{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# scona\n",
"\n",
"scona is a tool to perform network analysis over correlation networks of brain regions. \n",
"This tutorial will go through the basic functionality of scona, taking us from our inputs (a matrix of structural regional measures over subjects) to a report of local network measures for each brain region, and network level comparisons to a cohort of random graphs of the same degree. "
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import networkx as nx\n",
"import scona as scn\n",
"import scona.datasets as datasets"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Importing data\n",
"\n",
"A scona analysis starts with four inputs.\n",
"* __regional_measures__\n",
" A pandas DataFrame with subjects as rows. The columns should include structural measures for each brain region, as well as any subject-wise covariates. \n",
"* __names__\n",
" A list of names of the brain regions. This will be used to specify which columns of the __regional_measures__ matrix to want to correlate over.\n",
"* __covars__ _(optional)_ \n",
" A list of your covariates. This will be used to specify which columns of __regional_measure__ you wish to correct for. \n",
"* __centroids__\n",
" A list of tuples representing the cartesian coordinates of brain regions. This list should be in the same order as the list of brain regions to accurately assign coordinates to regions. The coordinates are expected to obey the convention the the x=0 plane is the same plane that separates the left and right hemispheres of the brain. "
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Read in sample data from the NSPN WhitakerVertes PNAS 2016 paper.\n",
"df, names, covars, centroids = datasets.NSPN_WhitakerVertes_PNAS2016.import_data()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Unnamed: 0 | \n",
" nspn_id | \n",
" occ | \n",
" centre | \n",
" study_primary | \n",
" age_scan | \n",
" sex | \n",
" male | \n",
" age_bin | \n",
" mri_centre | \n",
" ... | \n",
" rh_supramarginal_part5 | \n",
" rh_supramarginal_part6 | \n",
" rh_supramarginal_part7 | \n",
" rh_frontalpole_part1 | \n",
" rh_temporalpole_part1 | \n",
" rh_transversetemporal_part1 | \n",
" rh_insula_part1 | \n",
" rh_insula_part2 | \n",
" rh_insula_part3 | \n",
" rh_insula_part4 | \n",
"
\n",
" \n",
" \n",
" \n",
" | 0 | \n",
" 0 | \n",
" 10356 | \n",
" 0 | \n",
" Cambridge | \n",
" 2K_Cohort | \n",
" 20.761 | \n",
" Female | \n",
" 0.0 | \n",
" 4 | \n",
" WBIC | \n",
" ... | \n",
" 2.592 | \n",
" 2.841 | \n",
" 2.318 | \n",
" 2.486 | \n",
" 3.526 | \n",
" 2.638 | \n",
" 3.308 | \n",
" 2.583 | \n",
" 3.188 | \n",
" 3.089 | \n",
"
\n",
" \n",
" | 1 | \n",
" 1 | \n",
" 10702 | \n",
" 0 | \n",
" Cambridge | \n",
" 2K_Cohort | \n",
" 16.055 | \n",
" Male | \n",
" 1.0 | \n",
" 2 | \n",
" WBIC | \n",
" ... | \n",
" 3.448 | \n",
" 3.283 | \n",
" 2.740 | \n",
" 3.225 | \n",
" 4.044 | \n",
" 3.040 | \n",
" 3.867 | \n",
" 2.943 | \n",
" 3.478 | \n",
" 3.609 | \n",
"
\n",
" \n",
" | 2 | \n",
" 2 | \n",
" 10736 | \n",
" 0 | \n",
" Cambridge | \n",
" 2K_Cohort | \n",
" 14.897 | \n",
" Female | \n",
" 0.0 | \n",
" 1 | \n",
" WBIC | \n",
" ... | \n",
" 3.526 | \n",
" 3.269 | \n",
" 3.076 | \n",
" 3.133 | \n",
" 3.900 | \n",
" 2.914 | \n",
" 3.894 | \n",
" 2.898 | \n",
" 3.720 | \n",
" 3.580 | \n",
"
\n",
" \n",
" | 3 | \n",
" 3 | \n",
" 10778 | \n",
" 0 | \n",
" Cambridge | \n",
" 2K_Cohort | \n",
" 20.022 | \n",
" Female | \n",
" 0.0 | \n",
" 4 | \n",
" WBIC | \n",
" ... | \n",
" 2.830 | \n",
" 2.917 | \n",
" 2.647 | \n",
" 2.796 | \n",
" 3.401 | \n",
" 3.045 | \n",
" 3.138 | \n",
" 2.739 | \n",
" 2.833 | \n",
" 3.349 | \n",
"
\n",
" \n",
" | 4 | \n",
" 4 | \n",
" 10794 | \n",
" 0 | \n",
" Cambridge | \n",
" 2K_Cohort | \n",
" 14.656 | \n",
" Female | \n",
" 0.0 | \n",
" 1 | \n",
" WBIC | \n",
" ... | \n",
" 2.689 | \n",
" 3.294 | \n",
" 2.820 | \n",
" 2.539 | \n",
" 2.151 | \n",
" 2.734 | \n",
" 2.791 | \n",
" 2.935 | \n",
" 3.538 | \n",
" 3.403 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 324 columns
\n",
"
"
],
"text/plain": [
" Unnamed: 0 nspn_id occ centre study_primary age_scan sex male \\\n",
"0 0 10356 0 Cambridge 2K_Cohort 20.761 Female 0.0 \n",
"1 1 10702 0 Cambridge 2K_Cohort 16.055 Male 1.0 \n",
"2 2 10736 0 Cambridge 2K_Cohort 14.897 Female 0.0 \n",
"3 3 10778 0 Cambridge 2K_Cohort 20.022 Female 0.0 \n",
"4 4 10794 0 Cambridge 2K_Cohort 14.656 Female 0.0 \n",
"\n",
" age_bin mri_centre ... rh_supramarginal_part5 \\\n",
"0 4 WBIC ... 2.592 \n",
"1 2 WBIC ... 3.448 \n",
"2 1 WBIC ... 3.526 \n",
"3 4 WBIC ... 2.830 \n",
"4 1 WBIC ... 2.689 \n",
"\n",
" rh_supramarginal_part6 rh_supramarginal_part7 rh_frontalpole_part1 \\\n",
"0 2.841 2.318 2.486 \n",
"1 3.283 2.740 3.225 \n",
"2 3.269 3.076 3.133 \n",
"3 2.917 2.647 2.796 \n",
"4 3.294 2.820 2.539 \n",
"\n",
" rh_temporalpole_part1 rh_transversetemporal_part1 rh_insula_part1 \\\n",
"0 3.526 2.638 3.308 \n",
"1 4.044 3.040 3.867 \n",
"2 3.900 2.914 3.894 \n",
"3 3.401 3.045 3.138 \n",
"4 2.151 2.734 2.791 \n",
"\n",
" rh_insula_part2 rh_insula_part3 rh_insula_part4 \n",
"0 2.583 3.188 3.089 \n",
"1 2.943 3.478 3.609 \n",
"2 2.898 3.720 3.580 \n",
"3 2.739 2.833 3.349 \n",
"4 2.935 3.538 3.403 \n",
"\n",
"[5 rows x 324 columns]"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a correlation matrix\n",
"We calculate residuals of the matrix df for the columns of names, correcting for the columns in covars."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"df_res = scn.create_residuals_df(df, names, covars)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" lh_bankssts_part1 | \n",
" lh_bankssts_part2 | \n",
" lh_caudalanteriorcingulate_part1 | \n",
" lh_caudalmiddlefrontal_part1 | \n",
" lh_caudalmiddlefrontal_part2 | \n",
" lh_caudalmiddlefrontal_part3 | \n",
" lh_caudalmiddlefrontal_part4 | \n",
" lh_cuneus_part1 | \n",
" lh_cuneus_part2 | \n",
" lh_entorhinal_part1 | \n",
" ... | \n",
" rh_supramarginal_part5 | \n",
" rh_supramarginal_part6 | \n",
" rh_supramarginal_part7 | \n",
" rh_frontalpole_part1 | \n",
" rh_temporalpole_part1 | \n",
" rh_transversetemporal_part1 | \n",
" rh_insula_part1 | \n",
" rh_insula_part2 | \n",
" rh_insula_part3 | \n",
" rh_insula_part4 | \n",
"
\n",
" \n",
" \n",
" \n",
" | 0 | \n",
" -0.016677 | \n",
" -0.036253 | \n",
" 0.035892 | \n",
" -0.004586 | \n",
" 0.040114 | \n",
" -0.005168 | \n",
" -0.252694 | \n",
" -0.170037 | \n",
" -0.192492 | \n",
" -0.119414 | \n",
" ... | \n",
" -0.421125 | \n",
" -0.123926 | \n",
" -0.37903 | \n",
" -0.436609 | \n",
" -0.143411 | \n",
" -0.103404 | \n",
" -0.321707 | \n",
" -0.159219 | \n",
" -0.19032 | \n",
" -0.393141 | \n",
"
\n",
" \n",
" | 1 | \n",
" 0.280323 | \n",
" 0.354747 | \n",
" 0.482892 | \n",
" 0.697414 | \n",
" 0.406114 | \n",
" 0.445832 | \n",
" 0.390306 | \n",
" 0.326963 | \n",
" 0.389508 | \n",
" 0.340586 | \n",
" ... | \n",
" 0.434875 | \n",
" 0.318074 | \n",
" 0.04297 | \n",
" 0.302391 | \n",
" 0.374589 | \n",
" 0.298596 | \n",
" 0.237293 | \n",
" 0.200781 | \n",
" 0.09968 | \n",
" 0.126859 | \n",
"
\n",
" \n",
" | 2 | \n",
" 0.168323 | \n",
" 0.081747 | \n",
" 0.365892 | \n",
" 0.412414 | \n",
" 0.283114 | \n",
" 0.187832 | \n",
" 0.576306 | \n",
" -0.061037 | \n",
" -0.062492 | \n",
" 0.374586 | \n",
" ... | \n",
" 0.512875 | \n",
" 0.304074 | \n",
" 0.37897 | \n",
" 0.210391 | \n",
" 0.230589 | \n",
" 0.172596 | \n",
" 0.264293 | \n",
" 0.155781 | \n",
" 0.34168 | \n",
" 0.097859 | \n",
"
\n",
" \n",
" | 3 | \n",
" -0.086677 | \n",
" -0.249253 | \n",
" -0.404108 | \n",
" -0.362586 | \n",
" -0.046886 | \n",
" -0.154168 | \n",
" -0.156694 | \n",
" 0.029963 | \n",
" -0.246492 | \n",
" -0.009414 | \n",
" ... | \n",
" -0.183125 | \n",
" -0.047926 | \n",
" -0.05003 | \n",
" -0.126609 | \n",
" -0.268411 | \n",
" 0.303596 | \n",
" -0.491707 | \n",
" -0.003219 | \n",
" -0.54532 | \n",
" -0.133141 | \n",
"
\n",
" \n",
" | 4 | \n",
" 0.400323 | \n",
" 0.136747 | \n",
" 0.125892 | \n",
" -0.218586 | \n",
" -1.003886 | \n",
" -0.142168 | \n",
" -0.752694 | \n",
" -0.091037 | \n",
" -0.550492 | \n",
" -1.223414 | \n",
" ... | \n",
" -0.324125 | \n",
" 0.329074 | \n",
" 0.12297 | \n",
" -0.383609 | \n",
" -1.518411 | \n",
" -0.007404 | \n",
" -0.838707 | \n",
" 0.192781 | \n",
" 0.15968 | \n",
" -0.079141 | \n",
"
\n",
" \n",
" | 5 | \n",
" 0.010323 | \n",
