
Intro Base.Threads1 Slow series Base.Threads2 ThreadsX.jl Julia set Summary

ThreadsX.jl: easier multithreading in Julia

ALEX RAZOUMOV
alex.razoumov@westgrid.ca

WestGrid webinar - slides and functions at https://git.io/Jtdge 2022-Feb-02 1 / 28

https://git.io/Jtdge

Intro Base.Threads1 Slow series Base.Threads2 ThreadsX.jl Julia set Summary

Zoom controls

Please mute your microphone and camera unless you have a question

To ask questions at any time, type in Chat, or Unmute to ask via audio
please address chat questions to "Everyone" (not direct chat!)

Raise your hand in Participants

Email training@westgrid.ca

WestGrid webinar - slides and functions at https://git.io/Jtdge 2022-Feb-02 2 / 28

https://git.io/Jtdge

Intro Base.Threads1 Slow series Base.Threads2 ThreadsX.jl Julia set Summary

Parallel Julia

In Compute Canada we teach programming in C, C++, Fortran, Python, R, Julia, Chapel

Julia in WestGrid: serial and parallel courses and webinars https://git.io/Jtdge

Feb-14,16,18 - upcoming “Parallel Julia” national training workshop will cover the
checkboxes below - see details and register at https://bit.ly/wg2022a

Today’s topic: multi-threading, both on multi-core PCs and HPC clusters

Not to be confused with Julia’s multi-processing

4 Base.Threads

4 ThreadsX.jl

4 Distributed.jl

4 DistributedArrays.jl

4 SharedArrays.jl

- Dagger.jl
- Concurrent function calls (“lightweight threads” for

suspending/resuming computations)
- MPI.jl
- MPIArrays.jl
- ClusterManagers.jl
- LoopVectorization.jl
- FLoops.jl
- Transducers.jl
- GPU-related packages

...WestGrid webinar - slides and functions at https://git.io/Jtdge 2022-Feb-02 3 / 28

https://git.io/Jtdge
https://bit.ly/wg2022a
https://git.io/Jtdge

Intro Base.Threads1 Slow series Base.Threads2 ThreadsX.jl Julia set Summary

Threads vs. processes

In Unix a process is the smallest independent unit of processing, with its own memory space – think of
an instance of a running application

A process can contain multiple threads, each running on its own CPU core, all sharing the virtual
memory address space of that process ⇒ multi-threading always limited to one node

WestGrid webinar - slides and functions at https://git.io/Jtdge 2022-Feb-02 4 / 28

https://git.io/Jtdge

Intro Base.Threads1 Slow series Base.Threads2 ThreadsX.jl Julia set Summary

Builtin multi-threading since v1.3

Let’s start Julia by typing “julia” in bash:
using Base.Threads # otherwise will have to preface all functions/macros with ‘Threads.‘
nthreads() # by default, Julia starts with a single thread of execution

If instead we start with “julia -t 4”
(or “JULIA_NUM_THREADS=4 julia” prior to v1.5):
using Base.Threads
nthreads() # now 4 threads

@threads for i=1:10 # parallel for loop using all threads
println("iteration $i on thread $(threadid())")

end

WestGrid webinar - slides and functions at https://git.io/Jtdge 2022-Feb-02 5 / 28

https://git.io/Jtdge

Intro Base.Threads1 Slow series Base.Threads2 ThreadsX.jl Julia set Summary

Let’s compute
∑106

i=1 i with multiple threads

This code is not thread-safe:
total = 0
@threads for i = 1:1_000_000

global total += i
end
println("total = ", total)

race condition: multiple threads updating the same variable at the same time
a new result every time
unfortunately, @threads does not have built-in reduction support

Let’s make it thread-safe (one of many solutions):
total = Atomic{Int64}(0)
@threads for i in 1:Int(1e6)

atomic_add!(total, i)
end
println("total = ", total[])

this code might be much slower: threads waiting for others to finish updating the variable
atomic variables not really designed for this type of usage

