
Distributed Graph Coloring

Leonid Barenboim and Michael Elkin

March 5, 2013

1

Contents

1 Introduction 4

2 Basics of Graph Theory 9

2.1 Graphs with Large Girth and Large Chromatic Number 9

2.2 Planar Graphs . 16

2.3 Arboricity . 19

2.3.1 Nash-Williams Theorem . 19

2.3.2 Degeneracy and Arboricity . 23

2.4 Defective Coloring . 25

2.5 Edge-Coloring and Matchings . 27

3 Basic Distributed Graph Coloring Algorithns 29

3.1 The Distirubuted Message-Passing LOCAL Model 29

3.2 Basic Color Reduction . 29

3.3 Orientations . 30

3.4 The Algorithm of Cole and Vishkin . 32

3.5 Extensions to graphs with bounded maximum degree 34

3.6 An Improved Coloring Algorithm for Graphs with Bounded Maximum Degree . . 36

3.7 A Faster (∆ + 1)-Coloring . 37

3.8 Kuhn-Wattenhofer Color Reduction Technique and its Applications 38

3.9 A reduction from (∆ + 1)-coloring to MIS . 40

3.10 Linial’s Algorithm . 42

4 Lower Bounds 45

4.1 Coloring Unoriented Trees . 45

4.1.1 The First Proof . 45

4.1.2 The Second Proof . 47

4.2 Coloring the n-path Pn . 49

2

5 Forest-Decomposition Algorithms and Applications 52

5.1 H-Partition . 52

5.2 An O(a)-coloring . 57

5.3 Faster Coloring . 59

5.4 MIS algorithms . 62

6 Defective Coloring 64

6.1 Employing Defective Coloring for Computing Legal Coloring 64

6.2 Defective Coloring Algorithms . 70

6.2.1 Procedure Refine . 70

6.2.2 Procedure Defective-Color . 72

7 Arbdefective Coloring 78

7.1 Small Arboricity Decomposition . 78

7.2 Efficient Coloring Algorithms . 81

8 Edge-Coloring and Maximal Matching 89

8.1 Edge-Coloring and Maximal Matching using Forest-Decomposition 89

8.2 Edge-Coloring using Bounded Neighborhood Independence 93

9 Randomized Algorithms 100

9.1 Simple Algorithms . 100

9.2 A Faster O(∆)-Coloring Algorithm . 105

9.3 Randomized MIS . 107

9.3.1 A High-Level Description . 107

9.3.2 Procedure Decide . 112

9.4 Randomized Maximal Matching . 118

10 Conclusion and Open Questions 129

3

1 Introduction

Distributed Computing is a large and growing field of study, which is concerned with various

settings in which there are several processors working in parallel, typically on a joint problem.

The area is roughly fourty years old, and by now there are a number of excellent treatises that

cover different aspects of Distributed Computing [63, 58, 4, 68].

The most relevant to this monograph is the book of Peleg [63], that describes the message-

passing model of distributed computation. In this model a communication network is represented

by an n-vertex graph G = (V,E), whose vertices host processors. The processors communicate

over the edges of G in discrete rounds.1 In each of these rounds each processor (equivalently, each

vertex) can send messages to all its neighbors in G. The running time of an algorithm in this

model is the (worst-case) number of rounds of distributed communication that this algorithm

requires. Note that local computation comes for free in this model. One also assumes that

vertices have distinct identity numbers (or, shortly, Ids) from the range [n] = {1, 2, ..., n} at the

beginning of the computation. Messages are of unbounded size.2

The message-passing model of distributed computing has been a subject of intensive research

since the beginning of the eighties. Most important results in this area that were known at the

turn of the 21st century were systematically and thorougly covered in Peleg’s book [63]. However,

the area has been extremely active since then, and some of the developments in this area call for

a new monograph. Most notably, there is an area of symmetry breaking and distributed graph

coloring, within the message-passing model of distributed computing. It deals with problems

such as computing a maximal independent set, or, shortly, an MIS. A set U ⊆ V of vertices in

a graph G is independent, if no two vertices u, v ∈ U are connected by an edge. It is an MIS if

U ∪ {v} is not independent for every vertex v ∈ V \ U . Other closely related problems include

Maximal Matching, which is an edge analogue of MIS, and the coloring problems. In a graph

G of maximum degree ∆, in the distributed coloring problem one typically seeks to compute

a (∆ + 1)-coloring of G. One is often prepared to compromise on the number of colors, if this

allows for more efficient algorithms. One can also aim at O(a)-coloring of G, where a = a(G) is

the arboricity of the graph G.3

1We only describe the synchronous variant of the message-passing model here. For details about the asyn-

chronous model we refer the reader to [63].
2This is the so-called Linial’s LOCAL model of computation [51]. The bounded-message variant of this model

is called in [63] CONGEST . In this monograph for simplicity we will always assume the LOCAL model. On the

other hand, most of the algorithms that we will discuss can be implemented within the same running time in the

CONGEST model as well.
3The arboricity is the minimum number of forests into which the edge-set of G can be decomposed. This

parameter will be discussed in Section 2.3. Up to a factor 2 this parameter is equal to the degeneracy of the graph

G.

4

The study of these problems was initiated at the very early days of Distributed Computing.

Papers by Luby [56, 57], Israeli and Itai [36], Israely and Shiloach [37], Cole and Vishkin [16],

Linial [51], Goldberg, Plotkin and Shannon [29], and by Awerbuch, Goldberg, Luby and Plotkin

[5] built the firm foundation of this area back in the eighties. These papers [56, 57, 36, 37]

showed that all these problems (we will henceforth call them the symmetry breaking problems)

can be solved by randomized algorithms that require O(logn) time. Goldberg et al. [29] also

showed that in planar graphs one can solve them in deterministic logarithmic time. Cole and

Vishkin [16] devised an algorithm that solves the symmetry breaking problems in deterministic

log∗ n+O(1) time on some basic graphs such as paths, rings, rooted trees, and alike.1 Goldberg

et al. [29] extended the result of [16] and showed that the symmetry breaking problems can be

solved in deterministic O(∆2) + log∗ n time. Linial [51] devised and O(∆2)-coloring algorithm

that runs in deterministic log∗ n + O(1) time. He also showed fundamental nearly-tight lower

bounds for the symmetry breaking problems in rings, paths and trees. These lower bounds

match the upper bounds of Cole and Vishkin [16]. For general graphs Awerbuch et al. [5] and

Panconesi and Srinivasan [65] devised deterministic algorithms for these problems that require

2O(
√
logn) time.

These results (mostly covered in Peleg’s monograph [63]) left open a number of fundamental

open questions. Among the most notable of them are:

1. Can these problems be solved in deterministic polylogarithmic time?

In particular, Linial [51] asked whether one can compute a coloring that employs o(∆2)

colors in deterministic polylogarithmic time.

2. Can the O(logn) time bound for randomized algorithms be improved?

3. Are there special graph families for which far more efficient algorithms exist?

4. How fast can these problems be solved in terms of the maximum degree ∆, when the

dependence on n is as mild as O(log∗ n)?

For all these questions significant progress has been made. Specifically, with regards to the first

question Hanckowiack, Karonski and Panconesi [33] showed that the Maximal Matching problem

can be solved in deterministic polylogarithmic time. In [8] the authors of this monograph

answered Linial’s question in the affirmative, and showed that ∆1+o(1)-coloring can be computed

in deterministic polylogarithmic time.

With regards to the second question, Kothapalli et al. [43] came up with a randomized O(∆)-

coloring algorithm that requires O(
√
log n) time. Their results were improved by Schneider and

1log∗ n is a very slowly growing function. log(0) n = n, and for i = 1, 2, ..., log(i) n = log2 log
(i−1) n. log∗ n is

the smallest value of i such that log(i) n ≤ 2.

5

Wattenhofer [73], and the latter results were subsequently improved by Barenboim et al. [10].

Specifically, Barenboim et al. [10] showed that an MIS can be computed in O(
√
log n·log∆) time,

a (∆+1)-coloring in 2O(
√
log log n) +O(log∆) time, and a Maximal Matching in O((log logn)4 +

log∆) time. (See Sections 9.3 and 9.4 in the current monograph.)

With regards to the third question there were two remarkable developments. First Kuhn

et al. [45] identified the family of graphs with bounded growth. These are graphs G = (V,E)

in which for every vertex v ∈ V , the 2-neighborhood of v (i.e., the set of vertices at distance

at most 2 from v) does not contain more than a certain pre-defined number of independent

vertices. A sequence of papers [45, 47, 28, 72] that studied the symmetry breaking problems

in these graphs culminated in the work by Schneider and Wattenhofer [72]. The latter authors

extended the result of Cole and Vishkin [16], and showed that the aformentioned symmetry

breaking problems can be solved in O(log∗ n) time in graphs of bounded growth.

The second development in the context of the third question was the study of graphs with

bounded arboricity (see Chapter 5), initiated in [6]. We showed there that symmetry break-

ing problems can be solved in O(logn
log logn) deterministic time in graphs of constant arboricity

(including planar graphs), and in deterministic polylogarithmic time whenever arboricity is at

most polylogarithmic in n. The methodology developed in [6] was also used in [8] for devising

a ∆1+o(1)-coloring in deterministic polylogarithmic time.

With regards to the fourth question Szegedy and Vishwanathan [69] proved a lower bound

that shows that any coloring algorithm of a certain type (called a locally-iterative algorithm)

requires Ω(∆ log∆ + log∗ n) rounds for (∆ + 1)-coloring. The state-of-the-art (∆ + 1)-coloring

algorithm at that time was a locally-iterative algorithm by [29], that requires O(∆2)+log∗ n time.

This result was improved to O(∆ log∆)+ log∗ n by Kuhn and Wattenhofer [49]. The algorithm

in [49] can also be viewed as locally-iterative, and thus their result is tight for locally-iterative

algorithms. However, recently the authors of the current monograph [7] and independently Kuhn

[44] devised (∆+ 1)-coloring algorithms that run in O(∆)+ log∗ n time, breaking the barrier of

Szegedy and Vishwanathan [69]. The algorithms of [7] and [44] are not locally-iterative. Instead

they are based on the notion of defective coloring (see Section 2.4, and Chapter 6).

The goal of the current monograph is to cover most of these developments, and as a result

to provide a treatise on theoretical foundations of distributed graph coloring, MIS, and related

problems. To make the monograph suitable also for readers that are not faimiliar with fhe

field of distributed coloring, we provide the required background in the first chapters. We start

(Chapter 2) with providing some basics of Graph Theory that are necessary for understanding

the following chapters. We then proceed (Chapter 3) to describing the basic distributed graph

coloring algorithms, such as the algorithms of Cole and Vishkin [16], Goldberg et al. [29]

and Linial’s algorithm [51]. This chapter also contains a section about more recent Kuhn-

6

Wattenhofer’s color reduction technique. Even though it was discovered in the last decade, we

feel that it ”morally” belongs to the basics of distributed graph coloring theory. Additional

fundamental results are discussed in Chapter 4 which deals with Linial’s lower bounds [51].

The rest of the monograph deals with recent developments. Chapter 5 is devoted to algo-

rithms that compute forest decompositions, and use them for coloring graphs of bounded ar-

boricity. It is mostly based on the paper [6] by the authors of the current monograph. Chapter

6 is devoted to defective coloring, and to its applications to the computation of (∆+1)-coloring

in O(∆) + log∗ n time. This chapter is based on the papers [7, 44]. In Chapter 7 we introduce

the notion of arbdefective coloring, which is an extension of the notion of defective coloring. We

then show how to compute arbdefective coloring efficiently, and how to use them to compute

a ∆1+o(1)-coloring in deterministic polylogarithmic time. As was mentioned above, this result

answers Linial’s open question in the affirmative. This chapter is based on our paper [8].

In chapter 8 we turn our attention to edge-coloring. We start with presenting the classi-

cal algorithm by Panconesi and Rizzi [64] that computes (2∆ − 1)-edge-coloring and maximal

matching in O(∆) + log∗ n time. We then show that in graphs with bounded arboricity these

objects can be computed in O(logn
log logn) time [6]. Finally, we describe our ∆1+o(1)-edge-coloring

algorithm from [9] that requires O(log∆) + log∗ n time. The latter algorithm is based on the

notions of defective and arbdefective colorings, described in Chapters 6 and 7. Another feature

of this algorithm is the utilization of the notion of “bounded neighborhood independence”. This

graph parameter is presented and discussed in Section 8.2.

While Chapters 3 - 8 deal with deterministic algorithms, in Chapter 9 we turn our attention

to randomized ones. We start with presenting some classical logarithmic algorithms [56, 57].

Next we describe a more recent O(∆)-coloring algorithm that runs in O(
√
logn) time. This

algorithm is a variant of an algorithm presented by Kothapalli et al. [43]. We then proceed to

more advanced distributed MIS and maximal matching algorithms, that are based on the recent

work by Barenboim et al. [10]. Finally, in Chapter 10 we overview the numerous open problems

in this field.

Distributed graph coloring and symmetry breaking is a vast area, and we could not cover it

entirely in this monograph. The most notable omissions are:

1. We do not present the recent lower bounds by Kuhn, Moscibroda and Wattenhofer [46, 48].

In a major breakthrough, Kuhn et al. [46, 48] showed that MIS and maximal matching

require Ω(min{√log n, log∆}) time.

2. The entire theory of distributed symmetry breaking in graphs of bounded growth [45,

47, 28, 72] was left out of our monograph. We feel that this subject justifies a separate

monograph.

7

3. The string of beautiful papers of Panconesi and his co-authors [22, 30, 31, 66] about

randomized edge-coloring and Brooks-Vizing vertex coloring is not covered in our mono-

graph. This fascinating subject is, however, partially covered in the excellent monograph

by Dubhashi and Panconesi [23].