" -0.090253 | \n",
" -0.248108 | \n",
" -0.131586 | \n",
" -0.080886 | \n",
" -0.110168 | \n",
" -0.142694 | \n",
" 0.146963 | \n",
" -0.047492 | \n",
" 0.155586 | \n",
" ... | \n",
" -0.097125 | \n",
" -0.074926 | \n",
" -0.12803 | \n",
" -0.114609 | \n",
" -0.241411 | \n",
" 0.209596 | \n",
" 0.326293 | \n",
" 0.082781 | \n",
" 0.26868 | \n",
" 0.099859 | \n",
"
\n",
" \n",
" | 6 | \n",
" -0.118677 | \n",
" 0.133747 | \n",
" 0.089892 | \n",
" 0.047414 | \n",
" 0.268114 | \n",
" 0.017832 | \n",
" -0.037694 | \n",
" 0.061963 | \n",
" 0.028508 | \n",
" -0.214414 | \n",
" ... | \n",
" 0.080875 | \n",
" 0.027074 | \n",
" 0.00797 | \n",
" -0.067609 | \n",
" 0.310589 | \n",
" -0.107404 | \n",
" -0.033707 | \n",
" -0.015219 | \n",
" -0.09132 | \n",
" 0.048859 | \n",
"
\n",
" \n",
" | 7 | \n",
" 0.106323 | \n",
" 0.043747 | \n",
" 0.355892 | \n",
" 0.174414 | \n",
" 0.249114 | \n",
" 0.068832 | \n",
" -0.017694 | \n",
" 0.120963 | \n",
" 0.095508 | \n",
" 0.333586 | \n",
" ... | \n",
" 0.427875 | \n",
" 0.134074 | \n",
" 0.25697 | \n",
" -0.229609 | \n",
" -0.214411 | \n",
" 0.329596 | \n",
" -0.355707 | \n",
" 0.015781 | \n",
" -0.02732 | \n",
" -0.118141 | \n",
"
\n",
" \n",
" | 8 | \n",
" 0.433323 | \n",
" 0.037747 | \n",
" 0.191892 | \n",
" 0.103414 | \n",
" 0.206114 | \n",
" -0.091168 | \n",
" 0.210306 | \n",
" -0.105037 | \n",
" 0.009508 | \n",
" 0.388586 | \n",
" ... | \n",
" 0.103875 | \n",
" 0.182074 | \n",
" 0.31697 | \n",
" -0.083609 | \n",
" 0.176589 | \n",
" 0.062596 | \n",
" 0.404293 | \n",
" 0.024781 | \n",
" -0.05932 | \n",
" 0.041859 | \n",
"
\n",
" \n",
" | 9 | \n",
" 0.191323 | \n",
" 0.081747 | \n",
" 0.093892 | \n",
" 0.100414 | \n",
" 0.012114 | \n",
" 0.180832 | \n",
" 0.123306 | \n",
" -0.062037 | \n",
" -0.180492 | \n",
" -0.323414 | \n",
" ... | \n",
" -0.197125 | \n",
" -0.022926 | \n",
" -0.17103 | \n",
" 0.527391 | \n",
" 0.004589 | \n",
" 0.123596 | \n",
" 0.413293 | \n",
" -0.185219 | \n",
" -0.21632 | \n",
" 0.065859 | \n",
"
\n",
" \n",
" | 10 | \n",
" -1.036677 | \n",
" -0.759253 | \n",
" -0.621108 | \n",
" 0.058414 | \n",
" -0.298886 | \n",
" 0.005832 | \n",
" -0.419694 | \n",
" 0.348963 | \n",
" 0.232508 | \n",
" -0.997414 | \n",
" ... | \n",
" -0.463125 | \n",
" 0.153074 | \n",
" 0.01097 | \n",
" -0.540609 | \n",
" -0.149411 | \n",
" 0.290596 | \n",
" -0.078707 | \n",
" 0.073781 | \n",
" 0.30068 | \n",
" 0.333859 | \n",
"
\n",
" \n",
" | 11 | \n",
" 0.183323 | \n",
" 0.155747 | \n",
" -0.100108 | \n",
" 0.186414 | \n",
" -0.036886 | \n",
" 0.206832 | \n",
" 0.154306 | \n",
" 0.020963 | \n",
" -0.053492 | \n",
" 0.004586 | \n",
" ... | \n",
" 0.149875 | \n",
" -0.113926 | \n",
" -0.11203 | \n",
" 0.015391 | \n",
" 0.233589 | \n",
" 0.134596 | \n",
" -0.206707 | \n",
" -0.039219 | \n",
" -0.35132 | \n",
" 0.220859 | \n",
"
\n",
" \n",
" | 12 | \n",
" -0.058677 | \n",
" -0.222253 | \n",
" -0.230108 | \n",
" 0.373414 | \n",
" 0.219114 | \n",
" 0.234832 | \n",
" 0.018306 | \n",
" 0.026963 | \n",
" 0.090508 | \n",
" 0.301586 | \n",
" ... | \n",
" 0.102875 | \n",
" 0.059074 | \n",
" -0.05203 | \n",
" 0.061391 | \n",
" -0.193411 | \n",
" 0.127596 | \n",
" 0.292293 | \n",
" -0.027219 | \n",
" 0.22968 | \n",
" 0.481859 | \n",
"
\n",
" \n",
" | 13 | \n",
" 0.200323 | \n",
" -0.048253 | \n",
" 0.032892 | \n",
" -0.106586 | \n",
" 0.048114 | \n",
" -0.502168 | \n",
" -0.108694 | \n",
" 0.127963 | \n",
" -0.104492 | \n",
" -0.043414 | \n",
" ... | \n",
" 0.634875 | \n",
" 0.150074 | \n",
" 0.30797 | \n",
" 0.413391 | \n",
" -0.463411 | \n",
" 0.388596 | \n",
" 0.216293 | \n",
" 0.074781 | \n",
" 0.23568 | \n",
" 0.192859 | \n",
"
\n",
" \n",
" | 14 | \n",
" 0.221323 | \n",
" 0.374747 | \n",
" 0.107892 | \n",
" -0.115586 | \n",
" 0.152114 | \n",
" -0.089168 | \n",
" 0.032306 | \n",
" 0.180963 | \n",
" 0.287508 | \n",
" -0.422414 | \n",
" ... | \n",
" -0.086125 | \n",
" -0.217926 | \n",
" -0.06003 | \n",
" 0.198391 | \n",
" 0.171589 | \n",
" 0.026596 | \n",
" 0.124293 | \n",
" 0.050781 | \n",
" -0.02332 | \n",
" -0.113141 | \n",
"
\n",
" \n",
" | 15 | \n",
" 0.075323 | \n",
" -0.141253 | \n",
" -0.161108 | \n",
" 0.162414 | \n",
" -0.100886 | \n",
" -0.026168 | \n",
" -0.145694 | \n",
" 0.209963 | \n",
" -0.070492 | \n",
" -0.518414 | \n",
" ... | \n",
" 0.266875 | \n",
" 0.019074 | \n",
" -0.21203 | \n",
" 0.296391 | \n",
" -0.047411 | \n",
" -0.364404 | \n",
" -0.380707 | \n",
" 0.210781 | \n",
" 0.23068 | \n",
" 0.030859 | \n",
"
\n",
" \n",
" | 16 | \n",
" -0.047677 | \n",
" 0.226747 | \n",
" -0.067108 | \n",
" 0.019414 | \n",
" 0.165114 | \n",
" -0.168168 | \n",
" -0.124694 | \n",
" -0.312037 | \n",
" -0.035492 | \n",
" 0.112586 | \n",
" ... | \n",
" 0.056875 | \n",
" -0.091926 | \n",
" -0.03103 | \n",
" 0.301391 | \n",
" 0.392589 | \n",
" 0.115596 | \n",
" 0.027293 | \n",
" 0.234781 | \n",
" 0.11168 | \n",
" 0.111859 | \n",
"
\n",
" \n",
" | 17 | \n",
" 0.055323 | \n",
" -0.055253 | \n",
" 0.164892 | \n",
" -0.322586 | \n",
" -0.029886 | \n",
" -0.139168 | \n",
" -0.103694 | \n",
" -0.004037 | \n",
" 0.076508 | \n",
" 0.069586 | \n",
" ... | \n",
" -0.157125 | \n",
" -0.117926 | \n",
" 0.03697 | \n",
" -0.286609 | \n",
" 0.243589 | \n",
" 0.162596 | \n",
" 0.045293 | \n",
" 0.148781 | \n",
" 0.22168 | \n",
" 0.050859 | \n",
"
\n",
" \n",
" | 18 | \n",
" -0.327677 | \n",
" 0.128747 | \n",
" -0.260108 | \n",
" 0.251414 | \n",
" -0.100886 | \n",
" 0.145832 | \n",
" -0.091694 | \n",
" 0.002963 | \n",
" 0.038508 | \n",
" 0.231586 | \n",
" ... | \n",
" 0.261875 | \n",
" 0.341074 | \n",
" 0.20797 | \n",
" 0.031391 | \n",
" 0.052589 | \n",
" -0.204404 | \n",
" 0.224293 | \n",
" -0.111219 | \n",
" -0.08532 | \n",
" 0.079859 | \n",
"
\n",
" \n",
" | 19 | \n",
" -0.012677 | \n",
" -0.090253 | \n",
" 0.499892 | \n",
" -0.071586 | \n",
" 0.111114 | \n",
" 0.023832 | \n",
" 0.103306 | \n",
" -0.278037 | \n",
" 0.053508 | \n",
" 0.236586 | \n",
" ... | \n",
" -0.003125 | \n",
" 0.033074 | \n",
" -0.08003 | \n",
" -0.083609 | \n",
" 0.069589 | \n",
" 0.085596 | \n",
" 0.416293 | \n",
" -0.049219 | \n",
" 0.27268 | \n",
" 0.344859 | \n",
"
\n",
" \n",
" | 20 | \n",
" 0.052323 | \n",
" -0.096253 | \n",
" 0.879892 | \n",
" -0.218586 | \n",
" -0.087886 | \n",
" -0.296168 | \n",
" -0.231694 | \n",
" -0.080037 | \n",
" -0.212492 | \n",
" -0.596414 | \n",
" ... | \n",
" 0.255875 | \n",
" -0.167926 | \n",
" -0.18103 | \n",
" 0.095391 | \n",
" -0.579411 | \n",
" -0.360404 | \n",
" 0.013293 | \n",
" -0.129219 | \n",
" -0.25632 | \n",
" 0.101859 | \n",
"
\n",
" \n",
" | 21 | \n",
" -0.028677 | \n",
" -0.236253 | \n",
" -0.091108 | \n",
" -0.280586 | \n",
" -0.182886 | \n",
" -0.320168 | \n",
" 0.036306 | \n",
" 0.103963 | \n",
" 0.198508 | \n",
" -0.637414 | \n",
" ... | \n",
" -0.242125 | \n",
" -0.060926 | \n",
" -0.35703 | \n",
" -0.273609 | \n",
" -0.645411 | \n",
" -0.026404 | \n",
" -0.240707 | \n",
" 0.046781 | \n",
" 0.16268 | \n",
" 0.029859 | \n",
"
\n",
" \n",
" | 22 | \n",
" 0.235323 | \n",
" 0.102747 | \n",
" 0.235892 | \n",
" 0.103414 | \n",
" 0.131114 | \n",
" -0.083168 | \n",
" 0.164306 | \n",
" 0.311963 | \n",
" 0.240508 | \n",
" -0.716414 | \n",
" ... | \n",
" 0.374875 | \n",
" 0.073074 | \n",
" -0.16303 | \n",
" 0.303391 | \n",
" 0.011589 | \n",
" 0.207596 | \n",
" 0.238293 | \n",
" 0.056781 | \n",
" -0.27732 | \n",
" 0.288859 | \n",
"
\n",
" \n",
" | 23 | \n",
" 0.120323 | \n",
" 0.066747 | \n",
" -0.144108 | \n",
" 0.195414 | \n",
" 0.097114 | \n",
" 0.122832 | \n",
" 0.139306 | \n",
" 0.166963 | \n",
" 0.033508 | \n",
" 0.176586 | \n",
" ... | \n",
" 0.321875 | \n",
" 0.009074 | \n",
" -0.23003 | \n",
" 0.320391 | \n",
" 0.749589 | \n",
" 0.300596 | \n",
" 0.069293 | \n",
" 0.103781 | \n",
" 0.02568 | \n",
" -0.048141 | \n",
"
\n",
" \n",
" | 24 | \n",
" 0.084323 | \n",
" 0.094747 | \n",
" -0.203108 | \n",
" -0.025586 | \n",
" -0.042886 | \n",
" 0.127832 | \n",
" 0.332306 | \n",
" 0.005963 | \n",
" 0.178508 | \n",
" -0.394414 | \n",
" ... | \n",
" 0.356875 | \n",
" 0.079074 | \n",
" 0.10597 | \n",
" 0.071391 | \n",
" -1.264411 | \n",
" 0.001596 | \n",
" -0.204707 | \n",
" -0.084219 | \n",
" -0.05932 | \n",
" -0.320141 | \n",
"
\n",
" \n",
" | 25 | \n",
" 0.098323 | \n",
" 0.030747 | \n",
" 0.304892 | \n",
" 0.160414 | \n",
" 0.197114 | \n",
" 0.275832 | \n",
" 0.115306 | \n",
" 0.185963 | \n",
" 0.222508 | \n",
" 0.053586 | \n",
" ... | \n",
" -0.141125 | \n",
