
Scatter Graphs Scatter + graphs Scaling up Stats Summary

Text analysis in 3D

ALEX RAZOUMOV
alex.razoumov@westdri.ca

webinar slides at https://bit.ly/vispages 2023-Nov-28 1 / 38

https://bit.ly/vispages

Scatter Graphs Scatter + graphs Scaling up Stats Summary

Zoom controls

Please mute your microphone and camera unless you have a question

To ask questions at any time, type in Chat, or Unmute to ask via audio

please address chat questions to "Everyone" (not direct chat!)

Raise your hand in Participants

Email training@westdri.ca

Our fall training schedule https://bit.ly/wg2023b

webinars, online courses, in-person workshops

webinar slides at https://bit.ly/vispages 2023-Nov-28 2 / 38

https://bit.ly/wg2023b
https://bit.ly/vispages

Scatter Graphs Scatter + graphs Scaling up Stats Summary

Some of today’s examples come from my DHSI course “3D visualization for the humanities”

Today’s goal is not to present final workflows (they certainly are not!), but to show you some
ideas and demos, and you could take it to the next level

how to go from texts to 3D graphs
how to use open-source scientific visualization packages for visualizing 3D graphs
how to scale this up to much larger networks

In several places in the presentation I leave things as they are, without providing a solution,
e.g.

finding common words between texts is slow in native Python – but we can find a solution if
needed (there must be a Python library for that!)
there is no pretty+meaningful+fast layout in NetworkX to process networks with millions of
nodes, but that does not mean you cannot write your own (and it’s easy without a forced layout,
e.g. you can put nodes on a grid based on their attributes)

webinar slides at https://bit.ly/vispages 2023-Nov-28 3 / 38

https://bit.ly/vispages

Scatter Graphs Scatter + graphs Scaling up Stats Summary

From texts to 3D scatter plots

webinar slides at https://bit.ly/vispages 2023-Nov-28 4 / 38

https://bit.ly/vispages

Scatter Graphs Scatter + graphs Scaling up Stats Summary

Semantic mapping

Idea inspired by this blog post from 2009

Analyzed a corpus of 5,733,721 articles from
2,231 research journals (mostly science,
technology and medical fields)

Mapped the position of each journal in the
512-dimensional “semantic space” (more on this
later)

Calculated a 2231× 2231 distance matrix in 512D

Used multidimensional scaling to convert this
matrix to 2D positions of 2231 points

Coloured the points by 23 human-created journal categories

Found excellent correspondence with human-created journal categories

webinar slides at https://bit.ly/vispages 2023-Nov-28 5 / 38

http://zzzoot.blogspot.ca/2009/07/project-torngat-building-large-scale.html
https://bit.ly/vispages

Scatter Graphs Scatter + graphs Scaling up Stats Summary

Multidimensional scaling

Challenge: given a 24× 24
table of pairwise distances
between 24 cities, reconstruct
their relative positions in 2D.

webinar slides at https://bit.ly/vispages 2023-Nov-28 6 / 38

https://bit.ly/vispages

Scatter Graphs Scatter + graphs Scaling up Stats Summary

Semantic analysis of five public-domain texts

(1) THE TIME MACHINE, by Herbert Wells

(2) OLIVER TWIST, by Charles Dickens

(3) ADVENTURES OF HUCKLEBERRY FINN, by Mark Twain

(4) THE WAR OF THE WORLDS, by Herbert Wells

(5) GALILIEAN-INVARIANT COSMOLOGICAL HYDRODYNAMICAL SIMULATIONS ON A MOVING
MESH, by Volker Springel

(6) THE BROTHERS KARAMAZOV, by Fyodor Dostoevsky

We’ll analyze dictionaries and relative word frequencies and visualize a distance-based map
of these texts in 3D

webinar slides at https://bit.ly/vispages 2023-Nov-28 7 / 38

https://bit.ly/vispages

Scatter Graphs Scatter + graphs Scaling up Stats Summary

Algorithm

(1) From each text pick up 30 longest paragraphs, ×6 texts⇒ 180 paragraphs

(2) Convert line breaks and dashes to spaces, remove punctuation

(3) Remove common words (prepositions, articles, etc)

(4) Count words across all paragraphs and remove words that appear only once across all texts

(5) Build a global dictionary (one for all five texts) of words, with Nwords words

(6) Vectorize each paragraph in the Nwords-dimensional space, positioning it according to its word count;
for details see http://radimrehurek.com/gensim/tut1.html

(7) Normalize each vector to the number of words in its paragraph, to count relative word frequencies

(8) Calculate pairwise distances between all paragraphs in the Nwords-dimensional space⇒ 180× 180
matrix of numbers

(9) Use multidimensional scaling to convert the distance matrix to paragraph positions in 3D, store them as
VTK points