In part, the monograph evolved from lectures that the second-named author gave in Ben-

Gurion University in the Distributed Algorithms class in Autumn 2012. However, it contains

more material than can be covered in one semester. Depending on the level of the course and

the teacher’s taste, one can skip Chapter 4 or/and Chapters 6 - 8, and still give the students

quite a coherent picture of the field. Our intention is that the monograph will be used both for

self-study and for teaching graduate courses. We hope that it will further stimulate the progress

in this vivid research area.

8

2 Basics of Graph Theory

In this chapter we provide the background in Graph Theory which is most relevant to this

monograph. We make no attempt to survey this entire area. Many books are devoted to this

subject. See, e.g., [12, 21].

2.1 Graphs with Large Girth and Large Chromatic Number

The girth of a graph G = (V,E) is the minimum length of a simpe cycle in G. A legal coloring

ϕ of a graph G = (V,E) is a function ϕ : V → IIN from its vertex set to natural numbers that

satisfy that ϕ(v) 6= ϕ(u), for every edge (v, u) ∈ E. The coloring ϕ is called a k-coloring, for an

integer k ≥ 2, if the image of ϕ is the set {1, 2, ..., k} = [k].

The chromatic or coloring number of a graph G, denoted χ(G), is the minimum k for which

there exists a legal k-coloring of G. The problem of finding an optimal legal coloring (a legal

coloring that employs χ(G) colors) is NP-hard [40, 27]. Moreover, providing even a loose n1−ǫ-

approximation to this problem is NP-hard as well [11, 35, 74]. In the context of distributed

algorithms we are mostly interested in a much simpler problem, specifically, in (∆+1)-coloring,

where ∆ = ∆(G) is the maximum degree of a vertex in G.

Lemma 2.1. For every graph G = (V,E), it holds that χ(G) ≤ ∆+ 1.

Proof. Let V = (v1, v2, ..., vn) be an arbitrary ordering of vertices of G. The proof is by induction

on n. The base (n = 1) is immediate. For the induction step suppose that v1, v2, ..., vn−1 are

already legally (∆ + 1)-colored. The vertex vn has at most ∆ neighbors, and thus, there are at

most ∆ forbidden colors for vn. Therefore, there always exists an available color for vn (which

is different from the colors of all neighbors of vn) from the set [∆ + 1].

The algorithm described in this proof is inherently sequential. One of the main challenges of

Distributed Graph Algorihms is to devise efficient distributed algorithms for (∆ + 1)-coloring.

Another closely related challenge is to construct a Maximal Independent Set (henceforth, MIS).

A set U ⊆ V of vertices is independent if there is no edge (u,w) ∈ E with u,w ∈ U . An

independent set U is said to be maximal if for every vertex v ∈ V \U , the set U ∪ {v} is not an

independent set.

Note that similarly to (∆+1)-coloring, an MIS can also be constructed greedily. To describe

a greedy algorithm for computing an MIS we need to introduce some notation. For a vertex v,

denote by Γ̂(v) (respectively, Γ(v)) the set of neighbors of v including (resp., not including) v.

For a vertex set U ⊆ V , let Γ̂(U) =
⋃

u∈U Γ̂(u). To compute an MIS, initialize U = ∅. Pick an

arbitrary vertex v ∈ V \ Γ̂(U), and add it to U . Continue as long as V \ Γ̂(U) 6= ∅. It is easy to

9

verify that this simple algorithm constructs an MIS. However, it is also inherently sequential.

Finding efficient distributed MIS and coloring algorithms is the subject of this monograph.

A natural way to construct a graph with chromatic number k is to use a k-clique Kk. This

example suggests that the requirement to have large chromatic number is contradictory to having

large girth. (The girth of a graph G is the length of the shortest cycle in G.) Nevertheless, we

will next show that one can construct graphs which simultaneously have arbitrarily large girth

and chromatic number. We will start with explicit constructions of triangle-free graphs with

arbitrary large chromatic number. We will then proceed to constructing graphs with girth at

least 6 and arbitrarily large chromatic number. Finally, we will describe Erdős’s classical proof

that graphs with arbitrarily large girth and chromatic number exist. The latter proof is a

celebrated example of using the Probabilistic Method. See [2] for a comprehensive treatis on

this subject.

It is easy to construct a triangle-free graph (i.e., a graph with girth at least 4) with chromatic

number 3. This is a 5-cycle C5, or, more generally, any odd cycle. Constructing a triangle-free

graph with chromatic number 4 is already more challenging. See Figure 1 for the Grotzsch graph

[32]. The Grotzsch graph G = (V,E) has 11 vertices. It consists of a 5-cycle (x1, x2, x3, x4, x5).

For every pair i, j ∈ [5], i 6= j, of distinct not consecutive indices (5 and 1 are consecutive), add

a vertex yij , and connect it to xi and to xj by two edges (xi, yij), (yij , xj). Finally, add a vertex

z and connect it to all the five vertices yij . It is easy to verify that G is triangle-free.

Fig. 1. Grotsch graph.

Lemma 2.2. χ(G) = 4.

10

Proof. To show that χ(G) ≤ 4 it is enough to construct a legal 4-coloring ρ of G. This is a

straight-forward exercise.

Next we argue that χ(G) ≥ 4. Any legal 3-coloring ϕ of the cycle C = (x1, x2, x3, x4, x5) is

such that one vertex is colored by a unique color, and each of the other two colors is employed

by two vertices. Denote the unique color by 3, and suppose without loss of generality that

ϕ(x5) = 3. Then ϕ(y14) = 3, as {ϕ(x1), ϕ(x4)} = {1, 2}. If ϕ(x1) = 1 and ϕ(x4) = 2 then

ϕ(y25) = 1, ϕ(y35) = 2, and ϕ(y14) = 3. Hence ϕ(z) /∈ {1, 2, 3}. Similarly, if ϕ(x1) = 2 and

ϕ(x4) = 1 then ϕ(y35) = 1, ϕ(y25) = 2, and ϕ(y14) = 3, and so ϕ(z) /∈ {1, 2, 3}. Hence ϕ employs

at least 4 colors.

Next we describe Mycielski’s construction [60]. This construction generalizes Grotzsch graph.

It provides a way to obtain triangle-free graphs with χ(G) = k, for an arbitrarily large integer k.

Suppose that we are given a triangle-free graph G = Gk with χ(G) = k. Let V = {v1, v2, ..., vn}
denote its vertex set. We construct the graph G′ = Gk+1 in the following way. Let V ′ =

V ∪ U ∪ {u}, U = {u1, u2, ..., un}. The vertex u is called the center vertex of Gk+1. The graph

G(V) is isomorphic to G. Also, we add a star (u, ui), for every i ∈ [n]. Finally, each vertex ui

is connected to all vertices in Γ(vi). Observe that Grotzsch graph is obtained from Mycielski’s

construction applied to C5.

Lemma 2.3. G′ is triangle-free.

Proof. The center vertex is not a part of any triangle, because it is connected only to vertices

of U , and there are no edges between vertices of U . Triangles that contain a single U -vertex

(i.e., (ui, vp, vq)) are impossible, because if such a triangle exists then vp, vq ∈ Γ(vi), i.e., there

is a triangle in G. This is a contradiction. Triangles that contain a single vertex from V are

impossible, because there are no edges between U -vertices.

Obviously, χ(Gk+1) ≤ k + 1. Indeed, we can color G with k colors. Each ui can be colored

by the same color as vi, and then the center u can be colored by the color k + 1.

Lemma 2.4. χ(G′) ≥ k + 1.

Proof. Suppose for contradiction that there exists a legal k-coloring ϕ of G′. Suppose without

loss of generality that ϕ(u) = k. Denote by Ṽ the subset of V with vertices colored by color k.

For each vertex vi ∈ Ṽ we recolor it by setting ϕ′(vi) = ϕ(ui). All other vertices retain their

colors, i.e., set ϕ′(w) = ϕ(w). Consider an edge (vi, vj) ∈ E. If vi, vj /∈ Ṽ , then ϕ′(vi) = ϕ(vi) 6=
ϕ(vj) = ϕ′(vj). Otherwise, suppose without loss of generality that vi ∈ Ṽ . Then vj /∈ Ṽ . Since

(ui, vj) is an edge in G′, it follows that ϕ′(vi) = ϕ(ui) 6= ϕ(vj) = ϕ′(vj). Hence ϕ′ is a legal

coloring of G, and it employs at most k − 1 colors. This is a contradiction to χ(G) = k. Hence

there is no legal k-coloring of G′, i.e., χ(G′) ≥ k + 1.

11

To summarize, we have shown that G′ = Gk+1 is a triangle-free graph with coloring number

k + 1. Denote by nk the number of vertices in Gk. It follows that nk+1 = 2 · nk + 1, i.e.,

nk = 6 · 2k−3 − 1, for k ≥ 3. Therefore, Mycielski’s construction provides (explicit) n-vertex

triangle-free graphs with chromatic number Ω(log n).

Next we describe another explicit construction due to Tutte [20], of graphs G with girth at

least 6, and arbitrarily large chromatic number χ(G) = k. This construction will be referred to

as Descartes’s construction1. The number of vertices in these graphs is, however, very large in

terms of k. (Even much larger than exponential in k, which is the dependence in Mycielski’s

construction.) Similarly to Mycielski’s construction, Descartes’s construction is inductive as

well. We are given a graph G = Gk with girth(G) ≥ 6, χ(G) = k, and construct a graph

G′ = Gk+1 with girth(G′) ≥ 6 and χ(G′) = k + 1.

Denote n = nk = |V (Gk)| the number of vertices in Gk. Let T , T ≫ n, be a number that will

be determined in the sequel. Let U be a set of T vertices, which we will call ”groundset”. For

every n-vertex subset of the groundset, we create a (new) copy of G. The n vertices of the copy

are connected to the vertices of the subset via an arbitrary perfect matching. This completes

the description of the graph G′ = Gk+1. Its chromatic number is obviously at most k+1. (Just

color all copies of G by k colors, and use color k + 1 for vertices in the groundset U .)

Fig. 2. Descartes’s construction.

1Tutte used the pseudonym ”Descartes” in his note [20] which described this construction.

12

Also, the shortest cycles that cross between different copies of G are of the form

(vi, vj , u1, v
′
p, v

′
q, u2, vi), with vi, vj belonging to one copy of G, v′p and v′q belonging to another

copy, and u1, u2 ∈ U . (See Figure 3.) Hence girth(G′) ≥ 6. It remains to argue that G′ cannot

be colored by k colors.

Fig. 3. Shortest cycles in a graph G′, obtained via Descartes’s construction.

Lemma 2.5. For T ≥ (n− 1) · k + 1, it holds that χ(G′) ≥ k + 1.

Proof. Consider a k-coloring ϕ of G′. There exists a subset U ′ ⊆ U of the groundset U with

|U ′| ≥ ⌈T/k⌉ vertices, that are all colored by ϕ with the same color. Set T = (n− 1) · k+1, i.e.,

|U ′| = ⌈T/k⌉ = n. (If |U ′| > n, remove arbitrary |U ′| − n vertices from U ′.) Suppose without

loss of generality that all vertices of U ′ are colored by k. There is copy of G that corresponds

to the subset U ′. This copy is connected to U ′ via a perfect matching. Thus, no vertex in this

copy is colored by color k. Thus, vertices of this copy are colored by colors from the palette

[k − 1]. However, χ(G) ≥ k, and thus ϕ is not a legal coloring of this copy. Hence ϕ is not a

legal coloring of G′.

The number of vertices in G′ satisfies the recursion nk+1 ≈
(
nk·k
nk

)
· nk ≈ knk · nk. In other

words, it is a huge number that can be expressed by a tower function. To summarize:

Theorem 2.6. Descartes’s constructions provides (explicit) n-vertex graphs G with girth(G)

≥ 6 and χ(G) = ω(1).

There are known much better (and far more complicated) explicit constructions of graphs

with high girth and chromatic number. (See [55]. They are based on Ramanujan graphs, and are

outside the scope of this monograph.) Next, we describe Erdős’s probabilistic (and, therefore,

not explicit) proof of existence of such graphs.

13

Theorem 2.7. [24]: For every k, ℓ, there exists a graph G with girth(G) > k and χ(G) ≥ ℓ.

Remark: This theorem means that chromatic number is not a local property. Indeed, a graph

with high girth looks locally like a tree. On the other hand, a tree has chromatic number 2,

while a graph with high girth may have an arbitrarily large chromatic number.

Proof. Set ϑ < 1/k, and p = nϑ/n. Consider the distribution G(n, p) of n-vertex graphs, in which

every edge appears with probability p, independently of other edges. (We refer the readers to

[13, 38] for extensive treatment of random graph theory.) Denote by X the random variable

that counts cycles of length at most k in a graph G selected from the distribution G(n, p). Then
the expectation IIE(X) of X is given by

IIE(X) =
k∑

i=3

(n)i
2i

· pi.

Here (n)i is the number of possibilities to choose i vertices from n vertices, where the order is

important. The expression is divided by i because any sequence of i distinct vertices can be

arbitrarily rotated, and the rotated sequence gives rise to the same cycle. Similarly, it is divided

by 2, because any such sequence can be reversed, while still giving rise to the same cycle in the

n-clique Kn. Hence

IIE(X) ≤
k∑

i=3

ni

2i
· n(ϑ−1)i =

1

2

k∑

i=3

nϑi

i
= o(n),

because ϑ < 1/k. By Markov’s inequality, IIP(X ≥ n/2) = IIP(X ≥ n/2
o(n) · o(n)) <

o(n)
n/2 = o(1). In

other words, with high probability, the selected graph has only a small number of short cycles.