" 0.200074 | \n",
" -0.05003 | \n",
" 0.162391 | \n",
" 0.155589 | \n",
" -0.153404 | \n",
" 0.403293 | \n",
" 0.026781 | \n",
" 0.33068 | \n",
" 0.282859 | \n",
"
\n",
" \n",
" | 26 | \n",
" 0.024323 | \n",
" -0.112253 | \n",
" 0.335892 | \n",
" 0.332414 | \n",
" 0.285114 | \n",
" 0.348832 | \n",
" 0.333306 | \n",
" 0.214963 | \n",
" 0.120508 | \n",
" 0.118586 | \n",
" ... | \n",
" 0.263875 | \n",
" 0.127074 | \n",
" 0.17397 | \n",
" 0.191391 | \n",
" 0.249589 | \n",
" 0.214596 | \n",
" 0.029293 | \n",
" 0.233781 | \n",
" 0.14168 | \n",
" 0.342859 | \n",
"
\n",
" \n",
" | 27 | \n",
" 0.215323 | \n",
" -0.008253 | \n",
" -0.041108 | \n",
" 0.083414 | \n",
" 0.159114 | \n",
" -0.089168 | \n",
" 0.300306 | \n",
" 0.156963 | \n",
" 0.088508 | \n",
" 0.425586 | \n",
" ... | \n",
" -0.098125 | \n",
" 0.280074 | \n",
" 0.28197 | \n",
" 0.000391 | \n",
" 0.808589 | \n",
" 0.006596 | \n",
" -0.036707 | \n",
" 0.331781 | \n",
" 0.16468 | \n",
" -0.137141 | \n",
"
\n",
" \n",
" | 28 | \n",
" -0.170677 | \n",
" -0.324253 | \n",
" -0.035108 | \n",
" -0.098586 | \n",
" -0.178886 | \n",
" 0.071832 | \n",
" -0.251694 | \n",
" -0.172037 | \n",
" -0.109492 | \n",
" 0.553586 | \n",
" ... | \n",
" -0.119125 | \n",
" 0.094074 | \n",
" 0.13297 | \n",
" -0.610609 | \n",
" -0.063411 | \n",
" 0.001596 | \n",
" 0.141293 | \n",
" 0.106781 | \n",
" 0.47968 | \n",
" 0.154859 | \n",
"
\n",
" \n",
" | 29 | \n",
" -0.102677 | \n",
" -0.035253 | \n",
" -0.117108 | \n",
" 0.318414 | \n",
" 0.114114 | \n",
" 0.035832 | \n",
" 0.131306 | \n",
" -0.108037 | \n",
" 0.029508 | \n",
" 0.241586 | \n",
" ... | \n",
" 0.008875 | \n",
" -0.023926 | \n",
" -0.34803 | \n",
" -0.158609 | \n",
" 0.240589 | \n",
" -0.392404 | \n",
" 0.222293 | \n",
" -0.063219 | \n",
" -0.24132 | \n",
" -0.042141 | \n",
"
\n",
" \n",
" | ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" | 267 | \n",
" -0.604677 | \n",
" -0.283253 | \n",
" -0.478108 | \n",
" -0.215586 | \n",
" -0.244886 | \n",
" -0.302168 | \n",
" -0.239694 | \n",
" -0.234037 | \n",
" -0.143492 | \n",
" -0.014414 | \n",
" ... | \n",
" -0.118125 | \n",
" -0.104926 | \n",
" -0.22403 | \n",
" -0.305609 | \n",
" -0.048411 | \n",
" -0.260404 | \n",
" -0.130707 | \n",
" -0.320219 | \n",
" -0.17832 | \n",
" -0.153141 | \n",
"
\n",
" \n",
" | 268 | \n",
" -0.090677 | \n",
" -0.174253 | \n",
" -0.005108 | \n",
" -0.201586 | \n",
" -0.215886 | \n",
" -0.309168 | \n",
" -0.170694 | \n",
" -0.136037 | \n",
" -0.316492 | \n",
" -0.344414 | \n",
" ... | \n",
" 0.110875 | \n",
" -0.069926 | \n",
" -0.21103 | \n",
" -0.029609 | \n",
" -0.027411 | \n",
" -0.401404 | \n",
" -0.151707 | \n",
" 0.014781 | \n",
" 0.04168 | \n",
" -0.192141 | \n",
"
\n",
" \n",
" | 269 | \n",
" -0.357677 | \n",
" -0.119253 | \n",
" 0.010892 | \n",
" -0.054586 | \n",
" 0.006114 | \n",
" 0.097832 | \n",
" -0.164694 | \n",
" -0.214037 | \n",
" -0.363492 | \n",
" 0.059586 | \n",
" ... | \n",
" -0.299125 | \n",
" -0.240926 | \n",
" -0.48403 | \n",
" -0.392609 | \n",
" -0.081411 | \n",
" -0.217404 | \n",
" -0.334707 | \n",
" -0.190219 | \n",
" 0.18768 | \n",
" 0.153859 | \n",
"
\n",
" \n",
" | 270 | \n",
" 0.166323 | \n",
" 0.225747 | \n",
" 0.357892 | \n",
" 0.109414 | \n",
" -0.017886 | \n",
" 0.109832 | \n",
" 0.233306 | \n",
" -0.187037 | \n",
" -0.090492 | \n",
" -0.414414 | \n",
" ... | \n",
" 0.089875 | \n",
" -0.149926 | \n",
" 0.09397 | \n",
" 0.096391 | \n",
" -0.332411 | \n",
" -0.022404 | \n",
" 0.040293 | \n",
" 0.066781 | \n",
" 0.14768 | \n",
" 0.005859 | \n",
"
\n",
" \n",
" | 271 | \n",
" -0.056677 | \n",
" 0.032747 | \n",
" 0.074892 | \n",
" -0.072586 | \n",
" 0.140114 | \n",
" 0.023832 | \n",
" 0.040306 | \n",
" -0.314037 | \n",
" -0.106492 | \n",
" -0.014414 | \n",
" ... | \n",
" -0.155125 | \n",
" -0.173926 | \n",
" -0.16003 | \n",
" 0.053391 | \n",
" 0.091589 | \n",
" 0.107596 | \n",
" 0.312293 | \n",
" 0.226781 | \n",
" -0.02432 | \n",
" -0.068141 | \n",
"
\n",
" \n",
" | 272 | \n",
" -0.159677 | \n",
" -0.130253 | \n",
" -0.410108 | \n",
" -0.154586 | \n",
" -0.204886 | \n",
" -0.074168 | \n",
" -0.299694 | \n",
" -0.113037 | \n",
" -0.417492 | \n",
" 0.117586 | \n",
" ... | \n",
" -0.390125 | \n",
" -0.220926 | \n",
" -0.15603 | \n",
" -0.479609 | \n",
" -0.070411 | \n",
" -0.258404 | \n",
" -0.035707 | \n",
" -0.082219 | \n",
" -0.24732 | \n",
" -0.106141 | \n",
"
\n",
" \n",
" | 273 | \n",
" -0.044677 | \n",
" -0.066253 | \n",
" -0.054108 | \n",
" 0.289414 | \n",
" 0.055114 | \n",
" 0.143832 | \n",
" 0.033306 | \n",
" -0.118037 | \n",
" -0.057492 | \n",
" -0.447414 | \n",
" ... | \n",
" -0.160125 | \n",
" -0.059926 | \n",
" -0.21903 | \n",
" -0.042609 | \n",
" -0.973411 | \n",
" -0.063404 | \n",
" -0.117707 | \n",
" 0.005781 | \n",
" 0.16668 | \n",
" -0.132141 | \n",
"
\n",
" \n",
" | 274 | \n",
" 0.591323 | \n",
" 0.204747 | \n",
" 0.964892 | \n",
" 0.083414 | \n",
" 0.247114 | \n",
" 0.060832 | \n",
" 0.243306 | \n",
" 0.269963 | \n",
" 0.017508 | \n",
" -0.211414 | \n",
" ... | \n",
" 0.078875 | \n",
" -0.030926 | \n",
" -0.10203 | \n",
" -0.002609 | \n",
" 0.377589 | \n",
" 0.035596 | \n",
" -0.297707 | \n",
" 0.018781 | \n",
" -0.00032 | \n",
" 0.275859 | \n",
"
\n",
" \n",
" | 275 | \n",
" 0.290323 | \n",
" 0.104747 | \n",
" 0.129892 | \n",
" -0.112586 | \n",
" 0.008114 | \n",
" 0.015832 | \n",
" 0.017306 | \n",
" 0.164963 | \n",
" 0.092508 | \n",
" 0.136586 | \n",
" ... | \n",
" 0.151875 | \n",
" -0.044926 | \n",
" 0.03697 | \n",
" -0.131609 | \n",
" 0.205589 | \n",
" 0.024596 | \n",
" 0.012293 | \n",
" -0.011219 | \n",
" -0.04732 | \n",
" 0.044859 | \n",
"
\n",
" \n",
" | 276 | \n",
" -0.197677 | \n",
" -0.123253 | \n",
" -0.140108 | \n",
" -0.063586 | \n",
" -0.268886 | \n",
" -0.137168 | \n",
" -0.176694 | \n",
" -0.029037 | \n",
" -0.158492 | \n",
" -1.103414 | \n",
" ... | \n",
" -0.183125 | \n",
" -0.317926 | \n",
" -0.23103 | \n",
" -0.011609 | \n",
" -0.146411 | \n",
" -0.106404 | \n",
" -0.307707 | \n",
" -0.149219 | \n",
" -0.46132 | \n",
" -0.449141 | \n",
"
\n",
" \n",
" | 277 | \n",
" -0.115677 | \n",
" -0.187253 | \n",
" -0.163108 | \n",
" 0.037414 | \n",
" -0.177886 | \n",
" 0.092832 | \n",
" -0.158694 | \n",
" 0.042963 | \n",
" -0.052492 | \n",
" 0.311586 | \n",
" ... | \n",
" -0.040125 | \n",
" -0.144926 | \n",
" 0.04497 | \n",
" -0.074609 | \n",
" 0.241589 | \n",
" -0.098404 | \n",
" 0.155293 | \n",
" -0.269219 | \n",
" -0.11532 | \n",
" 0.224859 | \n",
"
\n",
" \n",
" | 278 | \n",
" -0.020677 | \n",
" 0.037747 | \n",
" 0.184892 | \n",
" -0.231586 | \n",
" 0.115114 | \n",
" -0.216168 | \n",
" 0.078306 | \n",
" -0.119037 | \n",
" 0.026508 | \n",
" 0.500586 | \n",
" ... | \n",
" 0.208875 | \n",
" -0.269926 | \n",
" -0.07503 | \n",
" 0.109391 | \n",
" 0.752589 | \n",
" -0.303404 | \n",
" -0.075707 | \n",
" -0.149219 | \n",
" -0.27532 | \n",
" -0.155141 | \n",
"
\n",
" \n",
" | 279 | \n",
" -0.197677 | \n",
" -0.128253 | \n",
" -0.123108 | \n",
" 0.221414 | \n",
" 0.141114 | \n",
" -0.052168 | \n",
" 0.001306 | \n",
" -0.256037 | \n",
" -0.088492 | \n",
" -0.018414 | \n",
" ... | \n",
" -0.179125 | \n",
" 0.056074 | \n",
" -0.25603 | \n",
" -0.312609 | \n",
" 0.540589 | \n",
" -0.281404 | \n",
" 0.288293 | \n",
" -0.092219 | \n",
" -0.17332 | \n",
" 0.202859 | \n",
"
\n",
" \n",
" | 280 | \n",
" 0.040323 | \n",
" 0.115747 | \n",
" -0.322108 | \n",
" -0.163586 | \n",
" 0.034114 | \n",
" -0.075168 | \n",
" -0.051694 | \n",
" -0.072037 | \n",
" 0.161508 | \n",
" -0.070414 | \n",
" ... | \n",
" 0.193875 | \n",
" -0.043926 | \n",
" -0.00603 | \n",
" -0.025609 | \n",
" 0.129589 | \n",
" 0.148596 | \n",
" -0.181707 | \n",
" -0.166219 | \n",
" 0.11968 | \n",
" 0.239859 | \n",
"
\n",
" \n",
" | 281 | \n",
" -0.081677 | \n",
" -0.254253 | \n",
" -0.144108 | \n",
" -0.035586 | \n",
" -0.221886 | \n",
" 0.103832 | \n",
" -0.140694 | \n",
" -0.201037 | \n",
" -0.285492 | \n",
" -0.566414 | \n",
" ... | \n",
" 0.021875 | \n",
" -0.259926 | \n",
" -0.06303 | \n",
" -0.563609 | \n",
" -0.486411 | \n",
" -0.403404 | \n",
" 0.208293 | \n",
" -0.200219 | \n",
" -0.38132 | \n",
" -0.004141 | \n",
"
\n",
" \n",
" | 282 | \n",
" 0.304323 | \n",
" 0.275747 | \n",
" 0.050892 | \n",
" 0.406414 | \n",
" -0.260886 | \n",
" 0.197832 | \n",
" -0.060694 | \n",
" 0.071963 | \n",
" 0.272508 | \n",
" 0.086586 | \n",
" ... | \n",
" -0.065125 | \n",
" -0.018926 | \n",
" -0.05403 | \n",
" -0.079609 | \n",
" -0.345411 | \n",