⇒ let’s do some benchmarking

WestGrid webinar - slides and functions at https://git.io/Jtdge 2022-Feb-02 6 / 28

https://git.io/Jtdge

Intro Base.Threads1 Slow series Base.Threads2 ThreadsX.jl Julia set Summary

Let’s compute
∑106

i=1 i with multiple threads

This code is not thread-safe:
total = 0
@threads for i = 1:1_000_000

global total += i
end
println("total = ", total)

race condition: multiple threads updating the same variable at the same time
a new result every time
unfortunately, @threads does not have built-in reduction support

Let’s make it thread-safe (one of many solutions):
total = Atomic{Int64}(0)
@threads for i in 1:Int(1e6)

atomic_add!(total, i)
end
println("total = ", total[])

this code might be much slower: threads waiting for others to finish updating the variable
atomic variables not really designed for this type of usage

⇒ let’s do some benchmarking

WestGrid webinar - slides and functions at https://git.io/Jtdge 2022-Feb-02 6 / 28

https://git.io/Jtdge

Intro Base.Threads1 Slow series Base.Threads2 ThreadsX.jl Julia set Summary

Let’s compute
∑106

i=1 i with multiple threads

This code is not thread-safe:
total = 0
@threads for i = 1:1_000_000

global total += i
end
println("total = ", total)

race condition: multiple threads updating the same variable at the same time
a new result every time
unfortunately, @threads does not have built-in reduction support

Let’s make it thread-safe (one of many solutions):
total = Atomic{Int64}(0)
@threads for i in 1:Int(1e6)

atomic_add!(total, i)
end
println("total = ", total[])

this code might be much slower: threads waiting for others to finish updating the variable
atomic variables not really designed for this type of usage

⇒ let’s do some benchmarking

WestGrid webinar - slides and functions at https://git.io/Jtdge 2022-Feb-02 6 / 28

https://git.io/Jtdge

Intro Base.Threads1 Slow series Base.Threads2 ThreadsX.jl Julia set Summary

Benchmarking in Julia

(a) Running the loop in the global scope
(without a function):

direct summation
@time includes JIT compilation time (marginal here)
total is a global variable to the loop

n = Int64(1e9)
total = Int64(0)
@time for i in 1:n

total += i
end
println("total = ", total)
serial runtime: 51.80s 51.95s

(b) Packaging the loop in the local scope of
a function:

Julia v1.6 and earlier will replace the loop with the
formula n(n + 1)/2 – we don’t want this!
v1.7 seems to be doing direct summation
first function call results in compilation
@time here includes only the loop runtime

function quick(n)

total = Int64(0)

@time for i in 1:n

total += i

end

return(total)

end

quick(10)

println("total = ", quick(Int64(1e9)))

serial runtime: 0.000000s + correct result

println("total = ", quick(Int64(1e15)))

serial runtime: 0.000000s + incorrect result

due to limited Int64 precision

1. force computation for any Julia version ⇒ compute something more complex than simple integer summation
2. exclude compilation time, make use of optimizations for type stability ⇒ package into a function + precompile it
3. time only the CPU-intensive loops
4. for shorter runs (ms - few seconds) use @btime from BenchmarkTools

WestGrid webinar - slides and functions at https://git.io/Jtdge 2022-Feb-02 7 / 28

https://git.io/Jtdge

Intro Base.Threads1 Slow series Base.Threads2 ThreadsX.jl Julia set Summary

Benchmarking in Julia

(a) Running the loop in the global scope
(without a function):

direct summation
@time includes JIT compilation time (marginal here)
total is a global variable to the loop

n = Int64(1e9)
total = Int64(0)
@time for i in 1:n

total += i
end
println("total = ", total)
serial runtime: 51.80s 51.95s

(b) Packaging the loop in the local scope of
a function:

Julia v1.6 and earlier will replace the loop with the
formula n(n + 1)/2 – we don’t want this!
v1.7 seems to be doing direct summation
first function call results in compilation
@time here includes only the loop runtime

function quick(n)

total = Int64(0)