The second part of the proof shows that with high probability there are no large independent

sets, and thus, the chromatic number is not too small. Set x =
⌈
3
p · lnn

⌉
=
⌈
3 · n1−ϑ · lnn

⌉
.

Denote by α(G) the size of the maximum independent set in the graph G. (Notice that in

contrast to a maximal independent set, a maximum independent set is an independent set of

maximum cardinality in G.) For a given set Q ⊆ V of x vertices, denote by I(Q) the indicator

random variable of the event {Q is an independent set}. Then

IIP(α(G) ≥ x) ≤
∑

Q⊆V,|Q|=x

IIP(I(Q)).

Also, IIP(I(Q)) = (1 − p)(
x
2). (For each of the

(
x
2

)
pairs of vertices from Q, there is no edge

between them with probability (1− p), independently of other pairs.) Hence,

IIP(α(G) ≥ x) ≤
(
n

x

)
· (1− p)(

x
2) ≤

(e · n
x

)x
· e−p·x·(x−1)/2 <

(
n · e−p·(x−1)/2

)x
.

(The last inequality requires x =
⌈
3 · n1−ϑ lnn

⌉
> e, which, of course, holds for a sufficiently

large n.) Since p · (x− 1)/2 > 3
2 lnn− p/2 ≥ 4

3 lnn, it also holds that n · e−p·(x−1)/2 ≤ 1/n1/3.

14

Thus IIP(α(G) ≥ x) ≤ (1/n1/3)x = o(1), and IIP(χ(G) ≤ n
x) ≤ IIP(α(G) ≥ x) = o(1). Hence

IIP((α(G) ≥ x) or (X ≥ n/2)) = o(1), and so IIP((α(G) < x) and (X < n/2)) = 1 − o(1) > 0.

Consider a graph G that satisfies these two properties, i.e., α(G) < x =
⌈
3n1−ϑ lnn

⌉
, and it

has less than n/2 short cycles (i.e., cycles of length at most k). Remove one vertex from each

of these short cycles. Denote the graph induced on surviving vertices by G′. The number n′

of vertices in G′ satisfies n′ > n/2. Moreover, girth(G′) > k. Finally, any independent set in

G′ is an independent set in G too, and so α(G′) < x =
⌈
3n1−ϑ lnn

⌉
≤
⌈
6n′(1−ϑ) · (lnn′ + 1)

⌉
=

O(n′(1−ϑ) lnn′). Hence χ(G′) = Ω(n′ϑ

lnn′), as required.

Therefore, we proved that for every positive integer k there exists an n-vertex graph G with

girth(G) > k and chromatic number almost n1/k. (Specifically, Ω(nϑ

lnn), for ϑ < 1/k being

arbitrarily close to 1/k.) By a more careful analysis one can also guarantee χ(G) = Ω(n
1/k

k) in

this proof. By modifying the construction slightly one can also ensure that the maximum degree

∆(G) of this graph is upper bounded by O(n1/k).

We finish this section by showing that any graph G with girth(G) > k is quite sparse. We

will later use this lemma to show that the condition girth(G) > k implies χ(G) ≤ O(n2/k),

i.e., the dependencies between girth and chromatic number in Erdős’s theorem is at the right

ballpark.

Before stating the lemma we introduce a few definitions.

Definition 2.1. In an unoriented graph G = (V,E), the distance between a pair of vertices

u, v ∈ V , denoted distG(u, v), is the number of edges in the shortest path connecting u and v

in G. Denote also by δ(G) the minimum degree of a vertex in G. For a vertex v, denote by

deg(v) = degG(v) = |Γ(v)| the degree of a vertex v. Then δ(G) = min{deg(v) | v ∈ V } and

∆(G) = max{deg(v) | v ∈ V }. Also, for a positive integer ℓ, let Γ̂ℓ(v) (respectively, Γℓ(v))

denote the ℓ-neighborhood of a vertex v including (resp., not including) v, i.e., the set of all

vertices at distance at most ℓ including v (resp., not including v).

Lemma 2.8. For an even positive integer k, and a graph G = (V,E) with girth(G) > k, it holds

that m ≤ n1+2/k + n, where m = |E|, n = |V |.

Proof. We argue that for any graph G, there exists an induced subgraph G′ with δ(G′) ≥
⌊
m
n

⌋
+1.

If δ(G) ≥
⌊
m
n

⌋
+ 1 then we are done. Otherwise iteratively remove from G a vertex v with

deg(v) ≤
⌊
m
n

⌋
. We stop if δ(G′) ≥

⌊
m
n

⌋
+ 1; otherwise continue removing vertices. Suppose

for contradiction that we removed all vertices. Observe that after (n − 1) iterations, all edges

are eliminated. Thus the number of iterations is at most n − 1. In each iteration we removed

at most
⌊
m
n

⌋
edges. Hence m ≤ (n − 1) ·

⌊
m
n

⌋
, contradiction. Therefore, G′ does contain some

vertices. Hence G′ is a non-empty graph with δ(G′) ≥
⌊
m
n

⌋
+ 1. Also, since G′ is an induced

subgraph of G, it follows that girth(G′) ≥ girth(G) > k. Denote by n′ the number of vertices

15

in G′. To provide a lower bound for n′, consider a k
2 -neighborhood of a vertex v in G′. Since

girth(G′) > k, it follows that n ≥ n′ ≥ |Γ̂k/2(v)| ≥ (δ(G′)−1)k/2 =
⌊
m
n

⌋k/2
. Hence n2/k ≥ m

n −1,

and the lemma follows.

2.2 Planar Graphs

In this section we provide some background about planar graphs. This is a large area; see, e.g.,

[59] for an extensive treatise. The discussion below follows to a large extent, the monograph of

Bollobas [12], Chapter I.4.

Definition 2.2. A planar graph is a graph that can be drawn on the surface of a sphere in such

a way that no two edges of it intersect (except for intersections in vertices).

Definition 2.3. A plane graph is a specific drawing of a planar graph.

A face of a plane graph G is a polygon whose boundary is a chordless cycle, i.e., a cycle

(v0, v1, ..., vℓ = v0) in G, such that there is no edge (vi, vj) between a pair of non-consecutive vi

and vj which crosses the cycle. See Figure 4.

Fig. 4. An example of a plane graph drawn in the plane.

It is often more convenient to think about planar graphs as drawn in the plane, rather than

on a sphere. When a planar graph is drawn in a plane one of its faces becomes the outer face.

On the other hand, in a drawing on a sphere, all faces play the same role.

Observation 2.9. A subgraph of a planar graph is a planar graph as well.

Theorem 2.10. (Euler’s formula) In a connected plane graph with n vertices, m edges, and f

16

faces, it holds that n−m+ f = 2.

Before we prove the theorem, we provide one more definition and observation.

Definition 2.4. An edge e is a bridge edge in a graph G if G \ {e} is not connected.

Observation 2.11. In a bridgefree plane graph, every edge is adjacent to exactly two faces. On

the other hand, a bridge edge is adjacent only to the outer face.

Proof. (of Theorem 2.10) The proof is by induction on the number of faces f .

Base: If f = 1 then G has no cycles. (Its only face is the outer face.) Hence G is a tree, i.e.,

n = m+ 1, and n−m+ f = 2.

Step: Suppose that f ≥ 2. Then G contains a cycle. Let e = (u, v) be an edge in some cycle in

G. The edge lies on a boundary of two faces, S and T . If the edge e is removed from the graph

G, we obtain a graph G′ = G \ {e} with f ′ = f − 1 faces, n′ = n vertices, and m′ = m− 1 edges.

By the induction hypothesis, n′−m′+f ′ = 2, and so n− (m−1)+(f −1) = n−m+f = 2.

An interesting consequence of Euler’s characteristic is that every drawing of a planar graph

(such that no two edges intersect) has exactly the same number of faces.

Fix a plane graph G. Denote by fi, for every i ≥ 1, the number of faces α in G that have

exactly i edges on their boundaries, i.e., Fi = {α is a face of G: α has i edges on its boundary},
and fi = |Fi|. Obviously

∑
i≥1 fi = f . Denote by F the set of all faces of G.

Lemma 2.12. Suppose that G is bridgefree. Then
∑

i≥3 ifi = 2m.

Proof. Let N denote the number of pairs (e, α) such that the edge e lies on the boundary of the

face α. Denote also by I(e, α) the indicator variable of the event {e lies on the boundary of α}.
Then, since G is bridgefree,

N =
∑

α∈F

∑

e∈E
I(e, α) =

∑

e∈E

∑

α∈F
I(e, α) =

∑

e∈E
2 = 2m.

Also,

N =
∑

α∈F

∑

e∈E
I(e, α) =

∑

i≥3

∑

α∈Fi

∑

e∈α
I(e, α) =

∑

i≥3

∑

α∈Fi

i =
∑

i≥3

ifi.

Next, we prove a useful bound on the number of edges in a planar graph.

Theorem 2.13. In an n-vertex planar graph G, n ≥ 3, the number of edges m satisfies m ≤
3n− 6. Moreover, if girth(G) ≥ g (and g ≥ 3), then m ≤ max{ g

g−2 · (n− 2), n− 1}.

Proof. The proof is by induction on n.

Base: If n ≤ g−1, then the graph G has no cycles. In this case m ≤ n−1, as required. Suppose

17

now that n ≥ g.

Step: First consider the case that G contains a bridge e = (u, v). Then G \ {e} is a union

of two vertex-disjoint graphs G1, G2. Denote n1 = |V (G1)|, n2 = |V (G2)|, m1 = |E(G1)|,
m2 = |E(G2)|. By induction hypothesis

m = m1 +m2 + 1 ≤ max{ g

g − 2
(n1 − 2), n1 − 1}+max{ g

g − 2
(n2 − 2), n2 − 1}+ 1. (1)

The proof splits into three cases.

Case 1: g
g−2(n1 − 2) ≤ n1 − 1 and g

g−2(n2 − 2) ≤ n2 − 1. Then the right-hand-side of (1) is

equal to n− 1, as required.

Case 2: g
g−2(n1 − 2) > n1 − 1 and g

g−2(n2 − 2) > n2 − 1. Then the right-hand-side of (1) is

equal to g
g−2(n− 4) + 1 = g

g−2(n− 2)− g+2
g−2 <

g
g−2(n− 2), as required.

Case 3: g
g−2(n1 − 2) > n1 − 1 and g

g−2(n2 − 2) ≤ n2 − 1. (The remaining case is symmetric

to Case 3.) Then the right hand side of (1) is equal to g
g−2(n1 − 2) + n2 = n + 2

g−2n1 −
2g
g−2 ≤

g
g−2(n − 2) = g

g−2n − 2g
g−2 . This completes the analysis of the case that G contains a bridge.

Next, we turn to the complimentary case (that G is bridgefree).

In this case, by Lemma 2.12, 2m =
∑

i≥3 ifi =
∑

i≥g ifi, because there are no faces with less

than g edges incident on them. It holds that
∑

i≥g ifi ≥ g
∑

i≥g fi = g · f , and so f ≤ 2
g ·m. By

Euler’s formula (Theorem 2.10), 2 = n−m+f ≤ n−m+ 2
gm = n− g−2

g m, and som ≤ g
g−2(n−2).

In particular, for g = 3 we get the bound m ≤ 3n− 6.

The upper bound from Theorem 2.13 on the number of edges of a planar graph has an

important application to colorability of planar graphs.

Theorem 2.14. Every planar graph is 6-colorable.

Proof. Observe that there exists a vertex v with deg(v) ≤ 5. Indeed, otherwise all vertices

have degree at least 6, and so 2|E| = ∑
v∈V deg(v) ≥ 6n, i.e., |E| ≥ 3n. The latter, however

contradicts Euler’s formula.

Denote the vertex v as above by vn. Let G = Gn, and Gn−1 = Gn \ {vn}. Gn−1 is a planar

graph as well. Let vn−1 be a vertex of degree at most 5 in Gn−1, etc. We end up constructing

a sequence of vertices v1, v2, ..., vn, so that for every index i ∈ [n], vi has at most 5 neighbors vj

with index j < i. Now we color the vertices one after another using the palette [6] = {1, 2, ..., 6}.
Suppose we have already colored v1, v2, ..., vi−1, for some i, 1 ≤ i ≤ n. To color vi we note that

it has at most 5 neighbors that are already colored, and thus, there is necessarily a color in our

palette which is available for vi. We color vi by this color.

It is known that any planar graph is, in fact, 4-colorable [3]. The proof of this is, however,

far beyond the scope of this monograph.

18

2.3 Arboricity

In this section we introduce the graph parameter called arboricity, and prove some basic prop-

erties of this parameter. As we shall see in the sequel (Chapters 5 and 7), arboricity and its

properties play a central role in the theory of distributed graph coloring.

2.3.1 Nash-Williams Theorem

There are two ways to define arboricity. The density of a graph G = (V,E), denoted ρ(G) is

defined by

ρ(G) = max
H⊆V,|H|>2

⌈ |E(H)|
|H| − 1

⌉
,

where the maximum is over all possible subsets H ⊆ V with at least 2 vertices. The second

(and the more intuitive) way to define arboricity a(G) of a graph G = (V,E) is the following

one. The arboricity a(G) is the minimum number a of edge-disjoint forests F1, F2, ..., Fa, whose

union covers the entire edge set E of the graph G = (V,E). Such a decomposition is called an

a-forest-decomposition of G.

A classical result in Graph Theory, which was proved by Nash-Williams [62] in 1961, states

that the two notions are equivalent.

Theorem 2.15. [62] For every graph G = (V,E), ρ(G) = a(G).