" 0.003596 | \n",
" 0.190293 | \n",
" 0.157781 | \n",
" -0.07332 | \n",
" -0.016141 | \n",
"
\n",
" \n",
" | 283 | \n",
" -0.305677 | \n",
" -0.238253 | \n",
" -0.178108 | \n",
" -0.360586 | \n",
" -0.077886 | \n",
" -0.201168 | \n",
" -0.061694 | \n",
" -0.185037 | \n",
" -0.128492 | \n",
" -0.393414 | \n",
" ... | \n",
" 0.182875 | \n",
" 0.455074 | \n",
" 0.07497 | \n",
" -0.132609 | \n",
" -0.289411 | \n",
" -0.127404 | \n",
" 0.108293 | \n",
" -0.408219 | \n",
" -0.02232 | \n",
" -0.117141 | \n",
"
\n",
" \n",
" | 284 | \n",
" -0.027677 | \n",
" -0.158253 | \n",
" 0.325892 | \n",
" -0.156586 | \n",
" -0.180886 | \n",
" -0.258168 | \n",
" -0.495694 | \n",
" -0.088037 | \n",
" -0.003492 | \n",
" -0.279414 | \n",
" ... | \n",
" -0.426125 | \n",
" -0.618926 | \n",
" -0.58403 | \n",
" -0.095609 | \n",
" 0.234589 | \n",
" 0.208596 | \n",
" -0.040707 | \n",
" -0.310219 | \n",
" 0.08468 | \n",
" -0.363141 | \n",
"
\n",
" \n",
" | 285 | \n",
" -0.216677 | \n",
" -0.194253 | \n",
" -0.189108 | \n",
" -0.320586 | \n",
" -0.349886 | \n",
" -0.364168 | \n",
" -0.040694 | \n",
" -0.165037 | \n",
" -0.418492 | \n",
" -0.879414 | \n",
" ... | \n",
" 0.286875 | \n",
" 0.135074 | \n",
" -0.15703 | \n",
" -0.095609 | \n",
" -0.683411 | \n",
" 0.179596 | \n",
" -0.602707 | \n",
" -0.162219 | \n",
" -0.05432 | \n",
" -0.057141 | \n",
"
\n",
" \n",
" | 286 | \n",
" -0.073677 | \n",
" -0.038253 | \n",
" 0.199892 | \n",
" 0.169414 | \n",
" 0.149114 | \n",
" -0.143168 | \n",
" -0.025694 | \n",
" -0.127037 | \n",
" 0.317508 | \n",
" -0.432414 | \n",
" ... | \n",
" 0.125875 | \n",
" -0.206926 | \n",
" -0.10503 | \n",
" -0.109609 | \n",
" -0.489411 | \n",
" 0.110596 | \n",
" 0.186293 | \n",
" -0.040219 | \n",
" -0.09332 | \n",
" 0.113859 | \n",
"
\n",
" \n",
" | 287 | \n",
" 0.136323 | \n",
" -0.043253 | \n",
" -0.317108 | \n",
" -0.010586 | \n",
" -0.026886 | \n",
" -0.001168 | \n",
" 0.083306 | \n",
" -0.012037 | \n",
" -0.007492 | \n",
" -0.286414 | \n",
" ... | \n",
" 0.049875 | \n",
" 0.157074 | \n",
" -0.14303 | \n",
" 0.171391 | \n",
" 0.224589 | \n",
" -0.221404 | \n",
" 0.475293 | \n",
" -0.159219 | \n",
" -0.05332 | \n",
" -0.012141 | \n",
"
\n",
" \n",
" | 288 | \n",
" -0.147677 | \n",
" -0.059253 | \n",
" 0.028892 | \n",
" -0.108586 | \n",
" -0.090886 | \n",
" 0.235832 | \n",
" -0.101694 | \n",
" 0.177963 | \n",
" 0.338508 | \n",
" 0.024586 | \n",
" ... | \n",
" -0.163125 | \n",
" 0.239074 | \n",
" -0.00603 | \n",
" 0.187391 | \n",
" 0.066589 | \n",
" 0.212596 | \n",
" -0.525707 | \n",
" 0.003781 | \n",
" 0.26568 | \n",
" -0.061141 | \n",
"
\n",
" \n",
" | 289 | \n",
" -0.209677 | \n",
" 0.044747 | \n",
" 0.043892 | \n",
" -0.130586 | \n",
" -0.178886 | \n",
" -0.134168 | \n",
" -0.152694 | \n",
" -0.034037 | \n",
" -0.011492 | \n",
" 0.174586 | \n",
" ... | \n",
" 0.039875 | \n",
" -0.199926 | \n",
" -0.02903 | \n",
" -0.080609 | \n",
" 0.426589 | \n",
" -0.293404 | \n",
" -0.201707 | \n",
" -0.118219 | \n",
" -0.17732 | \n",
" -0.079141 | \n",
"
\n",
" \n",
" | 290 | \n",
" -0.403677 | \n",
" 0.044747 | \n",
" -0.360108 | \n",
" -0.476586 | \n",
" -0.218886 | \n",
" -0.099168 | \n",
" 0.142306 | \n",
" -0.432037 | \n",
" -0.274492 | \n",
" 0.156586 | \n",
" ... | \n",
" -0.027125 | \n",
" -0.110926 | \n",
" -0.17803 | \n",
" 0.067391 | \n",
" 0.109589 | \n",
" -0.089404 | \n",
" -0.283707 | \n",
" -0.212219 | \n",
" -0.07232 | \n",
" 0.050859 | \n",
"
\n",
" \n",
" | 291 | \n",
" -0.053677 | \n",
" -0.079253 | \n",
" 0.122892 | \n",
" 0.079414 | \n",
" -0.123886 | \n",
" 0.224832 | \n",
" 0.018306 | \n",
" 0.144963 | \n",
" 0.000508 | \n",
" 0.409586 | \n",
" ... | \n",
" -0.114125 | \n",
" 0.290074 | \n",
" -0.06003 | \n",
" -0.331609 | \n",
" 0.194589 | \n",
" 0.309596 | \n",
" -0.296707 | \n",
" 0.559781 | \n",
" 0.36268 | \n",
" -0.069141 | \n",
"
\n",
" \n",
" | 292 | \n",
" -0.065677 | \n",
" -0.112253 | \n",
" -0.013108 | \n",
" -0.233586 | \n",
" 0.178114 | \n",
" -0.049168 | \n",
" -0.103694 | \n",
" 0.024963 | \n",
" 0.088508 | \n",
" -0.169414 | \n",
" ... | \n",
" -0.417125 | \n",
" -0.198926 | \n",
" 0.01897 | \n",
" 0.430391 | \n",
" 0.005589 | \n",
" 0.126596 | \n",
" 0.327293 | \n",
" 0.250781 | \n",
" 0.18468 | \n",
" 0.247859 | \n",
"
\n",
" \n",
" | 293 | \n",
" 0.014323 | \n",
" 0.237747 | \n",
" -0.093108 | \n",
" 0.100414 | \n",
" 0.068114 | \n",
" -0.174168 | \n",
" -0.113694 | \n",
" 0.013963 | \n",
" 0.121508 | \n",
" -0.030414 | \n",
" ... | \n",
" 0.227875 | \n",
" -0.383926 | \n",
" -0.02703 | \n",
" 0.099391 | \n",
" -0.410411 | \n",
" -0.010404 | \n",
" -0.075707 | \n",
" 0.181781 | \n",
" 0.29768 | \n",
" 0.126859 | \n",
"
\n",
" \n",
" | 294 | \n",
" 0.066323 | \n",
" 0.071747 | \n",
" -0.301108 | \n",
" -0.021586 | \n",
" 0.082114 | \n",
" -0.131168 | \n",
" -0.339694 | \n",
" -0.174037 | \n",
" -0.332492 | \n",
" 0.478586 | \n",
" ... | \n",
" 0.329875 | \n",
" 0.022074 | \n",
" 0.23197 | \n",
" -0.335609 | \n",
" 0.068589 | \n",
" -0.007404 | \n",
" 0.165293 | \n",
" 0.018781 | \n",
" -0.20932 | \n",
" 0.309859 | \n",
"
\n",
" \n",
" | 295 | \n",
" 0.053323 | \n",
" -0.269253 | \n",
" 0.174892 | \n",
" -0.041586 | \n",
" -0.318886 | \n",
" -0.093168 | \n",
" -0.199694 | \n",
" 0.185963 | \n",
" -0.272492 | \n",
" 0.304586 | \n",
" ... | \n",
" -0.215125 | \n",
" -0.466926 | \n",
" 0.03697 | \n",
" 0.109391 | \n",
" -0.486411 | \n",
" -0.272404 | \n",
" -0.329707 | \n",
" -0.204219 | \n",
" 0.12468 | \n",
" -0.165141 | \n",
"
\n",
" \n",
" | 296 | \n",
" -0.206677 | \n",
" 0.044747 | \n",
" 0.205892 | \n",
" -0.159586 | \n",
" 0.087114 | \n",
" -0.107168 | \n",
" -0.191694 | \n",
" 0.220963 | \n",
" -0.106492 | \n",
" -0.066414 | \n",
" ... | \n",
" -0.022125 | \n",
" 0.280074 | \n",
" 0.14397 | \n",
" 0.225391 | \n",
" 0.312589 | \n",
" 0.366596 | \n",
" 0.028293 | \n",
" 0.178781 | \n",
" 0.47468 | \n",
" -0.205141 | \n",
"
\n",
" \n",
"
\n",
"
297 rows × 308 columns
\n",
"
"
],
"text/plain": [
" lh_bankssts_part1 lh_bankssts_part2 lh_caudalanteriorcingulate_part1 \\\n",
"0 -0.016677 -0.036253 0.035892 \n",
"1 0.280323 0.354747 0.482892 \n",
"2 0.168323 0.081747 0.365892 \n",
"3 -0.086677 -0.249253 -0.404108 \n",
"4 0.400323 0.136747 0.125892 \n",
"5 0.010323 -0.090253 -0.248108 \n",
"6 -0.118677 0.133747 0.089892 \n",
"7 0.106323 0.043747 0.355892 \n",
"8 0.433323 0.037747 0.191892 \n",
"9 0.191323 0.081747 0.093892 \n",
"10 -1.036677 -0.759253 -0.621108 \n",
"11 0.183323 0.155747 -0.100108 \n",
"12 -0.058677 -0.222253 -0.230108 \n",
"13 0.200323 -0.048253 0.032892 \n",
"14 0.221323 0.374747 0.107892 \n",
"15 0.075323 -0.141253 -0.161108 \n",
"16 -0.047677 0.226747 -0.067108 \n",
"17 0.055323 -0.055253 0.164892 \n",
"18 -0.327677 0.128747 -0.260108 \n",
"19 -0.012677 -0.090253 0.499892 \n",
"20 0.052323 -0.096253 0.879892 \n",
"21 -0.028677 -0.236253 -0.091108 \n",
"22 0.235323 0.102747 0.235892 \n",
"23 0.120323 0.066747 -0.144108 \n",
"24 0.084323 0.094747 -0.203108 \n",
"25 0.098323 0.030747 0.304892 \n",
"26 0.024323 -0.112253 0.335892 \n",
"27 0.215323 -0.008253 -0.041108 \n",
"28 -0.170677 -0.324253 -0.035108 \n",
"29 -0.102677 -0.035253 -0.117108 \n",
".. ... ... ... \n",
"267 -0.604677 -0.283253 -0.478108 \n",
"268 -0.090677 -0.174253 -0.005108 \n",
"269 -0.357677 -0.119253 0.010892 \n",
"270 0.166323 0.225747 0.357892 \n",
"271 -0.056677 0.032747 0.074892 \n",
"272 -0.159677 -0.130253 -0.410108 \n",
"273 -0.044677 -0.066253 -0.054108 \n",
"274 0.591323 0.204747 0.964892 \n",
"275 0.290323 0.104747 0.129892 \n",
"276 -0.197677 -0.123253 -0.140108 \n",
"277 -0.115677 -0.187253 -0.163108 \n",
"278 -0.020677 0.037747 0.184892 \n",
"279 -0.197677 -0.128253 -0.123108 \n",
"280 0.040323 0.115747 -0.322108 \n",
"281 -0.081677 -0.254253 -0.144108 \n",
"282 0.304323 0.275747 0.050892 \n",
"283 -0.305677 -0.238253 -0.178108 \n",
"284 -0.027677 -0.158253 0.325892 \n",
"285 -0.216677 -0.194253 -0.189108 \n",
"286 -0.073677 -0.038253 0.199892 \n",
"287 0.136323 -0.043253 -0.317108 \n",
"288 -0.147677 -0.059253 0.028892 \n",
"289 -0.209677 0.044747 0.043892 \n",
"290 -0.403677 0.044747 -0.360108 \n",
"291 -0.053677 -0.079253 0.122892 \n",
"292 -0.065677 -0.112253 -0.013108 \n",
"293 0.014323 0.237747 -0.093108 \n",
"294 0.066323 0.071747 -0.301108 \n",
"295 0.053323 -0.269253 0.174892 \n",
"296 -0.206677 0.044747 0.205892 \n",
"\n",