@time for i in 1:n

total += i

end

return(total)

end

quick(10)

println("total = ", quick(Int64(1e9)))

serial runtime: 0.000000s + correct result

println("total = ", quick(Int64(1e15)))

serial runtime: 0.000000s + incorrect result

due to limited Int64 precision

1. force computation for any Julia version ⇒ compute something more complex than simple integer summation
2. exclude compilation time, make use of optimizations for type stability ⇒ package into a function + precompile it
3. time only the CPU-intensive loops
4. for shorter runs (ms - few seconds) use @btime from BenchmarkTools

WestGrid webinar - slides and functions at https://git.io/Jtdge 2022-Feb-02 7 / 28

https://git.io/Jtdge

Intro Base.Threads1 Slow series Base.Threads2 ThreadsX.jl Julia set Summary

Benchmarking in Julia

(a) Running the loop in the global scope
(without a function):

direct summation
@time includes JIT compilation time (marginal here)
total is a global variable to the loop

n = Int64(1e9)
total = Int64(0)
@time for i in 1:n

total += i
end
println("total = ", total)
serial runtime: 51.80s 51.95s

(b) Packaging the loop in the local scope of
a function:

Julia v1.6 and earlier will replace the loop with the
formula n(n + 1)/2 – we don’t want this!
v1.7 seems to be doing direct summation
first function call results in compilation
@time here includes only the loop runtime

function quick(n)

total = Int64(0)

@time for i in 1:n

total += i

end

return(total)

end

quick(10)

println("total = ", quick(Int64(1e9)))

serial runtime: 0.000000s + correct result

println("total = ", quick(Int64(1e15)))

serial runtime: 0.000000s + incorrect result

due to limited Int64 precision

1. force computation for any Julia version ⇒ compute something more complex than simple integer summation
2. exclude compilation time, make use of optimizations for type stability ⇒ package into a function + precompile it
3. time only the CPU-intensive loops
4. for shorter runs (ms - few seconds) use @btime from BenchmarkTools

WestGrid webinar - slides and functions at https://git.io/Jtdge 2022-Feb-02 7 / 28

https://git.io/Jtdge

Intro Base.Threads1 Slow series Base.Threads2 ThreadsX.jl Julia set Summary

Slowly convergent series

The traditional harmonic series

∞∑
k=1

1
k diverges

However, if we omit the terms whose denominators in decimal notation contain any digit or
string of digits, it converges, albeit very slowly (Schmelzer & Baillie 2008), e.g.

∞∑
k=1

no “9”

1
k = 22.9206766192...

∞∑
k=1

no even digits

1
k = 3.1717654734...

∞∑
k=1

no string “314”

1
k = 2299.8297827675...

For no denominators with “9”, assuming linear convergence in the log-log space, we would
need 1073 terms to reach 22.92, and almost 10205 terms to reach 22.92067661

WestGrid webinar - slides and functions at https://git.io/Jtdge 2022-Feb-02 8 / 28

https://git.io/Jtdge

Intro Base.Threads1 Slow series Base.Threads2 ThreadsX.jl Julia set Summary

Checking for substrings in Julia

Checking for a substring is one possibility
if !occursin("9", string(i))

<add the term>
end

Integer exclusion is ∼4X faster (thanks to Paul Schrimpf from the Vancouver School of Economics @UBC)

function digitsin(digits::Int, num) # decimal representation of ‘digits‘ has N digits

base = 10

while (digits ÷ base > 0) # ‘digits ÷ base‘ is same as ‘floor(Int, digits/base)‘

base *= 10

end

‘base‘ is now the first Int power of 10 above ‘digits‘, used to pick last N digits from ‘num‘

while num > 0

if (num % base) == digits # last N digits in ‘num‘ == digits

return true

end

num ÷= 10 # remove the last digit from ‘num‘

end

return false

end

if !digitsin(9, i)

<add the term>

end
WestGrid webinar - slides and functions at https://git.io/Jtdge 2022-Feb-02 9 / 28

https://git.io/Jtdge

Intro Base.Threads1 Slow series Base.Threads2 ThreadsX.jl Julia set Summary

Timing the summation: serial code

Let’s switch to 109 terms, start with the serial code:
using BenchmarkTools
function slow(n::Int64, digits::Int)

total = Int64(0)
for i in 1:n

if !digitsin(digits, i)
total += 1.0 / i

end
end
return total

end

total = @btime slow(Int64(1e9), 9)
println("total = ", total) # total = 14.2419130103833