We start with proving a straightforward direction of this theorem.

Lemma 2.16. a(G) ≥ ρ(G)

Proof. Consider the subset H ⊆ V of vertices that maximizes
⌈
|E(H)|
|H|−1

⌉
, i.e., ρ(G) =

⌈
|E(H)|
|H|−1

⌉
.

a = a(G) edge-disjoint forests restricted to the vertex set H contain at most a · (|H| − 1)

edges. Since the union of some a edge-disjoint forests covers the entire edge set E, it follows that

|E(H)| ≤ a · (|H| − 1). Hence a ≥ |E(H)|
|H|−1 . Since a is an integer it follows that a ≥

⌈
|E(H)|
|H|−1

⌉
=

ρ(G).

Before we turn to the proof of the non-trivial direction of the Nash-Williams theorem, we

prove a number of basic properties of arboricity.

Lemma 2.17. The subset H ⊆ V whith at least two vertices which maximizes |E(H)|
|H|−1 , is con-

tained in a single connected component of G.

Proof. Suppose that G(H) decomposes into connected components G(H1), G(H2), ..., G(Ht), for

some integer t ≥ 1. Then we argue that

|E(H)|
|H| − 1

=

∑t
i=1 |E(Hi)|

(
∑t

i=1 |Hi|)− 1
≤ max

1≤i≤t

{ |E(Hi)|
|Hi| − 1

}
, (2)

19

and, moreover, the equality is attained only if t = 1. (Observe that each Hi contains at least two

vertices. Otherwise single-vertex components can be removed, and as a result a subset H ′ ⊆ H

with a larger ratio |E(H′)|
|H′|−1 will be obtained, contradiction.)

Denote |E(Hi)| = αi, |Hi| = βi, |Hi| − 1 = γi, for every i ∈ [t]. Suppose without loss of

generality taht max1≤i≤t

{
αi
γi

}
= α1

γ1
. The proof that

∑t
i=1 αi∑t
i=1 γi

≤ α1
γ1

is by induction on i. The

base is trivial. For the induction step write

∑t+1
i=1 αi∑t+1
i=1 γi

=

∑t+1
i=2 αi + α1∑t+1
i=2 γi + γ1

,

and denote α′
2 =

∑t+1
i=2 αi, γ

′
2 =

∑t+1
i=2 γi. Now the right-hand side is equal to

α1+α′
2

γ1+γ′
2
. By

induction hypothesis,
α′
2

γ′
2
≤ α2

γ2
. Without loss of generality, let α2

γ2
= max2≤i≤t+1

{
αi
γi

}
. Hence

α1
γ1

≥ α2
γ2

≥ α′
2

γ′
2
, and so

α1+α′
2

γ1+γ′
2
≤ α1

γ1
. This completes the proof of inequality (2). Moreover, for

t > 1, ∑t
i=1 αi

(
∑t

i=1 βi)− 1
<

∑t
i=1 αi∑t

i=1(βi − 1)
≤ α1

β1 − 1
.

Hence the equality in (2) is attained only if t = 1.

Hence if G(H) consists of more than one connected component then there exists a connected

components G(H1) of G(H) that satisfies

∑t
i=1 |E(Hi)|

(
∑t

i=1 |Hi|)− 1
<

|E(H1)|
|H1| − 1

,

contradicting the maximality of H.

Note that Lemma 2.17 implies that ρ(G) = max1≤i≤t ρ(Gi), where G1, G2, ..., Gt are con-

nected components of G. Next we proof the non-trivial direction of the Nash-Williams theorem.

Our proof is based on [14].

Lemma 2.18. ρ(G) ≥ a(G),

Proof. Let G be a counter-example that minimizes |V |+ |E|. G satisfies a(G) > ρ(G).

Claim 2.19. G is connected.

Proof. Suppose for contradiction that G consists of t > 1 connected components G1, G2, ..., Gt.

We have seen that ρ(G) = max1≤i≤t ρ(Gi). Also, clearly, a(G) = max1≤i≤t a(Gi). If ρ(Gi) ≥
a(Gi) for every i ∈ [t], then a(G) = max1≤i≤t a(Gi) ≤ max1≤i≤t ρ(Gi) = ρ(G). This is a

contradiction to a(G) > ρ(G).

Hence there exists an index i ∈ [t] with a(Gi) > ρ(Gi), contradicting the minimality of G.

This completes the proof of the claim that G is connected.

20

Observe that |V | > 1, because otherwise a(G) = 0.

Claim 2.20. G is critical with respect to arboricity, i.e., a(G \ e) < a(G) holds for every edge

e ∈ E.

Proof. Indeed, otherwise, there exists an edge e ∈ E such that a(G\e) = a(G). Also, ρ(G\e) ≤
ρ(G). Hence a(G \ e) = a(G) > ρ(G) ≥ ρ(G \ e), contradicting the maximality of G. This

completes the proof of the claim that G is critical with respect to arboricity.

For a graph G′ that satisfies the assertion of Claim 2.20, we will say that G′ is a(G)-arb-

critical. For a graphG′ = (V ′, E′) and its forest-decomposition E = (F1, F2, ..., Ft), E
′ =

⋃t
i=1 Fi,

and Fi ∩ Fj = ∅ for every i 6= j, we say that E is a t-forest-decomposition of G′.

Claim 2.21. Let G = (V,E) ba a connected and a(G)-arb-critical graph, and |V | > 1. Let a =

a(G). Then for every edge e ∈ E, any (a− 1)-forest-decomposition of (G \ e) is a decomposition

into (a− 1) spanning trees of G.

Before we prove this claim, we argue that it implies Lemma 2.18. Denote n = |V |. Since

(a − 1) edge-disjoint spanning trees contain (n − 1)(a − 1) edges, it follows that |E| − 1 =

|E(G \ e)| = (n− 1) · (a− 1), for every edge e. But,

a(G) > ρ(G) = max
H⊆V,|H|≥2

⌈ |E(H)|
|H| − 1

⌉
.

Hence a = a(G) >
⌈

|E|
n−1

⌉
=
⌈
(n−1)(a−1)+1

n−1

⌉
= a. This is a contradiction to a(G) > ρ(G). So

we only need to prove Claim 2.21 to complete the proof of Lemma 2.18 (and of Nash-Williams

theorem).

Proof. (of Claim 2.21): Suppose for contradiction that there exists an edge e = (u, v) ∈ E and

the decomposition of the edge set E \e into (a−1) edge-disjoint forests E1, E2, ..., Ea−1 in which

E1 is not a spanning tree.

The edge set E1 ∪ {e} contains a cycle, as otherwise we get a decomposition of E into a− 1

edge disjoint forests, E1∪{e}, E2, ..., Ea−1. (This is, however, a contradiction to the assumption

that a(G) = a.) Hence both endpoints u and v of e are in a connected component T of E1. Let

U = G(V (T)) be the subgraph induced by V (T) in G. Note that e ∈ E(U). Since E1 is not a

spanning tree, V (T) 6= V (G). Since G is connected, E(G) \E(U) 6= ∅. Since G is a-arb-critical,

it follows that U has a decomposition into (a−1) edge-disjoint forests E(U) = A1∪A2∪...∪Aa−1.

Consider the set S of all a-forest-decompositions of G of the form (E′
1, ..., E

′
a−1, {e′}), with

e′ ∈ E(U) and such that a connected component of E′
1 is a spanning tree of U . Observe that

21

(E1, ..., Ea−1, {e}) ∈ S. Let E = (Ē1, ..., Ēa−1, {ē}) ∈ S be an a-forest-decomposition of G that

maximizes

J (E) =
a−1∑

i=1

|Ai ∩ Ēi|.

Recall that (A1, A2, ..., Aa−1) is a fixed (a − 1)-forest-decomposition of U . Since ē ∈ E(U),

it follows that ē ∈ At for some t ∈ [a − 1]. Fix an index t such that ē ∈ At. The edge set

Ēt ∪ {ē} contains a cycle C which contains the edge ē. (Indeed, otherwise (Ē1, ..., Ēt−1, Ēt ∪
{ē}, Ēt+1, ..., Ēa+1) is an (a− 1)-forest-decomposition of G, contradiction.)

Claim 2.22. All edges of C are in E(U), i.e., E(C) ⊆ E(U).

Proof. The proof splits into two cases, depending on the volume of t.

Case 1:(t = 1). Since E ∈ S, it follows that a connected component T of Ē1 is a spanning tree

for U . Also, Ē1 ∪ {ē} contains the cycle C, with ē ∈ C. Hence T ∪ {ē} contains C. Finally,

ē ∈ E(U). Hence E(C) ⊆ T ⊆ E(U).

Fig. 5. An illustration for Case 1 (i.e., t = 1).

Case 2:(t 6= 1). Suppose that E(C) is not contained in E(U). E = (Ē1, Ē2, ..., Ēa−1, {ē}) is
an a-forest-decomposition of G. A connected component T of Ē1 is a spanning tree for U , and

ē ∈ E(U). Also ē ∈ At for some t ∈ [a − 1], where E(U) = A1 ∪ ... ∪ Aa−1. Finally, Ēt ∪ {ē}
contains a cycle C, ē ∈ C. Let f ∈ E(C) be an edge with one endpoint in V (U) = T and the

other point in V (G) \ V (U). (It exists because E(C) * E(U).)

22

Fig. 6. An illustration for Case 2 (i.e., t 6= 1).

Since a connected component of Ē1 spans U , it follows that Ē1 ∪ {f} is acyclic. Thus (Ē1 ∪
{f}, ..., Ēt−1, Ēt∪{e}\{f}, Ēt+1, ..., Ēa−1) is an (a−1)-forest-decomposition of G, contradiction.

This completes the proof of Claim 2.22.

Now we return to the proof of Claim 2.21. Recall that ē ∈ At, and (A1, A2, ..., Aa−1) is

an (a − 1)-forest-decomposition of U . Since At is a forest (i.e., acyclic), there exists an edge

f ∈ E(C) \ At ⊆ E(U). But Ẽ = (Ē1, ..., Ēt−1, Ẽt = Ēt ∪ {ē} \ {f}, Ēt+1, ..., Ēa−1, {f}) is a

decomposition in S. Note that

J (Ẽ) = J (E) + 1. (3)

To see it, observe that Ẽt ∩At contains also the edge ē (which also belongs to At), while ē /∈ Ēt.

But (3) is a contradiction to the maximality of J (E).

This completes the proof of Claim 2.21, and hence of Nash-Williams theorem.

2.3.2 Degeneracy and Arboricity

In this section we define the notion of degeneracy, which is closely related to the notion of

arboricity.

Definition 2.5. For a graph G = (V,E), the degeneracy degen(G) is the minimum integer

number d so that there exists an ordering of the vertex set of G, V = (v1, v2, ..., vn), such that

for every index i ∈ [n− 1], vi has at most d neighbors with greater index. For a vertex v and a

vertex set U , let deg(v, U) denote the number of neighbors that v has in U .

By a previous argument (see Theorem 2.14), χ(G) ≤ degen(G)+1. (Once {v2, v3, ..., vn} are

all colored by d + 1 colors, d = degen(G), there is necessarily an available color for v1 in the

23

palette [d+ 1].) We have seen (Section 2.2) that for a planar graph G, degen(G) ≤ 5, and thus,

χ(G) ≤ 6.

Also, there exist graphs G with degen(G) = d and χ(G) = d + 1, for every value of d. A

clique Kd+1 with d+1 vertices is an example of such a graph. Next, we analyze the relationship

between arboricity and degeneracy in general.

Lemma 2.23. For a graph G = (V,E), degen(G) ≤ 2a(G)− 1.

Proof. Consider the following process. If there exists a vertex v with degG(v) ≤ 2a(G)− 1, set

v1 = v, and remove v (and all edges incident on v) from G. Iterate up until there is no vertex

with degree at most 2a(G) − 1. (Each new vertex that we adde, was appended to the end of

the sequence.) If this process eliminated all graph vertices, then we have obtained an ordering

(v1, v2, ..., vn), such that for every i ∈ [n−1], the vertex vi has at most 2a(G)−1 neighbors with

greater index. This proves that degen(G) ≤ 2a(G)− 1.

Hence it remains to consider the case that some vertices are left. In this case there exists a

subset U ⊆ V of vertices such that the minimum degree δ(G(U)) of a vertex in the graph G(U)

induced by U is at least 2a(G). Note that |U | ≥ 2. But then
⌈ |E(U)|
|U | − 1

⌉
≥
⌈
2a(G) · |U |/2

|U | − 1

⌉
=

⌈
a(G) · |U |
|U | − 1

⌉
≥ a+ 1.

But

a(G) = max
H⊆V,|H|≥2

⌈ |E(H)|
|H| − 1

⌉
,

contradiction.

Lemma 2.23 implies that χ(G) ≤ degen(G)+1 ≤ 2a(G). The inequality degen(G) ≤ 2a(G)−1

is tight, because degen(K2a) = 2a− 1 and a(K2a) =
⌈
2a·(2a−1)/2

2a−1

⌉
= a. Also, χ(K2a) = 2a. The

next lemma provides a lower bound on the degeneracy in terms of the arboricity.

Lemma 2.24. For every graph G = (V,E), it holds that degen(G) ≥ a(G).

Proof. Let U ⊆ V , |U | ≥ 2, be a subset of vertices. Let σ = (v1, v2, ..., vn) be an ordering of

vertices which satisfies that vi has at most d neighbors with greater index, for every i ∈ [n− 1].

Let U = (u1, u2, ..., uk) be the set U ordered according to σ. Denote by deg(u, U) the number

of neighbors that a vertex u has within a vertex set U . It follows that

|E(U)| =
k−1∑

i=1

deg(ui, {ui+1, ui+2, ..., uk}) ≤ d · (k − 1).