(10) Visualize these points in 3D with ParaView, colouring by the author and sizing by the text per author
(two texts for Herbert Wells)

webinar slides at https://bit.ly/vispages 2023-Nov-28 8 / 38

http://radimrehurek.com/gensim/tut1.html
https://bit.ly/vispages

Scatter Graphs Scatter + graphs Scaling up Stats Summary

Algorithm

(1) From each text pick up 30 longest paragraphs, ×6 texts⇒ 180 paragraphs

(2) Convert line breaks and dashes to spaces, remove punctuation

(3) Remove common words (prepositions, articles, etc)

(4) Count words across all paragraphs and remove words that appear only once across all texts

(5) Build a global dictionary (one for all five texts) of words, with Nwords words

(6) Vectorize each paragraph in the Nwords-dimensional space, positioning it according to its word count;
for details see http://radimrehurek.com/gensim/tut1.html

(7) Normalize each vector to the number of words in its paragraph, to count relative word frequencies

(8) Calculate pairwise distances between all paragraphs in the Nwords-dimensional space⇒ 180× 180
matrix of numbers

(9) Use multidimensional scaling to convert the distance matrix to paragraph positions in 3D, store them as
VTK points

(10) Visualize these points in 3D with ParaView, colouring by the author and sizing by the text per author
(two texts for Herbert Wells)

webinar slides at https://bit.ly/vispages 2023-Nov-28 8 / 38

http://radimrehurek.com/gensim/tut1.html
https://bit.ly/vispages

Scatter Graphs Scatter + graphs Scaling up Stats Summary

Algorithm

(1) From each text pick up 30 longest paragraphs, ×6 texts⇒ 180 paragraphs

(2) Convert line breaks and dashes to spaces, remove punctuation

(3) Remove common words (prepositions, articles, etc)

(4) Count words across all paragraphs and remove words that appear only once across all texts

(5) Build a global dictionary (one for all five texts) of words, with Nwords words

(6) Vectorize each paragraph in the Nwords-dimensional space, positioning it according to its word count;
for details see http://radimrehurek.com/gensim/tut1.html

(7) Normalize each vector to the number of words in its paragraph, to count relative word frequencies

(8) Calculate pairwise distances between all paragraphs in the Nwords-dimensional space⇒ 180× 180
matrix of numbers

(9) Use multidimensional scaling to convert the distance matrix to paragraph positions in 3D, store them as
VTK points

(10) Visualize these points in 3D with ParaView, colouring by the author and sizing by the text per author
(two texts for Herbert Wells)

webinar slides at https://bit.ly/vispages 2023-Nov-28 8 / 38

http://radimrehurek.com/gensim/tut1.html
https://bit.ly/vispages

Scatter Graphs Scatter + graphs Scaling up Stats Summary

Algorithm

(1) From each text pick up 30 longest paragraphs, ×6 texts⇒ 180 paragraphs

(2) Convert line breaks and dashes to spaces, remove punctuation

(3) Remove common words (prepositions, articles, etc)

(4) Count words across all paragraphs and remove words that appear only once across all texts

(5) Build a global dictionary (one for all five texts) of words, with Nwords words

(6) Vectorize each paragraph in the Nwords-dimensional space, positioning it according to its word count;
for details see http://radimrehurek.com/gensim/tut1.html

(7) Normalize each vector to the number of words in its paragraph, to count relative word frequencies

(8) Calculate pairwise distances between all paragraphs in the Nwords-dimensional space⇒ 180× 180
matrix of numbers

(9) Use multidimensional scaling to convert the distance matrix to paragraph positions in 3D, store them as
VTK points

(10) Visualize these points in 3D with ParaView, colouring by the author and sizing by the text per author
(two texts for Herbert Wells)

webinar slides at https://bit.ly/vispages 2023-Nov-28 8 / 38

http://radimrehurek.com/gensim/tut1.html
https://bit.ly/vispages

Scatter Graphs Scatter + graphs Scaling up Stats Summary

Algorithm

(1) From each text pick up 30 longest paragraphs, ×6 texts⇒ 180 paragraphs

(2) Convert line breaks and dashes to spaces, remove punctuation

(3) Remove common words (prepositions, articles, etc)

(4) Count words across all paragraphs and remove words that appear only once across all texts

(5) Build a global dictionary (one for all five texts) of words, with Nwords words

(6) Vectorize each paragraph in the Nwords-dimensional space, positioning it according to its word count;
for details see http://radimrehurek.com/gensim/tut1.html

(7) Normalize each vector to the number of words in its paragraph, to count relative word frequencies

(8) Calculate pairwise distances between all paragraphs in the Nwords-dimensional space⇒ 180× 180
matrix of numbers

(9) Use multidimensional scaling to convert the distance matrix to paragraph positions in 3D, store them as
VTK points