" lh_caudalmiddlefrontal_part1 lh_caudalmiddlefrontal_part2 \\\n",
"0 -0.004586 0.040114 \n",
"1 0.697414 0.406114 \n",
"2 0.412414 0.283114 \n",
"3 -0.362586 -0.046886 \n",
"4 -0.218586 -1.003886 \n",
"5 -0.131586 -0.080886 \n",
"6 0.047414 0.268114 \n",
"7 0.174414 0.249114 \n",
"8 0.103414 0.206114 \n",
"9 0.100414 0.012114 \n",
"10 0.058414 -0.298886 \n",
"11 0.186414 -0.036886 \n",
"12 0.373414 0.219114 \n",
"13 -0.106586 0.048114 \n",
"14 -0.115586 0.152114 \n",
"15 0.162414 -0.100886 \n",
"16 0.019414 0.165114 \n",
"17 -0.322586 -0.029886 \n",
"18 0.251414 -0.100886 \n",
"19 -0.071586 0.111114 \n",
"20 -0.218586 -0.087886 \n",
"21 -0.280586 -0.182886 \n",
"22 0.103414 0.131114 \n",
"23 0.195414 0.097114 \n",
"24 -0.025586 -0.042886 \n",
"25 0.160414 0.197114 \n",
"26 0.332414 0.285114 \n",
"27 0.083414 0.159114 \n",
"28 -0.098586 -0.178886 \n",
"29 0.318414 0.114114 \n",
".. ... ... \n",
"267 -0.215586 -0.244886 \n",
"268 -0.201586 -0.215886 \n",
"269 -0.054586 0.006114 \n",
"270 0.109414 -0.017886 \n",
"271 -0.072586 0.140114 \n",
"272 -0.154586 -0.204886 \n",
"273 0.289414 0.055114 \n",
"274 0.083414 0.247114 \n",
"275 -0.112586 0.008114 \n",
"276 -0.063586 -0.268886 \n",
"277 0.037414 -0.177886 \n",
"278 -0.231586 0.115114 \n",
"279 0.221414 0.141114 \n",
"280 -0.163586 0.034114 \n",
"281 -0.035586 -0.221886 \n",
"282 0.406414 -0.260886 \n",
"283 -0.360586 -0.077886 \n",
"284 -0.156586 -0.180886 \n",
"285 -0.320586 -0.349886 \n",
"286 0.169414 0.149114 \n",
"287 -0.010586 -0.026886 \n",
"288 -0.108586 -0.090886 \n",
"289 -0.130586 -0.178886 \n",
"290 -0.476586 -0.218886 \n",
"291 0.079414 -0.123886 \n",
"292 -0.233586 0.178114 \n",
"293 0.100414 0.068114 \n",
"294 -0.021586 0.082114 \n",
"295 -0.041586 -0.318886 \n",
"296 -0.159586 0.087114 \n",
"\n",
" lh_caudalmiddlefrontal_part3 lh_caudalmiddlefrontal_part4 \\\n",
"0 -0.005168 -0.252694 \n",
"1 0.445832 0.390306 \n",
"2 0.187832 0.576306 \n",
"3 -0.154168 -0.156694 \n",
"4 -0.142168 -0.752694 \n",
"5 -0.110168 -0.142694 \n",
"6 0.017832 -0.037694 \n",
"7 0.068832 -0.017694 \n",
"8 -0.091168 0.210306 \n",
"9 0.180832 0.123306 \n",
"10 0.005832 -0.419694 \n",
"11 0.206832 0.154306 \n",
"12 0.234832 0.018306 \n",
"13 -0.502168 -0.108694 \n",
"14 -0.089168 0.032306 \n",
"15 -0.026168 -0.145694 \n",
"16 -0.168168 -0.124694 \n",
"17 -0.139168 -0.103694 \n",
"18 0.145832 -0.091694 \n",
"19 0.023832 0.103306 \n",
"20 -0.296168 -0.231694 \n",
"21 -0.320168 0.036306 \n",
"22 -0.083168 0.164306 \n",
"23 0.122832 0.139306 \n",
"24 0.127832 0.332306 \n",
"25 0.275832 0.115306 \n",
"26 0.348832 0.333306 \n",
"27 -0.089168 0.300306 \n",
"28 0.071832 -0.251694 \n",
"29 0.035832 0.131306 \n",
".. ... ... \n",
"267 -0.302168 -0.239694 \n",
"268 -0.309168 -0.170694 \n",
"269 0.097832 -0.164694 \n",
"270 0.109832 0.233306 \n",
"271 0.023832 0.040306 \n",
"272 -0.074168 -0.299694 \n",
"273 0.143832 0.033306 \n",
"274 0.060832 0.243306 \n",
"275 0.015832 0.017306 \n",
"276 -0.137168 -0.176694 \n",
"277 0.092832 -0.158694 \n",
"278 -0.216168 0.078306 \n",
"279 -0.052168 0.001306 \n",
"280 -0.075168 -0.051694 \n",
"281 0.103832 -0.140694 \n",
"282 0.197832 -0.060694 \n",
"283 -0.201168 -0.061694 \n",
"284 -0.258168 -0.495694 \n",
"285 -0.364168 -0.040694 \n",
"286 -0.143168 -0.025694 \n",
"287 -0.001168 0.083306 \n",
"288 0.235832 -0.101694 \n",
"289 -0.134168 -0.152694 \n",
"290 -0.099168 0.142306 \n",
"291 0.224832 0.018306 \n",
"292 -0.049168 -0.103694 \n",
"293 -0.174168 -0.113694 \n",
"294 -0.131168 -0.339694 \n",
"295 -0.093168 -0.199694 \n",
"296 -0.107168 -0.191694 \n",
"\n",
" lh_cuneus_part1 lh_cuneus_part2 lh_entorhinal_part1 ... \\\n",
"0 -0.170037 -0.192492 -0.119414 ... \n",
"1 0.326963 0.389508 0.340586 ... \n",
"2 -0.061037 -0.062492 0.374586 ... \n",
"3 0.029963 -0.246492 -0.009414 ... \n",
"4 -0.091037 -0.550492 -1.223414 ... \n",
"5 0.146963 -0.047492 0.155586 ... \n",
"6 0.061963 0.028508 -0.214414 ... \n",
"7 0.120963 0.095508 0.333586 ... \n",
"8 -0.105037 0.009508 0.388586 ... \n",
"9 -0.062037 -0.180492 -0.323414 ... \n",
"10 0.348963 0.232508 -0.997414 ... \n",
"11 0.020963 -0.053492 0.004586 ... \n",
"12 0.026963 0.090508 0.301586 ... \n",
"13 0.127963 -0.104492 -0.043414 ... \n",
"14 0.180963 0.287508 -0.422414 ... \n",
"15 0.209963 -0.070492 -0.518414 ... \n",
"16 -0.312037 -0.035492 0.112586 ... \n",
"17 -0.004037 0.076508 0.069586 ... \n",
"18 0.002963 0.038508 0.231586 ... \n",
"19 -0.278037 0.053508 0.236586 ... \n",
"20 -0.080037 -0.212492 -0.596414 ... \n",
"21 0.103963 0.198508 -0.637414 ... \n",
"22 0.311963 0.240508 -0.716414 ... \n",
"23 0.166963 0.033508 0.176586 ... \n",
"24 0.005963 0.178508 -0.394414 ... \n",
"25 0.185963 0.222508 0.053586 ... \n",
"26 0.214963 0.120508 0.118586 ... \n",
"27 0.156963 0.088508 0.425586 ... \n",
"28 -0.172037 -0.109492 0.553586 ... \n",
"29 -0.108037 0.029508 0.241586 ... \n",
".. ... ... ... ... \n",
"267 -0.234037 -0.143492 -0.014414 ... \n",
"268 -0.136037 -0.316492 -0.344414 ... \n",
"269 -0.214037 -0.363492 0.059586 ... \n",
"270 -0.187037 -0.090492 -0.414414 ... \n",
"271 -0.314037 -0.106492 -0.014414 ... \n",
"272 -0.113037 -0.417492 0.117586 ... \n",
"273 -0.118037 -0.057492 -0.447414 ... \n",
"274 0.269963 0.017508 -0.211414 ... \n",
"275 0.164963 0.092508 0.136586 ... \n",
"276 -0.029037 -0.158492 -1.103414 ... \n",
"277 0.042963 -0.052492 0.311586 ... \n",
"278 -0.119037 0.026508 0.500586 ... \n",
"279 -0.256037 -0.088492 -0.018414 ... \n",
"280 -0.072037 0.161508 -0.070414 ... \n",
"281 -0.201037 -0.285492 -0.566414 ... \n",
"282 0.071963 0.272508 0.086586 ... \n",
"283 -0.185037 -0.128492 -0.393414 ... \n",
"284 -0.088037 -0.003492 -0.279414 ... \n",
"285 -0.165037 -0.418492 -0.879414 ... \n",
"286 -0.127037 0.317508 -0.432414 ... \n",
"287 -0.012037 -0.007492 -0.286414 ... \n",
"288 0.177963 0.338508 0.024586 ... \n",
"289 -0.034037 -0.011492 0.174586 ... \n",
"290 -0.432037 -0.274492 0.156586 ... \n",
"291 0.144963 0.000508 0.409586 ... \n",
"292 0.024963 0.088508 -0.169414 ... \n",
"293 0.013963 0.121508 -0.030414 ... \n",
"294 -0.174037 -0.332492 0.478586 ... \n",
"295 0.185963 -0.272492 0.304586 ... \n",
"296 0.220963 -0.106492 -0.066414 ... \n",
"\n",
" rh_supramarginal_part5 rh_supramarginal_part6 rh_supramarginal_part7 \\\n",
"0 -0.421125 -0.123926 -0.37903 \n",
"1 0.434875 0.318074 0.04297 \n",
"2 0.512875 0.304074 0.37897 \n",
"3 -0.183125 -0.047926 -0.05003 \n",
"4 -0.324125 0.329074 0.12297 \n",
"5 -0.097125 -0.074926 -0.12803 \n",
"6 0.080875 0.027074 0.00797 \n",
"7 0.427875 0.134074 0.25697 \n",
"8 0.103875 0.182074 0.31697 \n",
"9 -0.197125 -0.022926 -0.17103 \n",
"10 -0.463125 0.153074 0.01097 \n",
"11 0.149875 -0.113926 -0.11203 \n",
"12 0.102875 0.059074 -0.05203 \n",
"13 0.634875 0.150074 0.30797 \n",
"14 -0.086125 -0.217926 -0.06003 \n",
"15 0.266875 0.019074 -0.21203 \n",
"16 0.056875 -0.091926 -0.03103 \n",
"17 -0.157125 -0.117926 0.03697 \n",
"18 0.261875 0.341074 0.20797 \n",
"19 -0.003125 0.033074 -0.08003 \n",
"20 0.255875 -0.167926 -0.18103 \n",
"21 -0.242125 -0.060926 -0.35703 \n",
"22 0.374875 0.073074 -0.16303 \n",
"23 0.321875 0.009074 -0.23003 \n",
"24 0.356875 0.079074 0.10597 \n",
"25 -0.141125 0.200074 -0.05003 \n",
"26 0.263875 0.127074 0.17397 \n",
"27 -0.098125 0.280074 0.28197 \n",
"28 -0.119125 0.094074 0.13297 \n",
"29 0.008875 -0.023926 -0.34803 \n",
".. ... ... ... \n",
"267 -0.118125 -0.104926 -0.22403 \n",
"268 0.110875 -0.069926 -0.21103 \n",
"269 -0.299125 -0.240926 -0.48403 \n",
"270 0.089875 -0.149926 0.09397 \n",
"271 -0.155125 -0.173926 -0.16003 \n",
"272 -0.390125 -0.220926 -0.15603 \n",
"273 -0.160125 -0.059926 -0.21903 \n",
"274 0.078875 -0.030926 -0.10203 \n",
"275 0.151875 -0.044926 0.03697 \n",
"276 -0.183125 -0.317926 -0.23103 \n",
"277 -0.040125 -0.144926 0.04497 \n",
"278 0.208875 -0.269926 -0.07503 \n",
"279 -0.179125 0.056074 -0.25603 \n",
"280 0.193875 -0.043926 -0.00603 \n",
"281 0.021875 -0.259926 -0.06303 \n",
"282 -0.065125 -0.018926 -0.05403 \n",
"283 0.182875 0.455074 0.07497 \n",
"284 -0.426125 -0.618926 -0.58403 \n",
"285 0.286875 0.135074 -0.15703 \n",
"286 0.125875 -0.206926 -0.10503 \n",
"287 0.049875 0.157074 -0.14303 \n",
"288 -0.163125 0.239074 -0.00603 \n",
"289 0.039875 -0.199926 -0.02903 \n",
"290 -0.027125 -0.110926 -0.17803 \n",
"291 -0.114125 0.290074 -0.06003 \n",
"292 -0.417125 -0.198926 0.01897 \n",