Hence |E(U)|
|U |−1 ≤ d(k−1)

k−1 = d. Hence

a(G) = max
U⊆V,|U |≥2

⌈ |E(U)|
|U | − 1

⌉
≤ d = degen(G).

24

This inequality is also tight as long as a(G) ≤ c
√
n, for a sufficiently small constant c. To

summarize, a(G) ≤ degen(G) ≤ 2a(G) − 1, i.e., these two parameters are equivalent up to a

factor of 2. An example with a(G) = degen(G) is the graph G = (V,E), V = (v1, v2, ., , , vn), in

which each vertex vi is connected to vi−1, vi−2, ..., vmax{1,i−a}, for every i ∈ [n]. Its degeneracy

is clearly a. Its arboricity is given by

a(G) =

⌈
1 + 2 + ...+ (a− 1) + (n− a) · a

n− 1

⌉
=

⌈
(n− 1)a− (a− 1)a/2

n− 1

⌉
= a−

⌊
(a− 1)a

2(n− 1)

⌋
.

For a < c
√
n, for a sufficiently small constant c, it holds that (a − 1)a < 2(n − 1), and the

right-hand-side is equal to a.

Fig. 7. An example of a graph G with degen(G) = a(G). Here both parameters are equal to 3.

The next simple lemma provides an upper bound for arboricity in terms of the maximum

degree.

Lemma 2.25. a(G) ≤ ∆(G), for every graph G.

Proof. For a set U ⊆ V , |U | ≥ 2, it holds that
⌈
|E(U)|
|U |−1

⌉
=
⌈

∆·|U |
2(|U |−1)

⌉
≤ ∆.

It is equally easy to see that degen(G) ≤ ∆(G). Indeed, there is clearly an ordering

(v1, v2, ..., vn) such that deg(vi, {vi+1, ..., vn}) ≤ ∆ for all i ∈ [n− 1].

2.4 Defective Coloring

In this section we introduce and discuss a relaxed notion of coloring, called defective coloring.

It was formally defined in mid-eighties by [17, 18, 34], but was implicitly studied already in the

mid-sixties [54]. Quite recently defective coloring was shown to be very useful for computing

legal colorings in the distributed setting [7, 8, 9, 44]. We will discuss this relationship in detail

in Chapters 6 - 7, and in Section 8.2.

25

Definition 2.6. For a coloring ϕ of a graph G = (V,E), the defect of a vertex v ∈ V under the

coloring ϕ, denoted defϕ(v), is the number of neighbors u ∈ Γ(v) that satisfy ϕ(u) = ϕ(v).

Note that for any vertex v and any coloring ϕ, defϕ(v) ≤ deg(v) ≤ ∆. Observe also that for

a legal coloring ϕ, every vertex v has defect zero under ϕ.

Definition 2.7. The defect of a coloring ϕ of a graph G = (V,E) is the maximum defect of its

vertices, i.e., def(ϕ) = maxv∈V defϕ(v).

For a pair of non-negative integer parameters p, q, a coloring ϕ is said to be q-defective

p-coloring if it employs colors only from the palette [p] and its defect is at most q.

We next state and prove a fundamental (though very simple) fact (due to Lovasz [54]) about

defective colorings.

Lemma 2.26. For a graph G = (V,E) with maximum degree ∆ and an integer parameter

p ∈ [∆], there exists a ∆
p -defective p-coloring of G.

Proof. We describe an iterative process that, as we argue, ends up producing a desired coloring.

It starts with an arbitrary p-coloring ϕ0 of G. Let B0 denote the set of edges e = (u, v) which

are colored monochromatically (i.e., ϕ(u) = ϕ0(v)) by ϕ0. For i = 1, 2, ..., let ϕi denote the

coloring produced by this iterative process after i’th iteration, and Bi be the set of edges colored

monochromatically by ϕi.

The iteration i of the process, for i = 1, 2, ..., proceeds as follows. If for every vertex v ∈ V ,

defϕi(v) ≤ ∆
p , then the process terminates, and returns the coloring ϕi. Otherwise we pick an

arbitrary vertex v ∈ V with defϕi(v) >
∆
p . Denote α = ϕi(v). There exists a color β ∈ [p] \ {α}

such that at most ∆
p neighbors u of v satisfy ϕi(u) = β. We recolor v by the color β. In other

words, the new coloring ϕi+1 agrees with ϕi in every vertex, except for the vertex v. The new

color ϕi+1(v) is set to β. This completes the description of the iterative process.

Denote by vi, for i = 1, 2, ..., the vertex which is recolored in the i’th iteration of the process.

Let A(vi) = {(vi, u) ∈ E | ϕi(vi) = ϕi(u)} (respectively, A′(vi) = {(vi, u) ∈ E | ϕi+1(vi) =

ϕi+1(u)}) denote the set of edges incident on vi which are colored monochromatically by ϕi

(resp., ϕi+1). Observe that Bi+1 = (Bi \A(vi))∪A′(vi). Moreover, A(vi)∩A′(vi) = ∅, and thus

|Bi+1| = |Bi|− |A(vi)|+ |A′(vi)|. Recall that |A(vi) > ∆
p , and |A′(vi)| ≤ ∆

p . Hence |Bi+1| < |Bi|.
Since both |Bi+1| and |Bi| are integers, |Bi+1| ≤ |Bi| − 1. Recall that |B0| ≤ |E|, and thus the

process cannot continue for more than |E| iterations. Hence after at most |E| iterations the

cardinality of the set Bi cannot decrease further, and the process returns a ∆
p -defective coloring.

Note also that all the colorings ϕ0, ϕ1, ϕ2, ..., employ p colors, and we are done.

Next we present a notion of arbefective coloring, which is closely related to defective coloring.

It was introduced in [8] in the context of distributed graph coloring. (See Chapter 7.)

26

Definition 2.8. Consider a graph G = (V,E) with arboricity a, and a pair of integer non-

negative parameters p and q. A p-coloring ϕ of G is called q-arbdefective if for every index

i ∈ [p], the subset Vi = {v ∈ V | ϕ(v) = i} induces a subgraph G(Vi) of arboricity at most q.

Lemma 2.27. Let d and p be a pair of positive integers, p ≤ d. For a graph G = (V,E) with

degeneracy d, there exists a p-coloring ϕ that satisfies that for every index i ∈ [p], the subset

Vi = {v ∈ V | ϕ(v) = i} induces a subgraph G(Vi) with degeneracy at most d
p .

Proof. Let V = (v1, v2, ..., vn) be an ordering of the vertex set of G that satisfies that for every

index j ∈ [n], deg(vj , {v1, v2, ..., vj−1) ≤ d. Such an ordering exists because G has degeneracy at

most d. Suppose that we have already computed a p-coloring ϕ of {v1, v2, ..., vj−1} that satisfies

that for every index k ∈ [j − 1], the vertex vk has at most d
p neighbors in {v1, v2, ..., vk−1} with

the same ϕ-color. (The induction base, j = 1, holds vacuously.) By pigeonhole principle there

exists a color α ∈ [p] such that vj has at most d
p neighbors in {v1, v2, ..., vj−1} colored by α. We

set ϕ(vj) = α.

For some index i ∈ [p], consider the subsequence U = (u1, u2, ..., uh) of (v1, v2, ..., vn) which

contains only the vertices of Vi (i.e., vertices ϕ-colored by the color i). Each vertex uj , j ∈ [h], in

this subsequence has at most d
p neighbors with smaller index in U . Thus G(Vi) has degeneracy

at most d
p , for every i ∈ [p].

Consider a graph G = (V,E) with arboricity a, and an integer parameter p, p ∈ [2a− 1]. By

Lemma 2.23, degen(G) ≤ 2a− 1. Hence, by Lemma 2.27, there exists a p-coloring ϕ of G such

that for every index i ∈ [p], degen(G(Vi)) ≤ 2a−1
p . Hence a(G(Vi)) ≤ degen(G(Vi)) ≤ 2a−1

p .

Corollary 2.28. For a graph G = (V,E) with arboricity a = a(G), and an integer parameter

p ∈ [2a− 1], there exists a (2a−1
p)-arbdefective p-coloring ϕ of G.

2.5 Edge-Coloring and Matchings

In this section we describe some basic results concerning edge-coloring. Edge-coloring is closely

related to vertex-coloring, and it is an interesting primitive on its own right. Given a graph

G = (V,E), an edge-coloring ϕ : E → {1, 2, ...} is a function from the edges set E of the graph

to positive integers. It is called legal if any two adjacent edges e1 and e2 (i.e., e1 ∩ e2 6= ∅) are
colored by different colors. Observe that each color class of a legal edge-coloring is a matching.

(An edges set M ⊆ E is called a matching if for every pair of edges e, e′ ∈ M , e 6= e′ implies

e ∩ e′ = ∅. A matching M is called maximal if M ∪ {e} is not a matching, for every edge

e ∈ E \M .)

A useful notion in this context is the notion of line graphs. For the graph G = (V,E), the

linge graph L(G) = (E, E) is defined as follows. The vertices of the line graph correspond to

27

edges of the original graph. Two distinct vertices e, e′ ∈ E of L(G) are connected by an edge

in L(G) if the respective edges e, e′ in G incident to one another (i.e., (e, e′) ∈ E if e ∩ e′ 6= ∅).
Observe that an MIS in L(G) is a maximal matching (shortly, MM) in G. Also, a legal vertex-

coloring of L(G) is a legal edge-coloring of G. The chromatic index χ′(G) of a graph G = (V,E)

is the minimum possible number of colors in a legal edge-coloring of G. It is straightforward to

verify that χ′(G) = χ(L(G)).

Consider a graph G = (V,E) with maximum degree ∆. Every edge e ∈ E is incident on up

to 2(∆ − 1) other edges of G. Hence the maximum degree ∆(L(G)) of the line graph L(G) is

∆(L(G)) ≤ 2(∆ − 1). (See Figure 8.) Hence the chromatic number χ(L(G)) of the line graph

satisfies χ′(G) = χ(L(G)) ≤ ∆(L(G)) + 1 ≤ 2∆− 1. On the other hand, obviously χ′(G) ≥ ∆.

(Because for a vertex v ∈ V with degree deg(v) = ∆, the ∆ edges incident on v require ∆

distinct colors.)

Fig. 8. Each of the endpoints of e is incident to up to ∆− 1 edges other than e.

Therefore, ∆ ≤ χ′(G) ≤ 2∆ − 1. However, a stronger bound is known. A seminal theorem

by Vizing [70], states that χ′(G) ≤ ∆ + 1. The proof can be found e.g., in [12] pages 153-

154. As a corollary of Vizing’s theorem, for every graph G either χ′(G) = ∆ or χ′(G) =

∆+1. Distinguishing between these two cases is NP-hard even for cubic (i.e., 3-regular) graphs.

However, interestingly, for many families of graphs it holds that χ′(G) = ∆. In particular, this

is the case for bipartite graphs (see, e.g., [12] page 152), and for planar graphs with ∆ ≥ 7. (The

latter was shown by Vizing [71] for ∆ ≥ 8. He also showed that this is not the case for ∆ ≤ 5.

The case ∆ = 7 was settled by Sanders and Zhao [67]. Finally, the case ∆ = 6 is open. See [15],

and the reference therein.)

28

3 Basic Distributed Graph Coloring Algorithns

In this section we turn to the distributed model, and describe the classical algorithms for graph

coloring and computing an MIS. We start with the formal definition of the model.

3.1 The Distirubuted Message-Passing LOCAL Model

In the message-passing LOCAL model of distributed computing a communication network is

modeled by an n-vertex undirected unweighted graph G = (V,E). The network is static, and so

its topology does not change during an execution of an algorithm. The processors in the network

are represented by the vertices of G. For each two vertices u, v ∈ V , there is an edge (u, v) ∈ E

if and only if the two processors corresponding to u and v in the network are connected by a

communication link. Each vertex has a unique identity number. These numbers are assumed

to belong to the range {1, 2, ..., n}. (However, all algorithms described in this monograph are

applicable also for wider ranges of identity numbers. Specifically, it is sufficient that the identity

number can be represented as a bit sequence of length O(log n).)

Initially, each vertex v knows only its identity number Id(v). The vertices communicate

over the edges of E in the synchronous manner. Specifically, a computation (or equivalently,

an algorithm) starts simultaneously in all vertices, and proceeds in discrete rounds. In each

round each vertex v is allowed to send a message (of unbounded size) to each of its neighbors. A

vertex is allowed to send distinct messages to distinct neighbors. All messages that are sent in

a certain round arrive to their destinations before the next round starts. The number of rounds

that elapse from the beginning of the algorithm until its end is called the running time of the

algorithm. Vertices are allowed to perform unbounded local computations. Computations that

are performed locally are not taken into account in the running time analisys of distributed

algorithms in this model.

3.2 Basic Color Reduction

In this section we describe a few simple and most fundamental algorithms for coloring and

computing a maximal independent set. Suppose we have a graph G = (V,E) with maximum

degree ∆, which is legally α-colored by a coloring ϕ, for some α ≥ ∆+1. The following routine

reduces the number of colors to (∆ + 1) within α − (∆ + 1) rounds. In the beginning of each

round each vertex sends its current color to all its neighbors. In the first round each vertex v

of color α recolors itself in parallel into an available color from the palette [∆ + 1]. Specifically,

the set Γ(v) of neighbors of v is colored with at most ∆ colors, i.e., |ϕ(Γ(v))| ≤ ∆. Hence

there exists an available color β ∈ [∆ + 1] \ {ϕ(Γ(v))}. Observe that the set of vertices that are

29

colored by color α form an independent set. Thus, the resulting coloring ϕ1 is legal as well, and

it employs just α−1 colors. (The coloring ϕ1 is legal since for each edge (u, v) ∈ E, at most one

endpoint has selected a new color. Suppose without loss of generality that this endpoint is u.