(10) Visualize these points in 3D with ParaView, colouring by the author and sizing by the text per author
(two texts for Herbert Wells)

webinar slides at https://bit.ly/vispages 2023-Nov-28 8 / 38

http://radimrehurek.com/gensim/tut1.html
https://bit.ly/vispages

Scatter Graphs Scatter + graphs Scaling up Stats Summary

Algorithm

(1) From each text pick up 30 longest paragraphs, ×6 texts⇒ 180 paragraphs

(2) Convert line breaks and dashes to spaces, remove punctuation

(3) Remove common words (prepositions, articles, etc)

(4) Count words across all paragraphs and remove words that appear only once across all texts

(5) Build a global dictionary (one for all five texts) of words, with Nwords words

(6) Vectorize each paragraph in the Nwords-dimensional space, positioning it according to its word count;
for details see http://radimrehurek.com/gensim/tut1.html

(7) Normalize each vector to the number of words in its paragraph, to count relative word frequencies

(8) Calculate pairwise distances between all paragraphs in the Nwords-dimensional space⇒ 180× 180
matrix of numbers

(9) Use multidimensional scaling to convert the distance matrix to paragraph positions in 3D, store them as
VTK points

(10) Visualize these points in 3D with ParaView, colouring by the author and sizing by the text per author
(two texts for Herbert Wells)

webinar slides at https://bit.ly/vispages 2023-Nov-28 8 / 38

http://radimrehurek.com/gensim/tut1.html
https://bit.ly/vispages

Scatter Graphs Scatter + graphs Scaling up Stats Summary

Algorithm

(1) From each text pick up 30 longest paragraphs, ×6 texts⇒ 180 paragraphs

(2) Convert line breaks and dashes to spaces, remove punctuation

(3) Remove common words (prepositions, articles, etc)

(4) Count words across all paragraphs and remove words that appear only once across all texts

(5) Build a global dictionary (one for all five texts) of words, with Nwords words

(6) Vectorize each paragraph in the Nwords-dimensional space, positioning it according to its word count;
for details see http://radimrehurek.com/gensim/tut1.html

(7) Normalize each vector to the number of words in its paragraph, to count relative word frequencies

(8) Calculate pairwise distances between all paragraphs in the Nwords-dimensional space⇒ 180× 180
matrix of numbers

(9) Use multidimensional scaling to convert the distance matrix to paragraph positions in 3D, store them as
VTK points

(10) Visualize these points in 3D with ParaView, colouring by the author and sizing by the text per author
(two texts for Herbert Wells)

webinar slides at https://bit.ly/vispages 2023-Nov-28 8 / 38

http://radimrehurek.com/gensim/tut1.html
https://bit.ly/vispages

Scatter Graphs Scatter + graphs Scaling up Stats Summary

Algorithm

(1) From each text pick up 30 longest paragraphs, ×6 texts⇒ 180 paragraphs

(2) Convert line breaks and dashes to spaces, remove punctuation

(3) Remove common words (prepositions, articles, etc)

(4) Count words across all paragraphs and remove words that appear only once across all texts

(5) Build a global dictionary (one for all five texts) of words, with Nwords words

(6) Vectorize each paragraph in the Nwords-dimensional space, positioning it according to its word count;
for details see http://radimrehurek.com/gensim/tut1.html

(7) Normalize each vector to the number of words in its paragraph, to count relative word frequencies

(8) Calculate pairwise distances between all paragraphs in the Nwords-dimensional space⇒ 180× 180
matrix of numbers

(9) Use multidimensional scaling to convert the distance matrix to paragraph positions in 3D, store them as
VTK points

(10) Visualize these points in 3D with ParaView, colouring by the author and sizing by the text per author
(two texts for Herbert Wells)

webinar slides at https://bit.ly/vispages 2023-Nov-28 8 / 38

http://radimrehurek.com/gensim/tut1.html
https://bit.ly/vispages

Scatter Graphs Scatter + graphs Scaling up Stats Summary

The code

1. The entire algorithm is implemented in semanticMapping1.py + let’s take a look at it
if working inside a Jupyter notebook, load the code into the current cell with
%load semanticMapping1.py and then run it
if working in the terminal, use the command python -i semanticMapping1.py

2. Writing into a VTK file with

def writeNodesEdges(nodeCoords, scalar = [], name = [], power = [1,1], nodeLabel = [],

edges = [], method = ’vtkPolyData’, fileout = ’test’):

"""

Store points and/or graphs as vtkPolyData or vtkUnstructuredGrid.