"293 0.227875 -0.383926 -0.02703 \n",
"294 0.329875 0.022074 0.23197 \n",
"295 -0.215125 -0.466926 0.03697 \n",
"296 -0.022125 0.280074 0.14397 \n",
"\n",
" rh_frontalpole_part1 rh_temporalpole_part1 rh_transversetemporal_part1 \\\n",
"0 -0.436609 -0.143411 -0.103404 \n",
"1 0.302391 0.374589 0.298596 \n",
"2 0.210391 0.230589 0.172596 \n",
"3 -0.126609 -0.268411 0.303596 \n",
"4 -0.383609 -1.518411 -0.007404 \n",
"5 -0.114609 -0.241411 0.209596 \n",
"6 -0.067609 0.310589 -0.107404 \n",
"7 -0.229609 -0.214411 0.329596 \n",
"8 -0.083609 0.176589 0.062596 \n",
"9 0.527391 0.004589 0.123596 \n",
"10 -0.540609 -0.149411 0.290596 \n",
"11 0.015391 0.233589 0.134596 \n",
"12 0.061391 -0.193411 0.127596 \n",
"13 0.413391 -0.463411 0.388596 \n",
"14 0.198391 0.171589 0.026596 \n",
"15 0.296391 -0.047411 -0.364404 \n",
"16 0.301391 0.392589 0.115596 \n",
"17 -0.286609 0.243589 0.162596 \n",
"18 0.031391 0.052589 -0.204404 \n",
"19 -0.083609 0.069589 0.085596 \n",
"20 0.095391 -0.579411 -0.360404 \n",
"21 -0.273609 -0.645411 -0.026404 \n",
"22 0.303391 0.011589 0.207596 \n",
"23 0.320391 0.749589 0.300596 \n",
"24 0.071391 -1.264411 0.001596 \n",
"25 0.162391 0.155589 -0.153404 \n",
"26 0.191391 0.249589 0.214596 \n",
"27 0.000391 0.808589 0.006596 \n",
"28 -0.610609 -0.063411 0.001596 \n",
"29 -0.158609 0.240589 -0.392404 \n",
".. ... ... ... \n",
"267 -0.305609 -0.048411 -0.260404 \n",
"268 -0.029609 -0.027411 -0.401404 \n",
"269 -0.392609 -0.081411 -0.217404 \n",
"270 0.096391 -0.332411 -0.022404 \n",
"271 0.053391 0.091589 0.107596 \n",
"272 -0.479609 -0.070411 -0.258404 \n",
"273 -0.042609 -0.973411 -0.063404 \n",
"274 -0.002609 0.377589 0.035596 \n",
"275 -0.131609 0.205589 0.024596 \n",
"276 -0.011609 -0.146411 -0.106404 \n",
"277 -0.074609 0.241589 -0.098404 \n",
"278 0.109391 0.752589 -0.303404 \n",
"279 -0.312609 0.540589 -0.281404 \n",
"280 -0.025609 0.129589 0.148596 \n",
"281 -0.563609 -0.486411 -0.403404 \n",
"282 -0.079609 -0.345411 0.003596 \n",
"283 -0.132609 -0.289411 -0.127404 \n",
"284 -0.095609 0.234589 0.208596 \n",
"285 -0.095609 -0.683411 0.179596 \n",
"286 -0.109609 -0.489411 0.110596 \n",
"287 0.171391 0.224589 -0.221404 \n",
"288 0.187391 0.066589 0.212596 \n",
"289 -0.080609 0.426589 -0.293404 \n",
"290 0.067391 0.109589 -0.089404 \n",
"291 -0.331609 0.194589 0.309596 \n",
"292 0.430391 0.005589 0.126596 \n",
"293 0.099391 -0.410411 -0.010404 \n",
"294 -0.335609 0.068589 -0.007404 \n",
"295 0.109391 -0.486411 -0.272404 \n",
"296 0.225391 0.312589 0.366596 \n",
"\n",
" rh_insula_part1 rh_insula_part2 rh_insula_part3 rh_insula_part4 \n",
"0 -0.321707 -0.159219 -0.19032 -0.393141 \n",
"1 0.237293 0.200781 0.09968 0.126859 \n",
"2 0.264293 0.155781 0.34168 0.097859 \n",
"3 -0.491707 -0.003219 -0.54532 -0.133141 \n",
"4 -0.838707 0.192781 0.15968 -0.079141 \n",
"5 0.326293 0.082781 0.26868 0.099859 \n",
"6 -0.033707 -0.015219 -0.09132 0.048859 \n",
"7 -0.355707 0.015781 -0.02732 -0.118141 \n",
"8 0.404293 0.024781 -0.05932 0.041859 \n",
"9 0.413293 -0.185219 -0.21632 0.065859 \n",
"10 -0.078707 0.073781 0.30068 0.333859 \n",
"11 -0.206707 -0.039219 -0.35132 0.220859 \n",
"12 0.292293 -0.027219 0.22968 0.481859 \n",
"13 0.216293 0.074781 0.23568 0.192859 \n",
"14 0.124293 0.050781 -0.02332 -0.113141 \n",
"15 -0.380707 0.210781 0.23068 0.030859 \n",
"16 0.027293 0.234781 0.11168 0.111859 \n",
"17 0.045293 0.148781 0.22168 0.050859 \n",
"18 0.224293 -0.111219 -0.08532 0.079859 \n",
"19 0.416293 -0.049219 0.27268 0.344859 \n",
"20 0.013293 -0.129219 -0.25632 0.101859 \n",
"21 -0.240707 0.046781 0.16268 0.029859 \n",
"22 0.238293 0.056781 -0.27732 0.288859 \n",
"23 0.069293 0.103781 0.02568 -0.048141 \n",
"24 -0.204707 -0.084219 -0.05932 -0.320141 \n",
"25 0.403293 0.026781 0.33068 0.282859 \n",
"26 0.029293 0.233781 0.14168 0.342859 \n",
"27 -0.036707 0.331781 0.16468 -0.137141 \n",
"28 0.141293 0.106781 0.47968 0.154859 \n",
"29 0.222293 -0.063219 -0.24132 -0.042141 \n",
".. ... ... ... ... \n",
"267 -0.130707 -0.320219 -0.17832 -0.153141 \n",
"268 -0.151707 0.014781 0.04168 -0.192141 \n",
"269 -0.334707 -0.190219 0.18768 0.153859 \n",
"270 0.040293 0.066781 0.14768 0.005859 \n",
"271 0.312293 0.226781 -0.02432 -0.068141 \n",
"272 -0.035707 -0.082219 -0.24732 -0.106141 \n",
"273 -0.117707 0.005781 0.16668 -0.132141 \n",
"274 -0.297707 0.018781 -0.00032 0.275859 \n",
"275 0.012293 -0.011219 -0.04732 0.044859 \n",
"276 -0.307707 -0.149219 -0.46132 -0.449141 \n",
"277 0.155293 -0.269219 -0.11532 0.224859 \n",
"278 -0.075707 -0.149219 -0.27532 -0.155141 \n",
"279 0.288293 -0.092219 -0.17332 0.202859 \n",
"280 -0.181707 -0.166219 0.11968 0.239859 \n",
"281 0.208293 -0.200219 -0.38132 -0.004141 \n",
"282 0.190293 0.157781 -0.07332 -0.016141 \n",
"283 0.108293 -0.408219 -0.02232 -0.117141 \n",
"284 -0.040707 -0.310219 0.08468 -0.363141 \n",
"285 -0.602707 -0.162219 -0.05432 -0.057141 \n",
"286 0.186293 -0.040219 -0.09332 0.113859 \n",
"287 0.475293 -0.159219 -0.05332 -0.012141 \n",
"288 -0.525707 0.003781 0.26568 -0.061141 \n",
"289 -0.201707 -0.118219 -0.17732 -0.079141 \n",
"290 -0.283707 -0.212219 -0.07232 0.050859 \n",
"291 -0.296707 0.559781 0.36268 -0.069141 \n",
"292 0.327293 0.250781 0.18468 0.247859 \n",
"293 -0.075707 0.181781 0.29768 0.126859 \n",
"294 0.165293 0.018781 -0.20932 0.309859 \n",
"295 -0.329707 -0.204219 0.12468 -0.165141 \n",
"296 0.028293 0.178781 0.47468 -0.205141 \n",
"\n",
"[297 rows x 308 columns]"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_res"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we create a correlation matrix over the columns of df_res"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": true,
"scrolled": false
},
"outputs": [],
"source": [
"M = scn.create_corrmat(df_res, method='pearson')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create a weighted graph\n",
"\n",
"A short sidenote on the BrainNetwork class: This is a very lightweight subclass of the [`Networkx.Graph`](https://networkx.github.io/documentation/stable/reference/classes/graph.html) class. This means that any methods you can use on a `Networkx.Graph` object can also be used on a `BrainNetwork` object, although the reverse is not true. We have added various methods which allow us to keep track of measures that have already been calculated, which, especially later on when one is dealing with 10^3 random graphs, saves a lot of time. \n",
"All scona measures are implemented in such a way that they can be used on a regular `Networkx.Graph` object. For example, instead of `G.threshold(10)` you can use `scn.threshold_graph(G, 10)`. \n",
"Also you can create a `BrainNetwork` from a `Networkx.Graph` `G`, using `scn.BrainNetwork(network=G)`"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Initialise a weighted graph `G` from the correlation matrix `M`. The `parcellation` and `centroids` arguments are used to label nodes with names and coordinates respectively. "
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"G = scn.BrainNetwork(network=M, parcellation=names, centroids=centroids)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Threshold to create a binary graph\n",
"\n",
"We threshold G at cost 10 to create a binary graph with 10% as many edges as the complete graph G. Ordinarily when thresholding one takes the 10% of edges with the highest weight. In our case, because we want the resulting graph to be connected, we calculate a minimum spanning tree first. If you want to omit this step, you can pass the argument `mst=False` to `threshold`.\n",
"The threshold method does not edit objects inplace"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"H = G.threshold(10)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Calculate nodal summary. \n",
"\n",
"`calculate_nodal_measures` will compute and record the following nodal measures \n",
"\n",
"* average_dist (if centroids available)\n",
"* total_dist (if centroids available)\n",
"* betweenness\n",
"* closeness\n",
"* clustering coefficient\n",
"* degree\n",
"* interhem (if centroids are available)\n",
"* interhem_proportion (if centroids are available)\n",
"* nodal partition\n",
"* participation coefficient under partition calculated above\n",
"* shortest_path_length"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"`export_nodal_measure` returns nodal attributes in a DataFrame. Let's try it now."