Then ϕ1(u) 6= ϕ(v) = ϕ1(v).) Repeating this procedure for colors α− 1, α− 2, ...,∆+ 2 results

in a legal (∆+1)-coloring ψ = ϕα−(∆+1). This coloring is computed within α− (∆+1) rounds.

A similar procedure enables one to use an α-coloring ϕ for computing an MIS within α

rounds. Initialize a set U as an empty set. For i = 1, 2, ..., α, each vertex v with ϕ(v) = i

checks in parallel if it has a neighbor in U . If it does not, it joins U , and sends a message to its

neighbors to inform them about this. By induction on i, it is easy to verify that after i rounds

the set U is an MIS for the graph G({v | 1 ≤ ϕ(v) ≤ i}), for each i ≤ α. Hence after α rounds,

U is an MIS for G. Moreover, it is possible to employ an α-edge-coloring ψ for computing a

maximal matching within α rounds using the same idea. Specifically, for i = 1, 2, ..., α, in round

i all edges e with ψ(e) = i that have no incident edges in the matching join it. It is easy to verify

that after α rounds a maximal matching is constructed. (The last procedure is, essentially, an

MIS computation on the line graph that is initially α-vertex-colored. See Chapter 2.5 for the

definition of line graphs, and more details.)

3.3 Orientations

An orientation µ is an assignment of directions to the edges of G, where each edge (u, v) is

directed either towards u or towards v. If an orientation does not contain any consistently

oriented cycles (i.e., simple cycles in which each vertex has out-degree 1 and in-degree 1) it

is said to be an acyclic orientation. Acyclic orientations turn out to be very useful for graph

coloring. In this section we present several helpful properties of acyclic orientations.

Definition 3.1. (1) The out-degree of an acyclic orientation µ of G (or, shortly, µ-out-degree)

is the maximum out-degree of a vertex in G with respect to µ.

(2) The length of an acyclic orientation µ of G is the length of the longest directed (with respect

to µ) path in G. (A directed path is a path P = 〈v0, v1, ..., vℓ〉, such that for all i ∈ {1, 2, ..., ℓ},
the edge (vi−1, vi) is oriented towards vi.)

(3) For an edge (u, v) oriented towards v by µ, the vertex v is called the parent of u under µ.

The vertex u is called the child of v under µ.

Property 3.1. [26] A graph G with an acyclic orientation µ of length k can be colored using

k + 1 colors in k + 1 rounds.

Proof. In round i, for i = 1, 2, ..., k + 1, we color by color i the vertices whose all parents have

been already colored in previous rounds. Since the orientation is acyclic, in each round at least

one vertex is colored. (In particular, in the first round there must be a vertex with no outgoing

30

edges, and it is colored by color 1.) Since each edge is oriented, its endpoints are colored in

different rounds. The parent endpoint is colored before the child endpoint. Thus the endpoints

are colored with different colors. Consequently, in the end of this procedure, if all vertices are

colored then we obtain a legal (k + 1)-coloring.

Next, we argue that indeed all vertices obtain a color within k + 1 rounds. Consider any

vertex v ∈ V . Each directed path that emanates from this vertex has length at most k. By

induction on i it is easy to see that if all paths that emanate from a vertex v have length at

most i, then v is colored in round i+ 1 or before. Hence all vertices obtain a color within k + 1

rounds.

Property 3.2. [26] A graph G with an acyclic orientation µ of length k and out-degree d can

be colored with d+ 1 colors in k + 1 rounds.

Proof. Similarly to the proof of Property 3.1, in round i, for i = 1, 2, ..., k + 1, we color the

vertices whose all parents have been already colored in previous rounds. However, the color of

a vertex v is selected in a different way. Specifically, it is a color from the range {1, 2, ..., d+ 1}
which is not used by any of the parents of v. Since v has at most d parents, such a color can

always be found. The resulting coloring is legal, since for any pair of neighbors u and v, the

child endpoint selects a color that is different from its parent’s color. Similarly to the argument

in the proof of Property 3.1, all vertices obtain a color within k + 1 rounds.

Properties 3.1 - 3.2 demonstrate that acyclic orientations are very helpful for computing

colorings. But the opposite direction is also true: colorings can be used for computing acyclic

orientations.

Property 3.3. A graph G with a legal k-coloring ϕ can be assigned an acyclic orientation µ

with length k − 1.

Proof. We orient each edge (u, v) ∈ E towards the endpoint which is colored by a greater color.

(Since the coloring is legal, the color of u is necessarily different from the color of v.) Now each

directed path contains vertices whose colors appear in (strictly) ascending order. Therefore, the

orientation is acyclic. Moreover, each directed path contains at most k vertices, i.e., its length

is at most k − 1.

For an orientation µ which was obtained from a coloring ϕ by the rule described in the

proof of Property 3.3, we say that µ is an induced orientation of the coloring ϕ. Consider a

graph G = (V,E) in which some of the edges are oriented. Denote by E′ ⊆ E the subset of

oriented edges. The edges from E \ E′ are not oriented. Such an orientation is called a partial

orientation of G. If there are no consistently oriented cycles, the orientation is called acyclic

31

partial orientation. Such orientations turn out to be very useful as well. We demonstrate how

to use them in Chapters 7 and 8, but for now we provide several definitions.

Definition 3.2. Suppose that µ is an acyclic orientation of a subset E′ ⊆ E. Then µ is an

acyclic partial orientation of G = (V,E), and it holds that:

(1) The out-degree of µ is the maximum out-degree of a vertex in G with respect to µ.

(2) The length of µ is the length of the longest directed path in G′ = (V,E′).

(3) The deficit of µ is the maximum number of edges in E \E′ (i.e., unoriented edges) that share

a common vertex in V .

(4) For an edge (u, v) oriented towards v by µ, we say that v is a parent of u under µ, or shortly

µ-parent, and that u is a child of v under µ, or shortly, µ-child.

3.4 The Algorithm of Cole and Vishkin

One of the simplest configurations in the distributed setting is an oriented tree. An oriented

tree T = (V,E) is rooted at a vertex r ∈ V , and every vertex v ∈ V , v 6= r, knows the identity

of its parent π(v) in the rooted tree (T, r). On the other hand, in an unoriented tree there

is no distinguished root, and there is no parent-child relationship between neighbors. Notice

that in oriented trees each vertex has information that allows it to orient the edges adjacent

on it towards the parents. (For each edge (u, v) exactly one of the endpoints is the parent of

the other one. Thus each edge can be oriented towards the parent endpoint.) Consequently,

an acyclic orientation of out-degree at most 1 is obtained. Therefore, an oriented tree can be

2-colored using property 3.2. Unoriented trees can be 2-colored as well, since trees are bipartite.

However, 2-coloring a tree (even an oriented one) in the distributed model requires Ω(n) time

[51]. (See also Section 4.2.) Moreover, if the tree is unoriented, then even with a larger number

of colors one still needs at least Ω(log n) time to color a tree [51]. (We provide a proof of this

in Section 4.2.) However, an oriented tree can be 3-colored within just log∗ n+O(1) time. (See

the definition of log∗ n function below.) This is a fundamental result by Cole and Vishkin [16],

and Goldberg, Plotking and Shannon [29].

For a parameter n, log∗ n stands for the number of times that one needs to apply the

logarithm on the base 2 starting with n before reaching a number smaller or equal than 2, i.e.,

log∗ n = min{i | log(i) n ≤ 2}. (Here log(0) n = n and log(i+1) n = log2 log
(i) n, for any non-

negative integer i.) This is a very slowly growing function. For example, log∗ 216 = 1+log∗ 16 =

2 + log∗ 4 = 3. Hence for every n ≤ 22
16
, log∗ n ≤ 4. The threshold 22

16
is much larger than the

number of particles in the known universe.

We start with describing a 6-coloring algorithm for oriented trees. It will be later refined to

a 3-coloring one. Initially, each vertex v has an identity number Id(v) from the set [n], where

n is the number of vertices. It initializes its color ϕv to be equal to its identity number Id(v).

32

Denote by |ϕv| the number of bits used to represent the color ϕv of v, i.e., |ϕv| = ⌈log2 ϕv⌉.
Also, for each index i, 1 ≤ i ≤ |ϕv|, let ϕv[i] denote the i’th leftmost bit of the bit string ϕv.

The algorithm works iteratively. In each iteration each vertex v 6= r compares the bit string

ϕv which represents its current color with the bit string ϕπ(v) which represents the color of its

parent. It finds an index i such that ϕv[i] 6= ϕπ(v)[i], and sets ϕ′
v = 〈i, ϕv[i]〉. Specifically, ϕ′

v is

the new color of the vertex v, and it consists of two fields. The first field contains the binary

representation of the bit string i, and the second field contains the single bit ϕv[i]. The color ϕ
′
v

is the concatenation of these two fields. The root r of the tree T picks an arbitrary index i and

sets ϕ′
r = 〈i, ϕr[i]〉. The algorithm is executed for log∗ n iterations. (For simplicity we assume

that all vertices know the value of n. However, this assumption can be omitted using a slightly

more dlicate argument.)

Next we analyze the algorithm.

Lemma 3.4. Given a legal coloring ϕ, the resulting coloring ϕ′ is legal as well.

Proof. Consider an edge (v, u) ∈ E, and suppose without loss of generality that u = π(v). By

the assumption of the lemma, ϕv 6= ϕu. Let i(v) (respectively, i(u)) be the index selected by v

(resp., by u). If i(v) 6= i(u) then the first fields of ϕ′
v and ϕ′

u are different. Otherwise, by the

choice of i = i(v), it holds that ϕv[i] 6= ϕu[i]. Hence in this case the second fields of ϕ′
v and ϕ′

u

are different. In either case ϕ′
v 6= ϕ′

u.

Denote by α and β the first and the second fields of ϕ′
v, respectively. Analogously, let γ and

δ be the first and the second fields of ϕ′
u, respectively. A-priori it can happen that α 6= γ, β 6= δ,

but the concatenations α ◦ β and γ ◦ δ of the respective bit strings are equal. However, both β

and δ are one-bit strings, and thus (α 6= γ or β 6= δ) implies that ϕ′
v = α ◦ β 6= γ ◦ δ = ϕ′

u.

Denote by Nj , for every j = 1, 2, ..., the maximum number of bits used by a color ϕv, for

some v ∈ V , after iteration j. For convenience, let N0 = ⌈log n⌉ denote the number of bits

used for the initial coloring of the algorithm. Then Nj+1 ≤ ⌈logNj⌉ + 1 ≤ logNj + 2. Hence

N1 ≤ logN0 + 2, and N2 ≤ log(logN0 + 2) + 2 ≤ log logN0 + 3, assuming that logN0 ≥ 2.

Also, N3 ≤ logN2 + 2 ≤ log(log logN0 + 3) + 2 ≤ log(3)N0 + 3, assuming that log logN0 ≥ 3.

Generally, for j = 1, 2, ..., such that log(j)N0 ≥ 3, it holds that Nj ≤ log(j)N0+3. In particular,

for j = log∗N0 we get Nj ≤ 5. Since N0 = ⌈logn⌉, it follows that after at most log∗ n iterations

the number |ϕv| of bits used in each color ϕv is at most 5. At this point two more iterations of

the algorithm decreases the maximum number of bits used for the color to 3, i.e., the palette

size reduces to 8. Moreover, one more iteration of the algorithm reduces the palette size further

to 6, because the first field of the color has just 3 possible values.

Next, the number of colors is further reduced to 3 by a different technique, called the shift-

33

down. This phase of the algorithm requires 3 additional iterations, with O(1) rounds each.

(Generally, it can be used to reduce the number of colors from α to 3 within α − 3 iterations,

for any α.) In each iteration the number of colors is reduced by 1 within two steps. Denote

by ϕ the initial 6-coloring. In the first step of the first iteration each vertex v 6= r adopts the

color ϕ(π(v)) of its parent π(v), i.e., it sets ϕ′(v) → ϕ(π(v)). The root changes its color to an

arbitrary color from {1, 2, 3}, different from the color it used to have.

Lemma 3.5. ϕ′ is a legal 6-coloring.

Proof. Consider an edge (v, π(v)) in the tree. First, suppose that π(v) = r is the root of the

tree. Then ϕ′(v) = ϕ(r), and ϕ′(r) 6= ϕ(r), as desired. Otherwise, denote u = π(v). Then

ϕ′(v) = ϕ(u), ϕ′(u) = ϕ(π(u)), and ϕ(u) 6= ϕ(π(u)), because ϕ is a legal coloring.

The new coloring ϕ′ satisfies a helpful property: for each vertex v, all its children are colored

by the same color. Hence the number of forbidden (i.e., not available) colors for u is at most 2.

In the second step of the first iteration each vertex v with ϕ′(v) = 6 finds in parallel an available

color from {1, 2, 3}, and colors itself by this color. As a result we obtain a legal 5-coloring. Two

more iterations (each with two steps) reduce the number of colors to 3.

We summarize this section by the following theorem.

Theorem 3.6. [16, 29] An oriented n-vertex tree can be 3-colored within log∗ n+O(1) time.

Interestingly, for oriented paths and cycles the running time can be further improved to
1
2 log

∗ n + O(1) [69]. This results is tight up to the additive term O(1), in view of Linial lower

bound [51]. Specifically, Linial showed that O(1)-coloring an oriented path requires 1
2 log

∗ n −
O(1) rounds. (See Section 4.2.) The tightness of these bounds is remarkable. In particular, it

shows that the log∗ function is not an artifact of the specific algorithm of Cole and Vishkin [16]

or its analysis, but rather it is inherent in the complexity of this problem.