Required argument:

- nodeCoords is an array of node coordinates (nnodes,3)

Optional arguments:

- scalar is the list of attributes, each is the list of scalars for all nodes

- name is the list of scalars’ names

- power is the scaling list for attributes: 1 for r~scalars, 0.333 for V~scalars

- nodeLabel is a list of node labels

- edges is a list of edges in the format [nodeID1,nodeID2]

- method = ’vtkPolyData’ or ’vtkUnstructuredGrid’

- fileout is the output file name (will be given .vtp or .vtu extension)

"""

3. Open texts.vtu in ParaView

webinar slides at https://bit.ly/vispages 2023-Nov-28 9 / 38

https://bit.ly/vispages

Scatter Graphs Scatter + graphs Scaling up Stats Summary

Plotting normalizedFullCorpus

webinar slides at https://bit.ly/vispages 2023-Nov-28 10 / 38

https://bit.ly/vispages

Scatter Graphs Scatter + graphs Scaling up Stats Summary

Viewing results in ParaView
1. Colour glyphs by “author”

2. Switch from continuous to categorical colours and
annotate them, e.g.

blue, author=1, Herbert Wells
red, author=2, Charles Dickens
green, author=3, Mark Twain
cyan, author=4, astrophysics
yellow, author=5, Fyodor Dostoevsky

3. Size glyphs by “novel per author” (small: The Time
Machine, large: The War of the Worlds)

Save the state to file texts.pvsm

On Unix-like systems can reload from the GUI or from the command line with

/path/to/paraview --state=texts.pvsm

Discuss reloading data

Alternatively, we could map to 2D, using the third dimension to visualize some attribute, e.g.
the publication year, or the text size, or the number of protagonists, etc. (will demo this later)

webinar slides at https://bit.ly/vispages 2023-Nov-28 11 / 38

https://bit.ly/vispages

Scatter Graphs Scatter + graphs Scaling up Stats Summary

Let’s add the four Gospels in Greek

Same workflow, now 10
texts (see
semanticMapping2.py)

Colour Gospels in
orange

webinar slides at https://bit.ly/vispages 2023-Nov-28 12 / 38

https://bit.ly/vispages

Scatter Graphs Scatter + graphs Scaling up Stats Summary

3D graphs

webinar slides at https://bit.ly/vispages 2023-Nov-28 13 / 38

https://bit.ly/vispages

Scatter Graphs Scatter + graphs Scaling up Stats Summary

Dedicated 2D graph tools

Many dedicated 2D tools, most popular ones are Gephi, Cytoscape (both open source)

How can we extend this to 3D? And do we really want to?

webinar slides at https://bit.ly/vispages 2023-Nov-28 14 / 38

https://bit.ly/vispages

Scatter Graphs Scatter + graphs Scaling up Stats Summary

Dedicated 3D graph tools
Looking for an interactive, open-source, cross-platform, currently maintained,
user-friendly (and ideally in Python) dedicated 3D graph visualization tool

Surprisingly, there are very few ... most are either short-lived research projects and have not been
updated in many years, or Windows only, or JavaScript-based, or commercial

The most promising is https://robert-haas.github.io/gravis-docs (look for a 3D example
here) but it has not been updated in ∼2 years ... thinking of doing a webinar on it next semester
Or we could combine existing general-purpose tools and packages: NetworkX + VTK + ParaView

advantages: (1) using general-purpose visualization tool; (2) everything is scriptable; (3) can scale directly to
10∼5.5 nodes, with a little extra care to 10∼9.5 nodes

disadvantages: graphs are static 3D objects, can’t click on a node, highlight connections, move nodes, etc. (but
we can script all these interactions!)

note: in the current implementation edges are displayed as straight lines; possible to use vtkArcSource or
vtkPolyLine to create arcs and store them as vtkPolyData

(1) We’ll use NetworkX + VTK to create a graph, position nodes, optionally compute graph statistics, and
write everything to a VTK file; we’ll do this in Python 3.11

(2) Load that file into ParaView

Alternatively, we could replace (NetworkX + VTK + ParaView) with (NetworkX + Plotly), but the result
won’t be as interactive / nice / scalable

webinar slides at https://bit.ly/vispages 2023-Nov-28 15 / 38

https://robert-haas.github.io/gravis-docs
https://robert-haas.github.io/gravis-docs/code/examples/basic_use.html
https://bit.ly/vispages

Scatter Graphs Scatter + graphs Scaling up Stats Summary

Dedicated 3D graph tools
Looking for an interactive, open-source, cross-platform, currently maintained,
user-friendly (and ideally in Python) dedicated 3D graph visualization tool

Surprisingly, there are very few ... most are either short-lived research projects and have not been
updated in many years, or Windows only, or JavaScript-based, or commercial

The most promising is https://robert-haas.github.io/gravis-docs (look for a 3D example
here) but it has not been updated in ∼2 years ... thinking of doing a webinar on it next semester