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" centroids | \n",
" name | \n",
" x | \n",
" y | \n",
" z | \n",
"
\n",
" \n",
" \n",
" \n",
" | 0 | \n",
" [-27.965157, -19.013702, 17.919528] | \n",
" lh_bankssts_part1 | \n",
" -27.9652 | \n",
" -19.0137 | \n",
" 17.9195 | \n",
"
\n",
" \n",
" | 1 | \n",
" [-14.455663, -13.693461, 13.713674] | \n",
" lh_bankssts_part2 | \n",
" -14.4557 | \n",
" -13.6935 | \n",
" 13.7137 | \n",
"
\n",
" \n",
" | 2 | \n",
" [-33.906934, -22.284672, -15.821168] | \n",
" lh_caudalanteriorcingulate_part1 | \n",
" -33.9069 | \n",
" -22.2847 | \n",
" -15.8212 | \n",
"
\n",
" \n",
" | 3 | \n",
" [-17.305373, -53.431573, -36.017154] | \n",
" lh_caudalmiddlefrontal_part1 | \n",
" -17.3054 | \n",
" -53.4316 | \n",
" -36.0172 | \n",
"
\n",
" \n",
" | 4 | \n",
" [-22.265823, -64.366296, -37.674831] | \n",
" lh_caudalmiddlefrontal_part2 | \n",
" -22.2658 | \n",
" -64.3663 | \n",
" -37.6748 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" centroids name \\\n",
"0 [-27.965157, -19.013702, 17.919528] lh_bankssts_part1 \n",
"1 [-14.455663, -13.693461, 13.713674] lh_bankssts_part2 \n",
"2 [-33.906934, -22.284672, -15.821168] lh_caudalanteriorcingulate_part1 \n",
"3 [-17.305373, -53.431573, -36.017154] lh_caudalmiddlefrontal_part1 \n",
"4 [-22.265823, -64.366296, -37.674831] lh_caudalmiddlefrontal_part2 \n",
"\n",
" x y z \n",
"0 -27.9652 -19.0137 17.9195 \n",
"1 -14.4557 -13.6935 13.7137 \n",
"2 -33.9069 -22.2847 -15.8212 \n",
"3 -17.3054 -53.4316 -36.0172 \n",
"4 -22.2658 -64.3663 -37.6748 "
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"H.report_nodal_measures().head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Use `calculate_nodal_measures` to fill in a bunch of nodal measures"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" Calculating participation coefficient - may take a little while\n"
]
}
],
"source": [
"H.calculate_nodal_measures()"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" betweenness | \n",
" centroids | \n",
" closeness | \n",
" clustering | \n",
" degree | \n",
" module | \n",
" name | \n",
" participation_coefficient | \n",
" shortest_path_length | \n",
" x | \n",
" y | \n",
" z | \n",
"
\n",
" \n",
" \n",
" \n",
" | 0 | \n",
" 0.00824713 | \n",
" [-27.965157, -19.013702, 17.919528] | \n",
" 0.495961 | \n",
" 0.3358 | \n",
" 47 | \n",
" 0 | \n",
" lh_bankssts_part1 | \n",
" 0.717067 | \n",
" 0.00824713 | \n",
" -27.9652 | \n",
" -19.0137 | \n",
" 17.9195 | \n",
"
\n",
" \n",
" | 1 | \n",
" 0.0124798 | \n",
" [-14.455663, -13.693461, 13.713674] | \n",
" 0.507438 | \n",
" 0.278788 | \n",
" 55 | \n",
" 0 | \n",
" lh_bankssts_part2 | \n",
" 0.809587 | \n",
" 0.0124798 | \n",
" -14.4557 | \n",
" -13.6935 | \n",
" 13.7137 | \n",
"
\n",
" \n",
" | 2 | \n",
" 0 | \n",
" [-33.906934, -22.284672, -15.821168] | \n",
" 0.336254 | \n",
" 1 | \n",
" 2 | \n",
" 1 | \n",
" lh_caudalanteriorcingulate_part1 | \n",
" 0.75 | \n",
" 0 | \n",
" -33.9069 | \n",
" -22.2847 | \n",
" -15.8212 | \n",
"
\n",
" \n",
" | 3 | \n",
" 0.0120765 | \n",
" [-17.305373, -53.431573, -36.017154] | \n",
" 0.525685 | \n",
" 0.383485 | \n",
" 83 | \n",
" 2 | \n",
" lh_caudalmiddlefrontal_part1 | \n",
" 0.459864 | \n",
" 0.0120765 | \n",
" -17.3054 | \n",
" -53.4316 | \n",
" -36.0172 | \n",
"
\n",
" \n",
" | 4 | \n",
" 0.0292617 | \n",
" [-22.265823, -64.366296, -37.674831] | \n",
" 0.549195 | \n",
" 0.293617 | \n",
" 95 | \n",
" 2 | \n",
" lh_caudalmiddlefrontal_part2 | \n",
" 0.688753 | \n",
" 0.0292617 | \n",
" -22.2658 | \n",
" -64.3663 | \n",
" -37.6748 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" betweenness centroids closeness clustering \\\n",
"0 0.00824713 [-27.965157, -19.013702, 17.919528] 0.495961 0.3358 \n",
"1 0.0124798 [-14.455663, -13.693461, 13.713674] 0.507438 0.278788 \n",
"2 0 [-33.906934, -22.284672, -15.821168] 0.336254 1 \n",
"3 0.0120765 [-17.305373, -53.431573, -36.017154] 0.525685 0.383485 \n",
"4 0.0292617 [-22.265823, -64.366296, -37.674831] 0.549195 0.293617 \n",
"\n",
" degree module name participation_coefficient \\\n",
"0 47 0 lh_bankssts_part1 0.717067 \n",
"1 55 0 lh_bankssts_part2 0.809587 \n",
"2 2 1 lh_caudalanteriorcingulate_part1 0.75 \n",
"3 83 2 lh_caudalmiddlefrontal_part1 0.459864 \n",
"4 95 2 lh_caudalmiddlefrontal_part2 0.688753 \n",
"\n",
" shortest_path_length x y z \n",
"0 0.00824713 -27.9652 -19.0137 17.9195 \n",
"1 0.0124798 -14.4557 -13.6935 13.7137 \n",
"2 0 -33.9069 -22.2847 -15.8212 \n",
"3 0.0120765 -17.3054 -53.4316 -36.0172 \n",
"4 0.0292617 -22.2658 -64.3663 -37.6748 "
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"H.report_nodal_measures().head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can also add measures as one might normally add nodal attributes to a networkx graph"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"nx.set_node_attributes(H, name=\"hat\", values={x: x**2 for x in H.nodes})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"These show up in our DataFrame too"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" degree | \n",
" hat | \n",
" name | \n",
"
\n",
" \n",
" \n",
" \n",
" | 0 | \n",
" 47 | \n",
" 0 | \n",
" lh_bankssts_part1 | \n",
"
\n",
" \n",
" | 1 | \n",
" 55 | \n",
" 1 | \n",
" lh_bankssts_part2 | \n",
"
\n",
" \n",
" | 2 | \n",
" 2 | \n",
" 4 | \n",
" lh_caudalanteriorcingulate_part1 | \n",
"
\n",
" \n",
" | 3 | \n",
" 83 | \n",
" 9 | \n",
" lh_caudalmiddlefrontal_part1 | \n",
"
\n",
" \n",
" | 4 | \n",
" 95 | \n",
" 16 | \n",
" lh_caudalmiddlefrontal_part2 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" degree hat name\n",
"0 47 0 lh_bankssts_part1\n",
"1 55 1 lh_bankssts_part2\n",
"2 2 4 lh_caudalanteriorcingulate_part1\n",
"3 83 9 lh_caudalmiddlefrontal_part1\n",
"4 95 16 lh_caudalmiddlefrontal_part2"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"H.report_nodal_measures(columns=['name', 'degree', 'hat']).head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Calculate Global measures"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'assortativity': 0.09076922258276784,\n",
" 'average_clustering': 0.4498887255891581,\n",
" 'average_shortest_path_length': 2.376242649858285,\n",
" 'efficiency': 0.47983958611582617,\n",
" 'modularity': 0.3828553111606414}"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"H.calculate_global_measures()"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"scrolled": false
},
"outputs": [],
"source": [
"H.rich_club();"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create a GraphBundle\n",
"\n",
"The `GraphBundle` object is the scona way to handle across network comparisons. What is it? Essentially it's a python dictionary with `BrainNetwork` objects as values. "
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"brain_bundle = scn.GraphBundle([H], ['NSPN_cost=10'])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This creates a dictionary-like object with BrainNetwork `H` keyed by `'NSPN_cost=10'`"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"{'NSPN_cost=10': }"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"brain_bundle"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now add a series of random_graphs created by edge swap randomisation of H (keyed by `'NSPN_cost=10'`)"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" Creating 10 random graphs - may take a little while\n"
]
}
],
"source": [
"# Note that 10 is not usually a sufficient number of random graphs to do meaningful analysis,\n",
"# it is used here for time considerations\n",
"brain_bundle.create_random_graphs('NSPN_cost=10', 10)"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'NSPN_cost=10': ,\n",
" 'NSPN_cost=10_R1': ,\n",
" 'NSPN_cost=10_R10': ,\n",
" 'NSPN_cost=10_R2': ,\n",
" 'NSPN_cost=10_R3': ,\n",
" 'NSPN_cost=10_R4': ,\n",
" 'NSPN_cost=10_R5': ,\n",
" 'NSPN_cost=10_R6': ,\n",
" 'NSPN_cost=10_R7': ,\n",
" 'NSPN_cost=10_R8': ,\n",
" 'NSPN_cost=10_R9': }"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"brain_bundle"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Report on a GraphBundle\n",
"\n",
"The following method will calculate global measures ( if they have not already been calculated) for all of the graphs in `graph_bundle` and report the results in a DataFrame. We can do the same for rich club coefficients below."