3.5 Extensions to graphs with bounded maximum degree

In this section we describe a few extensions of the Cole-Vishkin algorithm (henceforth, the CV

algorithm) to graphs with maximum degree at most ∆. In the first extension, each vertex v

views each of its d = deg(v) ≤ ∆ neighbors u1, u2, ..., ud as its parents (in the sense of the CV

algorithm). Specifically, suppose that we are given a legal coloring ϕ of the graph. The new

coloring ϕ′ is formed in the following way. The new color ϕ′(v) of v will consist of d fields,

ϕ′(v) = 〈ϕ′
1(v), ϕ

′
2(v), ..., ϕ

′
d(v)〉. For each j ∈ [d], the field ϕ′

j(v) is the new color that the

vertex v would get in Cole-Vishkin’s algorithm if uj were the parent of v. In other words,

ϕ′
j(v) = 〈i, ϕ(v)[i]〉, i.e., ϕ′

j consists of two subfields. The first subfield is an index i = i(j) of a

bit such that ϕ(v)[i] 6= ϕ(uj)[i], and the second subfield is the bit ϕ(v)[i]. For now the reader

34

can think of different fields and subfields as being concatenated one after another. Later we will

specify some special delimiters that separate various fields. These delimiters will guarantee that

if ϕ′(x) = ϕ′(y) for some two vertices x and y, then necessarily ϕ′(x) and ϕ′(y) have the same

number d of fields, and for every j ∈ [d], it holds that ϕ′
j(x) = ϕ′

j(y).

Lemma 3.7. ϕ′ is a legal coloring.

Proof. Consider an edge (v, w) ∈ E, and suppose that w = uj is the jth neighbor of v. Consider

the jth fields ϕ′
j(v) and ϕ′

j(w) in the two new colors ϕ′(v) and ϕ′(w), respectively. (If ϕ′(w)

has less than j fields, then ϕ′(v) 6= ϕ′(w).) Let iv (respectively, iw) be the index selected by v

(resp., by w) for its jth field. If iv 6= iw then the first subfield of ϕ′(v) is different from the first

subfield of ϕ′
j(w). Otherwise their second subfields are different. In any case ϕ′

j(v) 6= ϕ′
j(w),

and so ϕ′(v) 6= ϕ′(w).

Denote byNi, i = 1, 2, ..., the maximum number of bits used by a color after the ith recoloring

phase of this algorithm. Denote also byN0 the number of bits used for colors before the algorithm

starts. Since initially the identity numbers serve as colors, it follows that N0 = ⌈log n⌉. By

Lemma 3.7, Ni+1 ≤ ∆ · (⌈logNi⌉+ 1). It is straightforward to verify that for i = log∗ n+O(1),

Ni ≤ ∆ · (log∆ + O(log log∆)). At this point the maximum color used by a vertex is at most

exp{∆ · (log∆ +O(log log∆))}, i.e., at most ∆O(∆).

Corollary 3.8. An extension of the CV algorithm computes a ∆O(∆)-coloring within log∗ n +

O(1) time.

Finally, we address the subtlety that has to do with bit representations. Specifically, since

fields may have different lengths, it may happen that for a pair of vertices v, u, and an index j,

ϕ′
j(v) 6= ϕ′

j(u), but still ϕ
′(v) = ϕ′

1(v) ◦ ... ◦ ϕ′
deg(v)(v) = ϕ′

1(u) ◦ ... ◦ ϕ′
deg(u)(u) = ϕ′(u), where ◦

stands for concatenation between bit strings. One way to handle this issue is by encoding each

bit in ϕ′(x), for every vertex x ∈ V , by two bits. Specifically, 0 will be encoded as 00, and 1 as

01. On the other hand, as a delimiter between different fields we use 10, and at the end of the

bit sequence we write 11. With these delimiters, if ϕ′
j(v) 6= ϕ′

j(u) for some index j and pair of

vertices v and u then ϕ′(v) 6= ϕ′(u), as desired.

The number of bits in the resulting bit strings will grow by a factor of 2, i.e., the number

of colors used will grow quadratically. However, this is swallowed in the (giant) estimation of

∆O(∆) for the number of colors (see Corollary 3.8). Observe that Corollary 3.8 with the trivial

color reduction technique that reduces one color in each round (see Section 3.2) provides a

(∆ + 1)-coloring algorithm which requires ∆O(∆) + log∗ n time.

35

3.6 An Improved Coloring Algorithm for Graphs with Bounded Maximum

Degree

In this section we demonstrate that the CV algorithm can be used in a different, more efficient,

way to compute a coloring of a graph G = (V,E) with maximum degree at most ∆. The

new algorithm starts with computing a decomposition F = (F1, F2, ..., F∆) into ∆ forests. This

decomposition, due to Panconesi and Rizzi [64], is computed within O(1) time, and it is valuable

for a variety of applications, in addition to the one that we will describe in the current section.

In the first step of the forest-decomposition procedure every vertex v orients all edges (v, u)

such that Id(v) < Id(u) towards the endpoint with the greater Id (that is, the vertex u). In the

second step each vertex v labels all outgoing edges (v, u) incident on v by distinct labels 1, 2,

The two steps can be executed within one single round of communication.

Lemma 3.9. For each i ∈ [∆], the set Fi of edges labeled by i is acyclic.

Proof. Suppose for contradiction that Fi contains a cycle C. Let v be the vertex with the

smallest identity in C, and let u, u′ be its two distinct neighbors in C. Then both edges (v, u),

(v, u′) are oriented outwards from v. Hence v oriented two distinct outgoing edges e = (v, u)

and e′ = (v, u′) incident on it by the same label i, contradiction.

The number of labels that are used by the algorithm is obviously at most ∆. Observe also

that each of the trees in the forest-decomposition F = (F1, F2, ..., F∆) is oriented. Specifically,

for each edge (v, u) ∈ Fi, for some i ∈ [∆], oriented from v to u, the vertex u is designated as

the parent π(u) of v. A vertex r that has no outgoing edges in Fi is a root of one of the trees of

the forest Fi. Since each vertex v in Fi has at most one outgoing edge, it follows that each tree

(connected component) T in Fi has exactly one root r, and all oriented paths in T lead to r.

To summarize:

Theorem 3.10. [64] For a graph G = (V,E) with maximum degree ∆, a forest-decomposition

F with at most ∆ oriented forests can be computed within one communication round.

Remark: An oriented forest is a collection of vertex-disjoint oriented trees.

Given this forest-decomposition, the algorithm proceeds as follows. In each forest Fi ∈ F in

parallel we run the CV algorithm. This algorithm produces a 3-coloring ϕi of the forest Fi within

log∗ n+O(1) rounds. Finally, each vertex v forms its color ϕ(v) = 〈ϕ1(v), ϕ2(v), ..., ϕ∆(v)〉. That
is, ϕ(v) consists of ∆ fields each of which is from {1, 2, 3}. For an index i ∈ [∆] with no incident

edges in the forest Fi, the vertex v can be seen as a single-vertex tree in Fi. Thus ϕi(v) can be

set to an arbitrary color from {1, 2, 3}.
Lemma 3.11. ϕ is a legal 3∆-coloring of G.

36

Proof. Consider an edge (v, u) ∈ E. Since F is a forest-decomposition of G, there exists an

index i ∈ [∆] such that (v, u) ∈ E(Fi). Hence ϕi(v) 6= ϕi(u), i.e., ϕ(v) 6= ϕ(u). Finally, ϕ

consists of ∆ fields, with 3 options for each field. Hence ϕ employs 3∆ colors.

Corollary 3.12. 3∆-coloring of an n-vertex graph with maximum degree ∆ can be computed

within log∗ n+O(1) time.

By the basic color reduction technique, this corollary also implies that a (∆+1)-coloring can

be computed within 3∆ + log∗ n+O(1) time. This improves upon the result derived in Section

3.5.

3.7 A Faster (∆ + 1)-Coloring

In sections 3.5 and 3.6 we analyzed algorithms that produce ∆O(∆)- and 3∆- colorings, respec-

tively, in log∗ n+O(1) time. As a corollary we concluded that (∆+1)-coloring can be computed

within 3∆+log∗ n+O(1) time. In this section we present a much faster (∆+1)-coloring algorithm

due to Goldberg, Plotkin and Shannon [29].

The algorithm starts with computing a forest F = (F1, F2, ..., F∆) of the input graph G =

(V,E). Each Fi is an oriented forest, and so Cole-Vishkin’s algorithm is applicable to it. It is

applied in parallel in each forest, to obtain a 3-coloring ϕi for each forest Fi. Next, the colorings

ϕ1, ϕ2, ..., ϕ∆ are merged into a unified coloring ϕ̂ for G in ∆ iterations. In the first iteration,

ϕ̂(v) = ϕ̂1(v) is set as ϕ1(v), for every v ∈ V . (We assume here that every vertex v belongs to

each forest Fi. If there are no edges of a forest Fi adjacent on v, then v is considered to be a

single-vertex tree in Fi.) Consider the ith iteration, for some i ∈ [2,∆]. Every vertex v forms a

color ψ(v) = 〈ϕ̂i−1(v), ϕi(v)〉, where ϕ̂i−1(v) is the coloring ϕ̂ which was formed in the previous

iteration. Inductively we will guarantee that ϕ̂i−1(v) ∈ [∆ + 1], for every v ∈ V , and that ϕ̂i−1

is a legal coloring of
⋃i−1

j=1 Fj . Also, ϕi(v) ∈ {1, 2, 3}. Hence ψ is a legal 3(∆ + 1)-coloring of

∪i
j=1Fj . The maximum degree of ∪i

j=1Fi is at most ∆. Thus, in 2(∆ + 1) rounds the coloring

ψ can be converted into a legal (∆ + 1)-coloring ϕ̂i for ∪i
j=1Fj via the basic color reduction

technique (see Section 3.2). This completes the description of the ith iteration, and thus, of the

entire algorithm.

The running time of this algorithm consists of three parts. In the first part of the algorithm

the forest-decomposition is computed within O(1) time. The second part, i.e., the application of

the CV algorithm in each forest, requires log∗ n+O(1) time. Finally, each of the ∆−1 iterations

of the recoloring step requires 2(∆+1) rounds. Hence the overall running time is O(∆2)+log∗ n.

To summarize:

Corollary 3.13. [29] (∆+1)-coloring of an n-vertex graph G = (V,E) can be computed within

37

O(∆2) + log∗ n time.

This result does not improve the bound of Corollary 3.12 that says that 3∆-coloring can be

computed within log∗ n+O(1) time. Improving this bound will be the subject of Chapter 3.10.

3.8 Kuhn-Wattenhofer Color Reduction Technique and its Applications

In Section 3.2 we presented the basic color reduction technique. This technique converts an

α-coloring ϕ of a graph G = (V,E) with maximum degree ∆ into a (∆ + 1)-coloring, within

α− (∆ + 1) rounds. In this section we describe a far more efficient technique due to Kuhn and

Wattenhofer [49] for this task. This technique requires O
((

(log α
∆+1) + 1

)
·∆
)
time. Suppose

that α ≥ 2(∆ + 1). Otherwise a (∆ + 1)-coloring can be computed within (∆ + 1) rounds via

the standard color reduction technique.

Kuhn-Wattenhofer (henceforth, KW) reduction technique starts with partitioning the vertex

set V of G into k =
⌈

α
∆+1

⌉
sets V1, V2, ..., Vk in the following way. For each i ∈ [k], Vi will contain

the vertices v with (i− 1)(∆+ 1)+ 1 ≤ ϕ(v) ≤ i · (∆+ 1). Consider the coloring ϕ restricted to

the vertex set V1∪V2. It is a (2(∆+1))-coloring of G(V1∪V2). By the standard color reduction

technique, it can be converted into a (∆+1)-coloring ψ12 for G(V1 ∪V2) within (∆+1) rounds.

The same applies to the set V3∪V4, and the set V5∪V6, etc. (In case that k is odd, we group the

last three sets Vk−2, Vk−1 and Vk, rather than leaving the set Vk ungrouped.) In all these sets

the standard reduction technique is applied in parallel. As a result we obtain a (∆+1)-coloring

ψ12 for V1 ∪V2, a (∆+1)-coloring ψ34 for V3 ∪V4, etc. Overall, the number of colors used by all

the colorings ψ12, ψ34, ψ56, ... is at most α/2. (Because in each vertex set Vi∪Vi+1, i = 1, 3, 5, ...,

the palette size decreased from at least 2(∆+1) to (∆+1). In the last vertex set, if k is odd, it

decreased by an even greater factor than 2.) Note also that the new coloring of G can use the

palette [1, α/2]. Specifically, V1 ∪ V2 uses the palette [1, ∆ + 1], and V3 ∪ V4 uses the palette

[∆ + 2, 2(∆ + 1)], etc. The running time of this halving step is O(∆).

Theorem 3.14. Given a graph G = (V,E) and an α-coloring ϕ of G, with α ≥ 2(∆ + 1), an

(α/2)-coloring ψ of G can be computed within at most 2(∆ + 1) rounds.

This halving step is applied repeatedly, up until the resulting number of colors is smaller

than 2(∆ + 1). At that point the coloring can be converted into a (∆ + 1)-coloring within

additional at most ∆ + 1 rounds. The number of times that the halving step is invoked is at

most ⌈log k⌉ =
⌈
log
⌈

α
∆+1

⌉⌉
. Hence the overall running time is O(∆ · log α

∆+1).

Corollary 3.15. [49] An α-coloring can be converted into a (∆ + 1)-coloring within O(∆ ·
log α

∆+1) deterministic time.