Or we could combine existing general-purpose tools and packages: NetworkX + VTK + ParaView
advantages: (1) using general-purpose visualization tool; (2) everything is scriptable; (3) can scale directly to
10∼5.5 nodes, with a little extra care to 10∼9.5 nodes

disadvantages: graphs are static 3D objects, can’t click on a node, highlight connections, move nodes, etc. (but
we can script all these interactions!)

note: in the current implementation edges are displayed as straight lines; possible to use vtkArcSource or
vtkPolyLine to create arcs and store them as vtkPolyData

(1) We’ll use NetworkX + VTK to create a graph, position nodes, optionally compute graph statistics, and
write everything to a VTK file; we’ll do this in Python 3.11

(2) Load that file into ParaView

Alternatively, we could replace (NetworkX + VTK + ParaView) with (NetworkX + Plotly), but the result
won’t be as interactive / nice / scalable

webinar slides at https://bit.ly/vispages 2023-Nov-28 15 / 38

https://robert-haas.github.io/gravis-docs
https://robert-haas.github.io/gravis-docs/code/examples/basic_use.html
https://bit.ly/vispages

Scatter Graphs Scatter + graphs Scaling up Stats Summary

Dedicated 3D graph tools
Looking for an interactive, open-source, cross-platform, currently maintained,
user-friendly (and ideally in Python) dedicated 3D graph visualization tool

Surprisingly, there are very few ... most are either short-lived research projects and have not been
updated in many years, or Windows only, or JavaScript-based, or commercial

The most promising is https://robert-haas.github.io/gravis-docs (look for a 3D example
here) but it has not been updated in ∼2 years ... thinking of doing a webinar on it next semester
Or we could combine existing general-purpose tools and packages: NetworkX + VTK + ParaView

advantages: (1) using general-purpose visualization tool; (2) everything is scriptable; (3) can scale directly to
10∼5.5 nodes, with a little extra care to 10∼9.5 nodes

disadvantages: graphs are static 3D objects, can’t click on a node, highlight connections, move nodes, etc. (but
we can script all these interactions!)

note: in the current implementation edges are displayed as straight lines; possible to use vtkArcSource or
vtkPolyLine to create arcs and store them as vtkPolyData

(1) We’ll use NetworkX + VTK to create a graph, position nodes, optionally compute graph statistics, and
write everything to a VTK file; we’ll do this in Python 3.11

(2) Load that file into ParaView

Alternatively, we could replace (NetworkX + VTK + ParaView) with (NetworkX + Plotly), but the result
won’t be as interactive / nice / scalable

webinar slides at https://bit.ly/vispages 2023-Nov-28 15 / 38

https://robert-haas.github.io/gravis-docs
https://robert-haas.github.io/gravis-docs/code/examples/basic_use.html
https://bit.ly/vispages

Scatter Graphs Scatter + graphs Scaling up Stats Summary

Dedicated 3D graph tools
Looking for an interactive, open-source, cross-platform, currently maintained,
user-friendly (and ideally in Python) dedicated 3D graph visualization tool

Surprisingly, there are very few ... most are either short-lived research projects and have not been
updated in many years, or Windows only, or JavaScript-based, or commercial

The most promising is https://robert-haas.github.io/gravis-docs (look for a 3D example
here) but it has not been updated in ∼2 years ... thinking of doing a webinar on it next semester
Or we could combine existing general-purpose tools and packages: NetworkX + VTK + ParaView

advantages: (1) using general-purpose visualization tool; (2) everything is scriptable; (3) can scale directly to
10∼5.5 nodes, with a little extra care to 10∼9.5 nodes

disadvantages: graphs are static 3D objects, can’t click on a node, highlight connections, move nodes, etc. (but
we can script all these interactions!)

note: in the current implementation edges are displayed as straight lines; possible to use vtkArcSource or
vtkPolyLine to create arcs and store them as vtkPolyData

(1) We’ll use NetworkX + VTK to create a graph, position nodes, optionally compute graph statistics, and
write everything to a VTK file; we’ll do this in Python 3.11

(2) Load that file into ParaView

Alternatively, we could replace (NetworkX + VTK + ParaView) with (NetworkX + Plotly), but the result
won’t be as interactive / nice / scalable

webinar slides at https://bit.ly/vispages 2023-Nov-28 15 / 38

https://robert-haas.github.io/gravis-docs
https://robert-haas.github.io/gravis-docs/code/examples/basic_use.html
https://bit.ly/vispages

Scatter Graphs Scatter + graphs Scaling up Stats Summary

NetworkX graphs

NetworkX is a Python package for the creation, manipulation, and analysis of complex
networks