$ julia serial.jl # serial runtime: 5.214 s

WestGrid webinar - slides and functions at https://git.io/Jtdge 2022-Feb-02 10 / 28

https://git.io/Jtdge

Intro Base.Threads1 Slow series Base.Threads2 ThreadsX.jl Julia set Summary

Timing the summation: using an atomic variable

Threads are waiting for the atomic variable to be released ⇒ should be slow:
using BenchmarkTools, Base.Threads
function slow(n::Int64, digits::Int)

total = Atomic{Float64}(0)
@threads for i in 1:n

if !digitsin(digits, i)
atomic_add!(total, 1.0 / i)

end
end
return total[]

end

total = @btime slow(Int64(1e9), 9)
println("total = ", total) # total = 14.241913010383293

$ julia atomicThreads.jl # runtime with 1 thread: 5.996 s
$ julia -t 8 atomicThreads.jl # runtime with 8 threads: 37.759 s
$ julia -t 6 atomicThreads.jl # runtime with 6 threads: 15.716 s

WestGrid webinar - slides and functions at https://git.io/Jtdge 2022-Feb-02 11 / 28

https://git.io/Jtdge

Intro Base.Threads1 Slow series Base.Threads2 ThreadsX.jl Julia set Summary

Timing the summation: an alternative thread-safe implementation

Each thread is updating its own sum, no waiting ⇒ should be faster:
using BenchmarkTools, Base.Threads
function slow(n::Int64, digits::Int)

total = zeros(Float64, nthreads())
@threads for i in 1:n

if !digitsin(digits, i)
total[threadid()] += 1.0 / i

end
end
return sum(total)

end

total = @btime slow(Int64(1e9), 9)
println("total = ", total) # total = 14.241913010384215

$ julia separateSums.jl # runtime with 1 thread: 5.262 s
$ julia -t 8 separateSums.jl # runtime with 8 threads: 3.823 s

WestGrid webinar - slides and functions at https://git.io/Jtdge 2022-Feb-02 12 / 28

https://git.io/Jtdge

Intro Base.Threads1 Slow series Base.Threads2 ThreadsX.jl Julia set Summary

Timing the summation: fixing the false sharing effect in the last code

Cache lines (∼32-128 bytes in size) are chunks of memory handled by the cache

Problem arises when several threads are writing into variables placed close enough to each other to end
up in the same cache line (thanks to Pierre Fortin for pointing out this problem)

using BenchmarkTools, Base.Threads

function slow(n::Int64, digits::Int)

space = 8 # assume a 64-byte cache line, hence 8 Float64 elements per cache line

total = zeros(Float64, nthreads()*space)

@threads for i in 1:n

if !digitsin(digits, i)

total[threadid()*space] += 1.0 / i

end

end

return sum(total)

end

total = @btime slow(Int64(1e9), 9)

println("total = ", total) # total = 14.241913010384215

$ julia spacedSeparateSums.jl # runtime with 1 thread: 5.291 s
$ julia -t 8 spacedSeparateSums.jl # runtime with 8 threads: 914.502 ms

WestGrid webinar - slides and functions at https://git.io/Jtdge 2022-Feb-02 13 / 28

https://git.io/Jtdge

Intro Base.Threads1 Slow series Base.Threads2 ThreadsX.jl Julia set Summary

Timing the summation: using heavy loops
Another fast implementation:
using BenchmarkTools, Base.Threads
function slow(n::Int64, digits::Int)

space = 8 # assume a 64-byte cache line, hence 8 Float64 elements per cache line
numthreads = nthreads()
threadSize = floor(Int64, n/numthreads) # number of terms per thread (except last thread)
total = zeros(Float64, numthreads*space);
@threads for threadid in 1:numthreads

local start = (threadid-1)*threadSize + 1
local finish = threadid < numthreads ? (threadid-1)*threadSize+threadSize : n
println("thread $threadid: from $start to $finish");
for i in start:finish

if !digitsin(digits, i)
total[threadid*space] += 1.0 / i

end
end

end
return sum(total)

end

total = @btime slow(Int64(1e9), 9)
println("total = ", total) # total = 14.2419130103833

