A Measurement Model

Block comparison as a parallelization strategy

Job Construction by Key

So how do we perform this splitting in practice?
High-efficiency requires key calculation and then search tree
style sorting of rows into bins by unique key value
In general this is a pretty involved computation. Fortunately,
pandas indexing and filtering already implements a version of
this
suppose we have created a function for combining columns in
a given row to produce a single key, we can apply it to every
row

df['key']=df.apply(key_computation_function, axis=1)

keyFrame=df[['key']].drop_duplicates()

for key in keyFrame['key']:

filteredDF=db1[db1['key']==key]

#write data subset to pickle or csv

#with key in filename in a dedicated folder
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Machine Learning Analysis of Comparisons

What does a numeric comparison do for you?

Numbers are simple, they have a clear notion of bigger and
smaller

Text is complicated, meaning in text is even more complicated

No single number will be satisfactory for describing all of the
possible text, even in a simple data set

However, it is comparatively easy to define rules for making
decisions with numbers
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Machine Learning Analysis of Comparisons

Multiplicity of similarity metrics

We can alleviate some of the inadequacy of quantitative
measures of similarity by combining several of them together

This is like describing a picture by describing each attribute
(the first pixel is red, the second pixel is blue, etc.)

By cleverly combining metrics, we can bring about a kind of
cancellation of errors

This process is always imperfect but may be “good enough”
for a given task



WestGrid Webinar

Machine Learning Analysis of Comparisons

Supervised learning: finding a cutoff

Linear Regression on Classification Data

Human evaluation of examples provide a highly valuable
training set for finding “decision boundary”

Easiest decision making tool is a generalization of a cutoff
(e.g. everything less than 1/2 is close and everything greater
than 1/2 is far)

We can find the best (linear) rule for combining a given set of
metrics together by using least squares regression [3]

let X be a matrix with every row an input vector of
comparison measures and let ȳ be a vector where every entry
is an outcome corresponding to one of the inputs in X

the best estimator for a linear model Ŷ = XTβ is obtained
from β̂ = (XTX )−1XT ȳ

This can be computed using OLS(y,X) from the package
statmodels in python
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Machine Learning Analysis of Comparisons

Supervised learning: applying a cutoff

Classifying Matches

Having an optimal rule for calculating a derived metric, we
can apply this to new comparison data

compute all basic metrics for a given comparison

compute the combined metric

compare the result to the optimal cutoff

if less than the cutoff by enough of a margin, conclude that
the pair of records match

if greater than the cutoff by enough of a margin, conclude
the the pair of records do not match

if near the cutoff, send the pair for review by a specialist
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Advanced Methods

Advanced Methods

Richer Parsing

Advanced Comparison Measures (Term-Document
Frequencies)

Non-parametric ML models (Nearest Neighbors, Decision
Trees) [3]

Clustering Analysis

Term-Document Matrix Factorization
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