Documentation at http://networkx.github.io

import networkx as nx

return all names (attributes and methods) inside nx
dir(nx)

generate a list (of 139) built-in graph types
with Python’s ‘‘list comprehension’’
[x for x in dir(nx) if "_graph" in x]

webinar slides at https://bit.ly/vispages 2023-Nov-28 16 / 38

http://networkx.github.io
https://bit.ly/vispages

Scatter Graphs Scatter + graphs Scaling up Stats Summary

NetworkX layouts B

generate a (much shorter) list of built-in graph layouts
[x for x in dir(nx) if "_layout" in x]
will print [’arf_layout’, ’bipartite_layout’, ’circular_layout’,
’fruchterman_reingold_layout’, ’kamada_kawai_layout’, ’multipartite_layout’,
’planar_layout’, ’random_layout’, ’rescale_layout’, ’rescale_layout_dict’,
’shell_layout’, ’spectral_layout’, ’spiral_layout’, ’spring_layout’]

can always look at the help pages
help(nx.circular_layout)

spring_ and fruchterman_reingold_ are the same, so really 13 built-in layouts

Can use 3rd-party layouts, can create your own

circular_ , random_ , shell_ are fixed layouts

spring_ and spectral_ are force-directed layouts: linked nodes attract each other,
non-linked nodes are pushed apart

webinar slides at https://bit.ly/vispages 2023-Nov-28 17 / 38

https://bit.ly/vispages

Scatter Graphs Scatter + graphs Scaling up Stats Summary

NetworkX layouts BB

Layouts typically return a dictionary, with each element being a 2D/3D coordinate array
indexed by the node’s number (or name)

generate a random graph with 10 nodes and 50 edges
H = nx.gnm_random_graph(10,50)

the layout is a dictionary of 2D coordinates of all 10 nodes
nx.shell_layout(H,dim=2) # in this layout only dim=2 supported

each value of these is an (x,y,z) coordinate of a node
nx.circular_layout(H,dim=3)
nx.spring_layout(H,dim=3)
nx.random_layout(H,dim=3)
nx.spectral_layout(H,dim=3)

webinar slides at https://bit.ly/vispages 2023-Nov-28 18 / 38

https://bit.ly/vispages

Scatter Graphs Scatter + graphs Scaling up Stats Summary

Our first graph (randomGraph1.py)

import networkx as nx
from nodesAndEdges import writeNodesEdges

numberNodes, numberEdges = 100, 500
H = nx.gnm_random_graph(numberNodes,numberEdges)
print(’nodes:’, H.nodes())
print(’edges:’, H.edges())

return a dictionary of positions keyed by node
pos = nx.random_layout(H,dim=3)

convert to list of positions (each is a list)
xyz = [list(pos[i]) for i in pos]

degree = [d for i,d in H.degree()]
writeNodesEdges(xyz, edges=H.edges(), scalar=[degree],

name=[’degree’], fileout=’network’)

webinar slides at https://bit.ly/vispages 2023-Nov-28 19 / 38

https://bit.ly/vispages

Scatter Graphs Scatter + graphs Scaling up Stats Summary

Labelling graph nodes

(1) Press V to bring up Find Data dialogue

(2) Data Producer = network.vtp, Element Type = Point

(3) Find Points with ID>=0 (or other selection), press Find Data

(4) Make network.vtp visible in the pipeline browser

(5) Check Point Labels -> ID

(6) Adjust the label font size

We can also label only few selected points, e.g. those with degree ≥ 10

webinar slides at https://bit.ly/vispages 2023-Nov-28 20 / 38

https://bit.ly/vispages

Scatter Graphs Scatter + graphs Scaling up Stats Summary

Switch to spring layout

Let’s apply a force-directed layout

$ diff randomGraph{1,2}.py
10c10,11
< pos = nx.random_layout(H,dim=3)

> pos = nx.spring_layout(H,dim=3,k=1)

Run “python randomGraph2.py” from the command line

Reload the data

webinar slides at https://bit.ly/vispages 2023-Nov-28 21 / 38

https://bit.ly/vispages

Scatter Graphs Scatter + graphs Scaling up Stats Summary

Adding graphs to
our text visualizations

webinar slides at https://bit.ly/vispages 2023-Nov-28 22 / 38

https://bit.ly/vispages

Scatter Graphs Scatter + graphs Scaling up Stats Summary

Connect close pairs

In multidimensional scaling we
already calculate pairwise
distances

Let’s connect pairs with di,j < 0.14
(see semanticMapping3.py)

webinar slides at https://bit.ly/vispages 2023-Nov-28 23 / 38

https://bit.ly/vispages

Scatter Graphs Scatter + graphs Scaling up Stats Summary

Apply a force layout

Let’s use only the connections (edges) to position the nodes: apply a force layout (see
semanticMapping4.py)

Pairwise distances di,j now used only for edges, not for direct positioning

Use the spring strength k to move the nodes closer or further apart

k = 0.7 k = 1.4
webinar slides at https://bit.ly/vispages 2023-Nov-28 24 / 38

https://bit.ly/vispages

Scatter Graphs Scatter + graphs Scaling up Stats Summary

Connect texts with common words

Dostoevsky does not have any common words with the English texts!