$ julia heavyThreads.jl # runtime with 1 thread: 5.296 s
$ julia -t 8 heavyThreads.jl # runtime with 8 threads: 914.541 ms

WestGrid webinar - slides and functions at https://git.io/Jtdge 2022-Feb-02 14 / 28

https://git.io/Jtdge

Intro Base.Threads1 Slow series Base.Threads2 ThreadsX.jl Julia set Summary

ThreadsX.jl
https://github.com/tkf/ThreadsX.jl

With Base.Threads you can manually add multi-threaded reduction
solutions are somewhat awkward

inadvertently you can run into problems (thread safety, false sharing, other performance issues)

Enter ThreadsX: parallelized subset of Base functions

using ThreadsX
ThreadsX.<TAB>
?ThreadsX.mapreduce
?mapreduce

Consider Base function:
mapreduce(x->x^2, +, 1:10)

Alternative syntax:

mapreduce(+,1:10) do i
i^2 # plays the role of the function applied to each element

end

WestGrid webinar - slides and functions at https://git.io/Jtdge 2022-Feb-02 15 / 28

https://github.com/tkf/ThreadsX.jl
https://git.io/Jtdge

Intro Base.Threads1 Slow series Base.Threads2 ThreadsX.jl Julia set Summary

ThreadsX.jl
https://github.com/tkf/ThreadsX.jl

With Base.Threads you can manually add multi-threaded reduction
solutions are somewhat awkward

inadvertently you can run into problems (thread safety, false sharing, other performance issues)

Enter ThreadsX: parallelized subset of Base functions

using ThreadsX
ThreadsX.<TAB>
?ThreadsX.mapreduce
?mapreduce

Consider Base function:
mapreduce(x->x^2, +, 1:10)

Alternative syntax:

mapreduce(+,1:10) do i
i^2 # plays the role of the function applied to each element

end

WestGrid webinar - slides and functions at https://git.io/Jtdge 2022-Feb-02 15 / 28

https://github.com/tkf/ThreadsX.jl
https://git.io/Jtdge

Intro Base.Threads1 Slow series Base.Threads2 ThreadsX.jl Julia set Summary

Back to our slow series:

using BenchmarkTools, ThreadsX
function slow(n::Int64, digits::Int)

total = ThreadsX.mapreduce(+,1:n) do i
if !digitsin(digits, i)

1.0 / i
else

0.0
end

end
return total

end

total = @btime slow(Int64(1e9), 9)
println("total = ", total) # total = 14.241913010384215

$ julia mapreduce.jl # runtime with 1 thread: 5.255 s
$ julia -t 8 mapreduce.jl # runtime with 8 threads: 900.995 ms

WestGrid webinar - slides and functions at https://git.io/Jtdge 2022-Feb-02 16 / 28

https://git.io/Jtdge

Intro Base.Threads1 Slow series Base.Threads2 ThreadsX.jl Julia set Summary

In compact notation:

using BenchmarkTools, ThreadsX
function slow(n::Int64, digits::Int)

total = ThreadsX.mapreduce(+,1:n) do i
!digitsin(digits, i) ? 1.0 / i : 0

end
return total

end

total = @btime slow(Int64(1e9), 9)
println("total = ", total) # total = 14.241913010384215

$ julia mapreduceCompact.jl # runtime with 1 thread: 5.267 s
$ julia -t 8 mapreduceCompact.jl # runtime with 8 threads: 914.470 ms

Replacing ThreadsX.mapreduce with mapreduce above will give you a serial code

WestGrid webinar - slides and functions at https://git.io/Jtdge 2022-Feb-02 17 / 28

https://git.io/Jtdge

Intro Base.Threads1 Slow series Base.Threads2 ThreadsX.jl Julia set Summary

Base.sum→ ThreadsX.sum

?sum
?Threads.sum

The expression in the round brackets is a generator:

(i for i in 1:10)
collect(i for i in 1:10) # construct a vector
collect(!digitsin(9, i) ? 1.0/i : 0 for i in 1:10)
[!digitsin(9, i) ? 1.0/i : 0 for i in 1:10] # functionally the same

How about the following one-liner:

using BenchmarkTools
@btime sum(!digitsin(9, i) ? 1.0/i : 0 for i in 1:1_000_000_000)

serial code: 5.061 s, prints 14.2419130103833

Easy to parallelize:

using BenchmarkTools, ThreadsX
@btime ThreadsX.sum(!digitsin(9, i) ? 1.0/i : 0 for i in 1:1_000_000_000)

with 8 threads: 906.420 ms, prints 14.241913010381973

WestGrid webinar - slides and functions at https://git.io/Jtdge 2022-Feb-02 18 / 28

https://git.io/Jtdge

Intro Base.Threads1 Slow series Base.Threads2 ThreadsX.jl Julia set Summary

Alternative syntaxes

Sum terms returned by a generator that only produces non-zero terms

@btime ThreadsX.sum(1.0/i for i in 1:1_000_000_000 if !digitsin(9, i))
with 8 threads: 888.853 ms, prints 14.241913010381973

Sum the results of applying a function to all integers in a range

function numericTerm(i)
!digitsin(9, i) ? 1.0/i : 0

end
@btime ThreadsX.sum(numericTerm, 1:Int64(1e9)) # 890.466 ms, same result
@btime ThreadsX.mapreduce(numericTerm, +, 1:Int64(1e9)) # 912.552 ms, same result

WestGrid webinar - slides and functions at https://git.io/Jtdge 2022-Feb-02 19 / 28

https://git.io/Jtdge

Intro Base.Threads1 Slow series Base.Threads2 ThreadsX.jl Julia set Summary

Sorting

Sorting is intrinsically hard to parallelize ⇒ do not expect 100% parallel efficiency:

n = Int64(1e8)
r = rand(Float32, (n));
r[1:10] # first 20 elements, same as first(r,10)
last(r,10) # last 10 elements

?sort # underneath uses QuickSort (for numeric arrays) or MergeSort
@btime sort!(r); # 1.391 s, serial sorting

r = rand(Float32, (n));
@btime ThreadsX.sort!(r); # 586.541 ms, parallel sorting
?ThreadsX.sort! # there is actually a good manual page

similar speedup for integers
r = rand(Int32, (n));
@btime sort!(r); # 889.817 ms

r = rand(Int32, (n));
@btime ThreadsX.sort!(r); # 390.082 ms

WestGrid webinar - slides and functions at https://git.io/Jtdge 2022-Feb-02 20 / 28

https://git.io/Jtdge

Intro Base.Threads1 Slow series Base.Threads2 ThreadsX.jl Julia set Summary

Searching for extrema

Searching for extrema is much more parallel-friendly:

n = Int64(1e9)
r = rand(Int32, (n)); # make sure we have enough memory
@btime maximum(r) # 288.200 ms
@btime ThreadsX.maximum(r) # 31.879 ms

WestGrid webinar - slides and functions at https://git.io/Jtdge 2022-Feb-02 21 / 28

https://git.io/Jtdge

Intro Base.Threads1 Slow series Base.Threads2 ThreadsX.jl Julia set Summary

Julia set (no relation to Julia language!)

A set of points on the complex plane that remain bound under infinite recursive
transformation f (z). We will use the traditional form f (z) = z2 + c, where c is a complex
constant.

1. pick a point z0 ∈ C

2. compute iterations zi+1 = z2
i + c until |zi| > 4

3. ξ(z0) is the iteration number at which |zi| > 4

4. limit max iterations at 255

ξ(z0) = 255 ⇒ z0 is a stable point

the quicker a point diverges, the lower its ξ(z0) is

5. plot ξ(z0) for all z0 in a rectangular region
−1 <= Re(z0) <= 1, −1 <= Im(z0) <= 1

c = 0.355 + 0.355i
For different c we will get very different fractals. Try −0.4− 0.59i, 1.34− 0.45i, 0.34− 0.05i