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" assortativity | \n",
" average_clustering | \n",
" average_shortest_path_length | \n",
" efficiency | \n",
" modularity | \n",
"
\n",
" \n",
" \n",
" \n",
" | NSPN_cost=10 | \n",
" 0.090769 | \n",
" 0.449889 | \n",
" 2.376243 | \n",
" 0.479840 | \n",
" 0.382855 | \n",
"
\n",
" \n",
" | NSPN_cost=10_R1 | \n",
" -0.083993 | \n",
" 0.222571 | \n",
" 2.086721 | \n",
" 0.519147 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" | NSPN_cost=10_R10 | \n",
" -0.087652 | \n",
" 0.222462 | \n",
" 2.087821 | \n",
" 0.518918 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" | NSPN_cost=10_R2 | \n",
" -0.080897 | \n",
" 0.230384 | \n",
" 2.090423 | \n",
" 0.518615 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" | NSPN_cost=10_R3 | \n",
" -0.102626 | \n",
" 0.221894 | \n",
" 2.082745 | \n",
" 0.519803 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" | NSPN_cost=10_R4 | \n",
" -0.072122 | \n",
" 0.221924 | \n",
" 2.087842 | \n",
" 0.518902 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" | NSPN_cost=10_R5 | \n",
" -0.086952 | \n",
" 0.232706 | \n",
" 2.084754 | \n",
" 0.519357 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" | NSPN_cost=10_R6 | \n",
" -0.084438 | \n",
" 0.223727 | \n",
" 2.085325 | \n",
" 0.519440 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" | NSPN_cost=10_R7 | \n",
" -0.080285 | \n",
" 0.224930 | \n",
" 2.087525 | \n",
" 0.519003 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" | NSPN_cost=10_R8 | \n",
" -0.070332 | \n",
" 0.225730 | \n",
" 2.085135 | \n",
" 0.519281 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" | NSPN_cost=10_R9 | \n",
" -0.086510 | \n",
" 0.227159 | \n",
" 2.090782 | \n",
" 0.518527 | \n",
" 0.000000 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" assortativity average_clustering \\\n",
"NSPN_cost=10 0.090769 0.449889 \n",
"NSPN_cost=10_R1 -0.083993 0.222571 \n",
"NSPN_cost=10_R10 -0.087652 0.222462 \n",
"NSPN_cost=10_R2 -0.080897 0.230384 \n",
"NSPN_cost=10_R3 -0.102626 0.221894 \n",
"NSPN_cost=10_R4 -0.072122 0.221924 \n",
"NSPN_cost=10_R5 -0.086952 0.232706 \n",
"NSPN_cost=10_R6 -0.084438 0.223727 \n",
"NSPN_cost=10_R7 -0.080285 0.224930 \n",
"NSPN_cost=10_R8 -0.070332 0.225730 \n",
"NSPN_cost=10_R9 -0.086510 0.227159 \n",
"\n",
" average_shortest_path_length efficiency modularity \n",
"NSPN_cost=10 2.376243 0.479840 0.382855 \n",
"NSPN_cost=10_R1 2.086721 0.519147 0.000000 \n",
"NSPN_cost=10_R10 2.087821 0.518918 0.000000 \n",
"NSPN_cost=10_R2 2.090423 0.518615 0.000000 \n",
"NSPN_cost=10_R3 2.082745 0.519803 0.000000 \n",
"NSPN_cost=10_R4 2.087842 0.518902 0.000000 \n",
"NSPN_cost=10_R5 2.084754 0.519357 0.000000 \n",
"NSPN_cost=10_R6 2.085325 0.519440 0.000000 \n",
"NSPN_cost=10_R7 2.087525 0.519003 0.000000 \n",
"NSPN_cost=10_R8 2.085135 0.519281 0.000000 \n",
"NSPN_cost=10_R9 2.090782 0.518527 0.000000 "
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"brain_bundle.report_global_measures()"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" 0 | \n",
" 1 | \n",
" 2 | \n",
" 3 | \n",
" 4 | \n",
" 5 | \n",
" 6 | \n",
" 7 | \n",
" 8 | \n",
" 9 | \n",
" ... | \n",
" 96 | \n",
" 97 | \n",
" 98 | \n",
" 99 | \n",
" 100 | \n",
" 101 | \n",
" 102 | \n",
" 103 | \n",
" 104 | \n",
" 105 | \n",
"
\n",
" \n",
" \n",
" \n",
" | NSPN_cost=10 | \n",
" 0.100004 | \n",
" 0.103228 | \n",
" 0.107244 | \n",
" 0.112039 | \n",
" 0.117842 | \n",
" 0.122398 | \n",
" 0.127975 | \n",
" 0.131899 | \n",
" 0.136820 | \n",
" 0.141069 | \n",
" ... | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
"
\n",
" \n",
" | NSPN_cost=10_R1 | \n",
" 0.100004 | \n",
" 0.103228 | \n",
" 0.107175 | \n",
" 0.111920 | \n",
" 0.117564 | \n",
" 0.121950 | \n",
" 0.127226 | \n",
" 0.131092 | \n",
" 0.135825 | \n",
" 0.139877 | \n",
" ... | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
"
\n",
" \n",
" | NSPN_cost=10_R10 | \n",
" 0.100004 | \n",
" 0.103228 | \n",
" 0.107175 | \n",
" 0.111920 | \n",
" 0.117564 | \n",
" 0.121950 | \n",
" 0.127226 | \n",
" 0.131150 | \n",
" 0.135885 | \n",
" 0.139908 | \n",
" ... | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
"
\n",
" \n",
" | NSPN_cost=10_R2 | \n",
" 0.100004 | \n",
" 0.103228 | \n",
" 0.107175 | \n",
" 0.111920 | \n",
" 0.117564 | \n",
" 0.121950 | \n",
" 0.127226 | \n",
" 0.131092 | \n",
" 0.135855 | \n",
" 0.139971 | \n",
" ... | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
"
\n",
" \n",
" | NSPN_cost=10_R3 | \n",
" 0.100004 | \n",
" 0.103228 | \n",
" 0.107175 | \n",
" 0.111920 | \n",
" 0.117589 | \n",
" 0.122003 | \n",
" 0.127282 | \n",
" 0.131150 | \n",
" 0.135885 | \n",
" 0.139940 | \n",
" ... | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
"
\n",
" \n",
" | NSPN_cost=10_R4 | \n",
" 0.100004 | \n",
" 0.103228 | \n",
" 0.107175 | \n",
" 0.111920 | \n",
" 0.117564 | \n",
" 0.121976 | \n",
" 0.127282 | \n",
" 0.131150 | \n",
" 0.135885 | \n",
" 0.139940 | \n",
" ... | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
"
\n",
" \n",
" | NSPN_cost=10_R5 | \n",
" 0.100004 | \n",
" 0.103228 | \n",
" 0.107175 | \n",
" 0.111920 | \n",
" 0.117564 | \n",
" 0.121950 | \n",
" 0.127254 | \n",
" 0.131150 | \n",
" 0.135915 | \n",
" 0.139940 | \n",
" ... | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
"
\n",
" \n",
" | NSPN_cost=10_R6 | \n",
" 0.100004 | \n",
" 0.103228 | \n",
" 0.107175 | \n",
" 0.111920 | \n",
" 0.117564 | \n",
" 0.121950 | \n",
" 0.127226 | \n",
" 0.131092 | \n",
" 0.135885 | \n",
" 0.139908 | \n",
" ... | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
"
\n",
" \n",
" | NSPN_cost=10_R7 | \n",
" 0.100004 | \n",
" 0.103228 | \n",
" 0.107175 | \n",
" 0.111920 | \n",
" 0.117564 | \n",
" 0.121976 | \n",
" 0.127254 | \n",
" 0.131150 | \n",
" 0.135915 | \n",
" 0.139971 | \n",
" ... | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
"
\n",
" \n",
" | NSPN_cost=10_R8 | \n",
" 0.100004 | \n",
" 0.103228 | \n",
" 0.107175 | \n",
" 0.111920 | \n",
" 0.117564 | \n",
" 0.121950 | \n",
" 0.127226 | \n",
" 0.131121 | \n",
" 0.135915 | \n",
" 0.139940 | \n",
" ... | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
"
\n",
" \n",
" | NSPN_cost=10_R9 | \n",
" 0.100004 | \n",
" 0.103228 | \n",
" 0.107175 | \n",
" 0.111920 | \n",
" 0.117564 | \n",
" 0.121976 | \n",
" 0.127254 | \n",
" 0.131150 | \n",
" 0.135915 | \n",
" 0.140034 | \n",
" ... | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
"
\n",
" \n",
"
\n",
"
11 rows × 106 columns
\n",
"
"
],
"text/plain": [
" 0 1 2 3 4 5 \\\n",
"NSPN_cost=10 0.100004 0.103228 0.107244 0.112039 0.117842 0.122398 \n",
"NSPN_cost=10_R1 0.100004 0.103228 0.107175 0.111920 0.117564 0.121950 \n",
"NSPN_cost=10_R10 0.100004 0.103228 0.107175 0.111920 0.117564 0.121950 \n",
"NSPN_cost=10_R2 0.100004 0.103228 0.107175 0.111920 0.117564 0.121950 \n",
"NSPN_cost=10_R3 0.100004 0.103228 0.107175 0.111920 0.117589 0.122003 \n",
"NSPN_cost=10_R4 0.100004 0.103228 0.107175 0.111920 0.117564 0.121976 \n",
"NSPN_cost=10_R5 0.100004 0.103228 0.107175 0.111920 0.117564 0.121950 \n",
"NSPN_cost=10_R6 0.100004 0.103228 0.107175 0.111920 0.117564 0.121950 \n",
"NSPN_cost=10_R7 0.100004 0.103228 0.107175 0.111920 0.117564 0.121976 \n",
"NSPN_cost=10_R8 0.100004 0.103228 0.107175 0.111920 0.117564 0.121950 \n",
"NSPN_cost=10_R9 0.100004 0.103228 0.107175 0.111920 0.117564 0.121976 \n",
"\n",
" 6 7 8 9 ... 96 97 98 \\\n",
"NSPN_cost=10 0.127975 0.131899 0.136820 0.141069 ... 1.0 1.0 1.0 \n",
"NSPN_cost=10_R1 0.127226 0.131092 0.135825 0.139877 ... 1.0 1.0 1.0 \n",
"NSPN_cost=10_R10 0.127226 0.131150 0.135885 0.139908 ... 0.0 0.0 0.0 \n",
"NSPN_cost=10_R2 0.127226 0.131092 0.135855 0.139971 ... 1.0 1.0 1.0 \n",
"NSPN_cost=10_R3 0.127282 0.131150 0.135885 0.139940 ... 1.0 1.0 1.0 \n",
"NSPN_cost=10_R4 0.127282 0.131150 0.135885 0.139940 ... 1.0 1.0 1.0 \n",
"NSPN_cost=10_R5 0.127254 0.131150 0.135915 0.139940 ... 1.0 1.0 1.0 \n",
"NSPN_cost=10_R6 0.127226 0.131092 0.135885 0.139908 ... 1.0 1.0 1.0 \n",
"NSPN_cost=10_R7 0.127254 0.131150 0.135915 0.139971 ... 1.0 1.0 1.0 \n",
"NSPN_cost=10_R8 0.127226 0.131121 0.135915 0.139940 ... 1.0 1.0 1.0 \n",
"NSPN_cost=10_R9 0.127254 0.131150 0.135915 0.140034 ... 0.0 0.0 0.0 \n",
"\n",
" 99 100 101 102 103 104 105 \n",
"NSPN_cost=10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 \n",
"NSPN_cost=10_R1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 \n",
"NSPN_cost=10_R10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n",
"NSPN_cost=10_R2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 \n",
"NSPN_cost=10_R3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 \n",
"NSPN_cost=10_R4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 \n",
"NSPN_cost=10_R5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 \n",
"NSPN_cost=10_R6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 \n",
"NSPN_cost=10_R7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 \n",
"NSPN_cost=10_R8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 \n",
"NSPN_cost=10_R9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n",
"\n",
"[11 rows x 106 columns]"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"brain_bundle.report_rich_club()"
]
}
],
"metadata": {
"anaconda-cloud": {},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.3"
}
},
"nbformat": 4,
"nbformat_minor": 1
}