Pairwise distances di,j use arbitrary scaling and are not a good measure ...

Instead, let’s connect pairs with at least 5 words in common

di,j will no longer be used ⇒ can remove multidimensional scaling from the code

See semanticMapping5.py

n, i = len(fullCorpus), -1
edges = []
for d1 in tqdm(fullCorpus):

i += 1
row = []
for j, d2 in enumerate(fullCorpus):

if i < j:
if sum((d1!=0) * (d2!=0)) >=5:

edges.append([i,j])

Implemented in native Python ⇒ quite slow compared to multidimensional scaling
for 600 paragraphs takes 6m vs. 5s for MD for the same texts

webinar slides at https://bit.ly/vispages 2023-Nov-28 25 / 38

https://bit.ly/vispages

Scatter Graphs Scatter + graphs Scaling up Stats Summary

Connect texts with common words

Dostoevsky does not have any common words with the English texts!

Pairwise distances di,j use arbitrary scaling and are not a good measure ...

Instead, let’s connect pairs with at least 5 words in common

di,j will no longer be used ⇒ can remove multidimensional scaling from the code

See semanticMapping5.py

n, i = len(fullCorpus), -1
edges = []
for d1 in tqdm(fullCorpus):

i += 1
row = []
for j, d2 in enumerate(fullCorpus):

if i < j:
if sum((d1!=0) * (d2!=0)) >=5:

edges.append([i,j])

Implemented in native Python ⇒ quite slow compared to multidimensional scaling
for 600 paragraphs takes 6m vs. 5s for MD for the same texts

webinar slides at https://bit.ly/vispages 2023-Nov-28 25 / 38

https://bit.ly/vispages

Scatter Graphs Scatter + graphs Scaling up Stats Summary

Separate layout for each language

Makes no sense to use the same
spring strength in both languages

Apply a separate layout to
Dostoevsky

See semanticMapping6.py

webinar slides at https://bit.ly/vispages 2023-Nov-28 26 / 38

https://bit.ly/vispages

Scatter Graphs Scatter + graphs Scaling up Stats Summary

Separate visual properties for each language

Two ways to assign different visuals to each graph:
1. write into separate files (see semanticMapping7.py), or
2. use ParaView filters

webinar slides at https://bit.ly/vispages 2023-Nov-28 27 / 38

https://bit.ly/vispages

Scatter Graphs Scatter + graphs Scaling up Stats Summary

Encoding a variable in the 3rd dimension

Spring layout to 2D

Use the 3rd dimension to encode the year of the first publication
(see semanticMapping8.py)

webinar slides at https://bit.ly/vispages 2023-Nov-28 28 / 38

https://bit.ly/vispages

Scatter Graphs Scatter + graphs Scaling up Stats Summary

Scaling NetworkX + VTK + ParaView
to bigger networks

webinar slides at https://bit.ly/vispages 2023-Nov-28 29 / 38

https://bit.ly/vispages

Scatter Graphs Scatter + graphs Scaling up Stats Summary

Scaling up

This approach (NetworkX + VTK + ParaView) can scale without modification to 10∼5.5

nodes, with a little extra care to 10∼9.5 nodes

On presenter’s laptop see mutOnCtOrbits.mp4 for a more complex graph (600, 000 edges)
created with this workflow

Demo with a Dorogovtsev-Goltsev-Mendes graph

webinar slides at https://bit.ly/vispages 2023-Nov-28 30 / 38

file:///Users/razoumov/Documents/training/humanities/mutOnCtOrbits.mp4
https://bit.ly/vispages

Scatter Graphs Scatter + graphs Scaling up Stats Summary

Dorogovtsev-Goltsev-Mendes graph

Dorogovtsev-Goltsev-Mendes
graph is a fractal network from
http://arxiv.org/pdf/
cond-mat/0112143.pdf; in each
subsequent generation:

1. every edge from the previous
generation yields a new node, and

2. the new graph can be made by
connecting together three
previous-generation graphs

webinar slides at https://bit.ly/vispages 2023-Nov-28 31 / 38

http://arxiv.org/pdf/cond-mat/0112143.pdf
http://arxiv.org/pdf/cond-mat/0112143.pdf
https://bit.ly/vispages

Scatter Graphs Scatter + graphs Scaling up Stats Summary

Dorogovtsev-Goltsev-Mendes graph (dgm.py)

Generating the network: fast

Computing the force layout: by far the most expensive part (for very large networks)