WestGrid webinar - slides and functions at https://git.io/Jtdge 2022-Feb-02 22 / 28

https://git.io/Jtdge

Intro Base.Threads1 Slow series Base.Threads2 ThreadsX.jl Julia set Summary

Demo: computing and plotting the Julia set for c = 0.355 + 0.355i
Code for presenter in juliaSet/juliaSetSerial1.jl

using BenchmarkTools, Plots

function pixel(z)

c = 0.355 + 0.355im

z *= 1.2 # zoom out

for i = 1:255

z = z^2 + c

if abs(z) >= 4

return i

end

end

return 255

end

n = 2_000

height, width = n, n

println("Computing Julia set ...")

point = zeros(Complex{Float32}, height, width);

stability = zeros(Int32, height, width);

for i in 1:height, j in 1:width

rescale to -1:1 in the complex plane

point[i,j] = (2*(j-0.5)/width-1) + (2*(i-0.5)/height-1)im

end

@btime for i in 1:height, j in 1:width

stability[i,j] = pixel(point[i,j])

end

println("Plotting to PNG ...")

gr() # initialize the gr backend

fname = "$(height)x$(width)"

png(heatmap(stability, size=(width,height), color=:gist_ncar), fname)

$ julia juliaSetSerial1.jl # 1.160 s

The reason for two n× n arrays will be explained later

WestGrid webinar - slides and functions at https://git.io/Jtdge 2022-Feb-02 23 / 28

https://git.io/Jtdge

Intro Base.Threads1 Slow series Base.Threads2 ThreadsX.jl Julia set Summary

Parallelizing the Julia set with Base.Threads

-using BenchmarkTools, Plots
+using Base.Threads, BenchmarkTools, Plots

-@btime for i in 1:height, j in 1:width
- stability[i,j] = pixel(point[i,j])
-end
+@btime @threads for i in 1:height
+ for j in 1:width
+ stability[i,j] = pixel(point[i,j])
+ end
+end

julia -t 8 juliaSetThreaded1.jl # 249.924 ms with 8 threads

slowish ...
row-major vs. column-major: we are doing the faster one
likely, the false sharing effect ... more difficult to fix with a large array

WestGrid webinar - slides and functions at https://git.io/Jtdge 2022-Feb-02 24 / 28

https://git.io/Jtdge

Intro Base.Threads1 Slow series Base.Threads2 ThreadsX.jl Julia set Summary

Parallelizing the Julia set with Base.Threads

-using BenchmarkTools, Plots
+using Base.Threads, BenchmarkTools, Plots

-@btime for i in 1:height, j in 1:width
- stability[i,j] = pixel(point[i,j])
-end
+@btime @threads for i in 1:height
+ for j in 1:width
+ stability[i,j] = pixel(point[i,j])
+ end
+end

julia -t 8 juliaSetThreaded1.jl # 249.924 ms with 8 threads

slowish ...
row-major vs. column-major: we are doing the faster one
likely, the false sharing effect ... more difficult to fix with a large array

WestGrid webinar - slides and functions at https://git.io/Jtdge 2022-Feb-02 24 / 28

https://git.io/Jtdge

Intro Base.Threads1 Slow series Base.Threads2 ThreadsX.jl Julia set Summary

How do we parallelize with ThreadsX? We want to process an array without reduction

Let’s first modify the serial code! We’ll use another function from Base library:

?map
map(x -> x * 2, [1, 2, 3])
map(+, [1, 2, 3], [10, 20, 30, 400, 5000]) # not a reduction!

-@btime for i in 1:height, j in 1:width
- stability[i,j] = pixel(point[i,j])
-end
+stability = @btime map(pixel, point);

julia juliaSetSerial2.jl # 917.683 ms

WestGrid webinar - slides and functions at https://git.io/Jtdge 2022-Feb-02 25 / 28

https://git.io/Jtdge

Intro Base.Threads1 Slow series Base.Threads2 ThreadsX.jl Julia set Summary

How do we parallelize with ThreadsX? We want to process an array without reduction

Let’s first modify the serial code! We’ll use another function from Base library:

?map
map(x -> x * 2, [1, 2, 3])
map(+, [1, 2, 3], [10, 20, 30, 400, 5000]) # not a reduction!

-@btime for i in 1:height, j in 1:width
- stability[i,j] = pixel(point[i,j])
-end
+stability = @btime map(pixel, point);

julia juliaSetSerial2.jl # 917.683 ms

WestGrid webinar - slides and functions at https://git.io/Jtdge 2022-Feb-02 25 / 28

https://git.io/Jtdge

Intro Base.Threads1 Slow series Base.Threads2 ThreadsX.jl Julia set Summary

How do we parallelize with ThreadsX? We want to process an array without reduction

Let’s first modify the serial code! We’ll use another function from Base library:

?map
map(x -> x * 2, [1, 2, 3])
map(+, [1, 2, 3], [10, 20, 30, 400, 5000]) # not a reduction!

-@btime for i in 1:height, j in 1:width
- stability[i,j] = pixel(point[i,j])
-end
+stability = @btime map(pixel, point);

julia juliaSetSerial2.jl # 917.683 ms

WestGrid webinar - slides and functions at https://git.io/Jtdge 2022-Feb-02 25 / 28

https://git.io/Jtdge

Intro Base.Threads1 Slow series Base.Threads2 ThreadsX.jl Julia set Summary

Parallelizing the Julia set with ThreadsX

-using BenchmarkTools, Plots
+using ThreadsX, BenchmarkTools, Plots

-stability = @btime map(pixel, point);
+stability = @btime ThreadsX.map(pixel, point);

julia -t 8 juliaSetThreaded2.jl # 171.010 ms with 8 threads

WestGrid webinar - slides and functions at https://git.io/Jtdge 2022-Feb-02 26 / 28

https://git.io/Jtdge

Intro Base.Threads1 Slow series Base.Threads2 ThreadsX.jl Julia set Summary

Running on a cluster

#!/bin/bash
#SBATCH --mem-per-cpu=3600M
#SBATCH --time=00:10:00
#SBATCH --account=def-user
module load julia
julia juliaSetSerial1.jl

#!/bin/bash
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=...
#SBATCH --mem-per-cpu=3600M
#SBATCH --time=00:10:00
#SBATCH --account=def-user
module load julia
julia -t $SLURM_CPUS_PER_TASK juliaSetThreaded2.jl

Runtime 2.467 s (serial) and 180.003 ms (16 cores) on Cedar with julia/1.7.0

By default, packages will be installed in $HOME/.julia

You can install them elsewhere
empty!(DEPOT_PATH)
push!(DEPOT_PATH,"/scratch/path/to/julia")
] add BenchmarkTools

and then at runtime (double-check the syntax online!)
module load julia
export JULIA_DEPOT_PATH=/home/\$USER/.julia:/scratch/path/to/julia
export JULIA_LOAD_PATH=@:@v#.#:@stdlib:/scratch/path/to/julia

WestGrid webinar - slides and functions at https://git.io/Jtdge 2022-Feb-02 27 / 28

https://git.io/Jtdge

Intro Base.Threads1 Slow series Base.Threads2 ThreadsX.jl Julia set Summary

Summary

ThreadsX.jl is a super easy way to parallelize some of the Base library functions
includes multi-threaded reduction
very impressive performance

ThreadsX.jl will likely be incorporated into the main language in the not-too-distant future

To list the supported functions, use ThreadsX.<TAB>

Some of the functions are well-documented: ?ThreadsX.<function>

For others check their Base equivalents’ documentation: ?<function>

Feb-14,16,18 - upcoming “Parallel Julia” national training workshop
three 3-hour sessions, many hands-on exercises
both multi-threading and multi-processing
working with shared and distributed arrays
link to register at https://bit.ly/wg2022a

Questions?
WestGrid webinar - slides and functions at https://git.io/Jtdge 2022-Feb-02 28 / 28

https://bit.ly/wg2022a
https://git.io/Jtdge

	Intro
	

	Base.Threads1
	

	Slow series
	

	Base.Threads2
	

	ThreadsX.jl
	

	Julia set
	

	Summary
	