Visualization: fast

import networkx as nx, sys, locale
from nodesAndEdges import writeNodesEdges
generation = int(sys.argv[1])

H = nx.dorogovtsev_goltsev_mendes_graph(generation)

locale.setlocale(locale.LC_ALL, ’’) # auto configuration
print(f’{nx.number_of_nodes(H):n}’, ’nodes and’, f’{nx.number_of_edges(H):n}’, ’edges’)

pos = nx.spring_layout(H, dim=3, k=0.003) # slower
pos = nx.spectral_layout(H, dim=3) # faster, not as nice

xyz = [list(pos[i]) for i in pos] # list of positions (each is a list [x,y,z])

degree = [d for i,d in H.degree(H.nodes())]
writeNodesEdges(xyz, edges=H.edges(), scalar=[degree], name=[’degree’], fileout=’network9’)

webinar slides at https://bit.ly/vispages 2023-Nov-28 32 / 38

https://bit.ly/vispages

Scatter Graphs Scatter + graphs Scaling up Stats Summary

Dorogovtsev-Goltsev-Mendes graph (7th generation)

python dgm.py 7 # takes under 1s on a laptop

webinar slides at https://bit.ly/vispages 2023-Nov-28 33 / 38

https://bit.ly/vispages

Scatter Graphs Scatter + graphs Scaling up Stats Summary

Dorogovtsev-Goltsev-Mendes graph: scaling up

10th gen
stored in network91.vtp
29,526 nodes and 59,049 edges
slower spring_layout (15m31s on a laptop)

11th gen
stored in network92.vtp
88,575 nodes and 177,147 edges
faster spectral_layout (2m6s on a laptop)

Preparing for this presentation, I created a 15th-gen DGM graph: 7,174,455 nodes and 14,348,907 edges, takes few
seconds to generate, easy to visualize in ParaView (e.g. with meaningless random_layout, few seconds to render a
frame), but there is no pretty+meaningful+fast layout in NetworkX to process it with

webinar slides at https://bit.ly/vispages 2023-Nov-28 34 / 38

https://bit.ly/vispages

Scatter Graphs Scatter + graphs Scaling up Stats Summary

Using NetworkX’s
built-in algorithms

webinar slides at https://bit.ly/vispages 2023-Nov-28 35 / 38

https://bit.ly/vispages

Scatter Graphs Scatter + graphs Scaling up Stats Summary

Eigenvector centrality (dgmCentrality.py)

Let’s compute and visualize eigenvector centrality in the 5th-deneration
Dorogovtsev-Goltsev-Mendes graph with our custom 3D layout.
import networkx as nx
from nodesAndEdges import writeNodesEdges
H = nx.dorogovtsev_goltsev_mendes_graph(5)
pos = nx.spring_layout(H, dim=3)
print(nx.number_of_nodes(H), ’nodes and’, nx.number_of_edges(H), ’edges’)
degree = [d for i,d in H.degree(H.nodes())]
xyz = [[pos[i][0], pos[i][1], (degree[i])**0.5/5.7] for i in pos]

compute and print eigenvector centrality
ec = nx.eigenvector_centrality(H) # dictionary of nodes with EC as the value
ecList = [ec[i] for i in ec]
print(’degree =’, degree)
print(’eigenvector centrality =’, ecList)
print(’min/max =’, min(ecList), max(ecList))

writeNodesEdges(xyz, edges=H.edges(), scalar=[degree,ecList], name=[’degree’, ’eigenvector centrality’],
power=[0.333,0.333], fileout=’network’)

Run python dgmCentrality.py and load into ParaView by hand

Colour by degree, size by eigenvector centrality

webinar slides at https://bit.ly/vispages 2023-Nov-28 36 / 38

https://bit.ly/vispages

Scatter Graphs Scatter + graphs Scaling up Stats Summary

Other statistics in NetworkX

Various centrality measures: degree, closeness, betweenness, current-flow closeness,
current-flow betweenness, eigenvector, communicability, load, dispersion
https://networkx.github.io/documentation/stable/reference/
algorithms/centrality.html

Several hundred built-in algorithms for various calculations
https://networkx.github.io/documentation/stable/reference/algorithms

webinar slides at https://bit.ly/vispages 2023-Nov-28 37 / 38

https://networkx.github.io/documentation/stable/reference/algorithms/centrality.html
https://networkx.github.io/documentation/stable/reference/algorithms/centrality.html
https://networkx.github.io/documentation/stable/reference/algorithms
https://bit.ly/vispages

Scatter Graphs Scatter + graphs Scaling up Stats Summary

webinar slides at https://bit.ly/vispages 2023-Nov-28 38 / 38

Questions?

https://bit.ly/vispages

	Scatter
	

	Graphs
	

	Scatter + graphs
	

	Scaling up
	

	Stats
	

	Summary
	