One simple application of this result is the following one. As was mentioned above, the

identities of vertices can be used as an initial n-coloring of the input graph. Apply Corollary

38

3.15 to this initial coloring. We obtain a (∆+ 1)-coloring in O(∆ log n) time. This result is due

to Goldberg, Plotkin and Shannon [29]. Also we saw (Corollary 3.12) that 3∆-coloring can be

computed within log∗ n + O(1) time. By using this coloring as an input to Corollary 3.15 we

obtain a (∆ + 1)-coloring within O(∆2) additional time. The overall time for (∆ + 1)-coloring

in this algorithm is O(∆2) + log∗ n, that matches the one that was achieved in Section 3.7 by

a different technique. Moreover, in Chapter 3.10 we will see an algorithm for O(∆2)-coloring

that requires only log∗ n+O(1) time, due to Linial [51]. The KW color reduction technique in

conjunction with Linial’s algorithm produces a (∆+1)-coloring within O(∆ log∆)+log∗ n time.

In the sequel we will refer to the algorithm that computes a (∆+1)-coloring from scratch in

O(∆ log∆)+log∗ n time as the Kuhn and Wattenhofer algorithm, or shortly, the KW algorithm.

On the other hand, the variant that starts from a legal α-coloring and produces a (∆+1)-coloring

within O(∆ · log α
∆+1) time (Corollary 3.15) will be referred as the KW iterative procedure.

We finish this section by presenting a slightly different view of the KW iterative procedure.

Consider again the CV algorithm. It starts with an α1-coloring, for some number α1. After

one iteration (that lasts for one round) it produces an α2-coloring, for some α2 ≤ α1. After one

more iteration it produces an α3-coloring, α3 ≤ α2 ≤ α1, etc.

Szegedy and Vishwanathan [69] identified the family of algorithms that on each round grad-

ually improve the coloring at hand, where each vertex selects a new color based only on its

current color, and the current colors of its neighbors. Such algorithms are called locally-iterative

coloring algorithms. Not only the CV algorithm is of this kind, but also the aforementioned

Linial’s O(∆2)-coloring algorithm for general graphs. Szegedy and Vishwanathan showed that

any (∆ + 1)-coloring locally-iterative algorithm requires Ω(∆ log∆) time.

Interestingly, Linial’s algorithm can be combined with the KW iterative procedure to produce

a locally-iterative (∆+1)-coloring algorithm that requires O(∆ log∆)+ log∗ n time. This result

is tight in view of the lower bound of [69]. On the other hand, in Chapter 6 we will show

(the results are du to [7, 44]) that by algorithm of a different type one can break the Szegedy-

Vishwanathan’s barrier of Ω(∆ log∆), and obtain a (∆+ 1)-coloring in O(∆)+ log∗ n time. (In

fact, even O(∆) + 1
2 log

∗ n time. The term 1
2 log

∗ n is tight in view of Linial’s lower bound from

[51]. See Chapter 4.)

Next, we show how the KW iterative procedure can be stated as a locally-iterative algorithm.

(The fact that Linial’s algorithm is locally-iterative will be apparent when we describe it in

Chapter 3.10.) Consider the α-coloring ϕ, which is the input for the KW iterative procedure.

Suppose that the colors are in the range [0, α − 1]. Group all verices of colors [0,∆ + 1] into

the set V1, all vertices of colors [∆ + 1, 2∆ + 3] into the set V2, etc. Within each vertex set Vj ,

j = 1, 2, ...,
⌈

α
∆+2

⌉
, for each index i ∈ [0,∆+ 1], let U i

j = {v ∈ Vj | ϕ(v) ≡ i (mod ∆ + 2)}.

39

In each vertex set Vj in parallel all vertices of the set U∆+1
j recolor themselves into an

available color for them from the palette [(j − 1)(∆ + 2), j(∆ + 2) − 2]. Such available colors

necessarily exist, because the palette is of size (∆ + 1), while the maximum degree in each

G(Vj) is at most ∆(G) = ∆. Hence, roughly speaking, in each round the employed number of

colors decays by a factor ∆+1
∆+2 . (We suppress here some technical details regarding the way to

“eliminate spaces” from the resulting coloring ψ. The latter is required to guarantee that ψ is

a ∆+1
∆+2 · α-coloring. Other suppressed technicalities have to do with the fact that, in general, α

needs not to be divisible by ∆ + 2.) Applying this recoloring iteratively to the O(∆2)-coloring

produced by Linial’s algorithm results in a (∆+1)-coloring within O(∆ log∆) additional rounds

(i.e., total of O(∆ log∆) + log∗ n rounds).

3.9 A reduction from (∆ + 1)-coloring to MIS

In Section 3.2 we showed that given an α-coloring of a graph G = (V,E) one can compute an

MIS of G within α rounds. In this section we show a reduction in the opposite direction: given

an algorithm for computing an MIS we show how it can be translated into an algorithm with

the same running time for employing a (∆+1)-coloring. This reduction is due to Luby [56] (see

also [51].)

Denote by K∆+1 the clique with ∆+1 vertices, and by G′ = G×K∆+1 the Cartesian product

of G by K∆+1. The vertex set V ′ of G′ is V ′ = V × [∆ + 1], i.e., every vertex v ∈ V translates

into (∆+ 1) vertices (v, 1), (v, 2), ..., (v,∆+ 1). All vertices (v, i), (v, j) are interconnected, and

so essentially each vertex v ∈ V is replaced by a clique that connects its (∆ + 1) copies. For

distinct vertices v, u ∈ V , connect (v, i) and (v, j) in G′ (i, j ∈ [∆ + 1]) iff ((v, u) ∈ E and

(i = j)). This completes the description of the graph G′ = G × K∆+1. See Figure 9 for an

illustration.

Fig. 9. A Cartesian product of an edge (v, u) with K3.

40

Consider an MIS U ′ ⊆ V ′ in G′.

Lemma 3.16. U ′ contains exactly one vertex from each clique {(v, 1), (v, 2), ..., (v,∆+ 1)}.

Proof. Since vertices of {(v, 1), (v, 2), ..., (v,∆ + 1)} form a clique, U ′ cannot contain two of

them. Suppose for contradiction that U ′ ∩ {(v, 1), (v, 2), ..., (v,∆ + 1)} = ∅ for some vertex

v ∈ V . Then for each index i ∈ [∆+1] there exists a vertex ui ∈ U such that ((v, i), (ui, i)) ∈ E′

and (ui, i) ∈ U ′. Moreover, for distinct indices i, j ∈ [∆ + 1], it holds that (ui, i), (uj , j) ∈ U ′,

and so ui 6= uj . (Because otherwise there would be two representatives (ui, i), (ui, j) in U
′ from

the clique of ui.) Hence (v, ui) ∈ E, for every i ∈ [∆ + 1], and the vertices u1, u2, ..., u∆+1 are

distinct. This contradicts the assumption the the graph G has maximum degree ∆.

Given an MIS U ′ for G′ one can determine the (∆+1)-coloring ϕ for G in the following way:

for a vertex v ∈ V , let i ∈ [∆ + 1] be the unique index such that (v, i) ∈ U ′. (The index exists

and it is unique by Lemma 3.16). Set ϕ(v) = i.

Lemma 3.17. The (∆ + 1)-coloring ϕ is a legal coloring of G.

Proof. Consider an edge (v, u) ∈ E. The vertices (v, ϕ(v)), (u, ϕ(u)) both belong to the MIS U ′,

and so these vertices are not connected in E′. Since (v, ϕ(v)) and (u, ϕ(v)) are connected in E′,

it holds that (u, ϕ(u)) 6= (u, ϕ(v)). Thus ϕ(u) 6= ϕ(v).

Now we are ready ready to describe the reduction from (∆+1)-coloring to MIS. Given a graph

G = (V,E), every vertex v ∈ V simulates the ∆+1 vertices of the clique (v, 1), (v, 2), ..., (v,∆+1)

of G′. The network runs an algorithm A for MIS, which is provided to the reduction as input.

Whenever a vertex (v, i) wishes to send a message to a vertex (u, i), in the simulation the vertex v

sends the appropriately labeled message to u. Whenever (u, i) wishes to send a message to (u, j),

this is performed locally within the vertex v. Once the algorithm A completes the computation

of the MIS U ′, every vertex v locally checks what is the index i such that (v, i) ∈ U ′, and sets

ϕ(v) = i. By Lemmas 3.16 and 3.17, the resulting coloring is a legal (∆ + 1)-coloring. The

running time of this computation is the running time of the algorithm A.

Corollary 3.18. [56] Given an algorithm A that computes an MIS for general n-vertex graphs

with maximum degree ∆ within time T (n,∆), the reduction which was described above provides

a (∆ + 1)-coloring algorithm with running time T ((∆ + 1) · n, 2∆).

We remark that the simulation which was described above increases the message size by a

factor of (∆+1). Also, note that this reduction is not applicable to graphs of bounded arboricity.

Specifically, even if the arboricity of G is a < ∆, the arboricity of G′ is Θ(∆). To the best of our

knowledge it is open whether a similar reduction that does not blow up the message size exists.

41

3.10 Linial’s Algorithm

In Section 3.6 we saw that a 3∆-coloring can be computed within log∗ n + O(1) time. Also, in

Section 3.7 we saw that (∆ + 1)-coloring can be computed within O(∆2) + log∗ n time. This

section is devoted to a stronger result (due to Linial [51]), which states that an O(∆2)-coloring

can be computed within log∗ n+ O(1) rounds. We will actually show a little bit weaker bound

of O(∆2 log∆) for the number of colors. The proof relies on the following purely combinatorial

lemma due to Erdős et al. [25]. See also [51].

Lemma 3.19. For two integers n and ∆, n > ∆ ≥ 4, there exists a family J of n subsets of

the set {1, 2, ...,m}, m = 5 ·
⌈
∆2 · lnn

⌉
, such that if F0, F1, ..., F∆ ∈ J then

F0 *
∆⋃

i=1

Fi.

Remark: A set system J that satisfies the assertion of the lemma is called ∆-cover-free.

Proof. We build a random collection J of subsets of [m] in the following way. For every element

x ∈ [m], and for every index i ∈ [n], we insert x into the set Si with probability 1/∆, indepen-

dently of other pairs (x′, i′) 6= (x, i). For a fixed element x, x ∈ [m], and fixed distinct indices

i0, i1, ..., i∆ ∈ [n], it holds that

IIP


x ∈ Si0 \

∆⋃

j=1

Sij


 =

1

∆
·
(
1− 1

∆

)∆

≥ 1

4∆
.

Hence

IIP


x /∈ (Si0 \

∆⋃

j=1

Sij)


 ≤ 1− 1

4∆
.

The probability that for every x, x ∈ [m], x /∈ Si0 \ ∪∆
j=1Sij is

IIP


∀x, x /∈ Si0 \

∆⋃

j=1

Sij


 ≤

(
1− 1

4∆

)m

≤ e−(5/4)∆ lnn = n−(5/4)∆.

Hence

IIP


Si0 ⊆

∆⋃

j=1

Sij


 ≤ n−(5/4)∆.

The probability that there will be (∆ + 1) indices i0, i1, ..., i∆, such that Si0 ⊆ ∪∆
j=1Sij is, by

union-bound, at most the number of ways to choose these indices multiplied by n−(5/4)∆. There

are
(

n
∆+1

)
ways to choose the (∆ + 1) distinct indices, and (∆ + 1) ways to choose i0 from the

42

selected (∆ + 1)-tuple of indices. Hence

IIP


∃ i0, i1, ..., i∆ such that Si0 ⊆

∆⋃

j=1

Sij


 ≤ (∆ + 1)

(
n

∆+ 1

)
· n−(5/4)∆

≤
(

e

∆+ 1

)∆

· e · n−(1/4)∆+1.

The right-hand-side is strictly smaller than 1, for ∆ ≥ 4. We remark that to fix the cases of

∆ ∈ {1, 2, 3} one should increase the leading constant in the definition of m from 5 to 8, i.e., set

m = 8 ·
⌈
∆2 · logn

⌉
. Hence

IIP


∀ distinct i0, i1, ..., is, Si0 *

∆⋃

j=1

Sij


 ≥ 1−

(
e

∆+ 1

)∆

· e · n−(∆/4)+1 > 0.

Therefore, there exists a selection of sets S1, S2, ..., Sn, for which no one of them is covered by a

union of ∆ others.

Next we use this lemma for coloring. Each vertex v ∈ V is assigned its own subset FId(v)

from a collection J of subsets of [m], m = 5
⌈
∆2 · lnn

⌉
, whose existence is guaranteed by Lemma

3.19. Then each vertex v sends its set FId(v) to all its neighbors. (In fact, it is enough just to

send the index Id(v), and the neighbors will compute FId(v) locally.) Given its own set FId(v),

and the sets Fid(u1), Fid(u2), ..., FId(uh) of all the h ≤ ∆ neighbors u1, u2, ..., uh of v, the vertex v

finds an element

c ∈ FId(u) \
(

h⋃

i=1

FId(ui)

)
.

Such an element exists because FId(u) * ∪h
i=1FId(ui). The vertex v sets c to be its new color.

Next, we analyze this algorithm. Observe that it requires just one single round. Also, the

coloring ϕ that it produces is an m-coloring with m = O(∆2 · logn).
Lemma 3.20. ϕ is a legal coloring.

Proof. Consider an edge (v, u) ∈ E. Then ϕ(v) ∈ FId(v) \ FId(u) and ϕ(u) ∈ FId(u). Hence

ϕ(v) 6= ϕ(u).

Observe also that any legal coloring ψ could have been used instead of the Id numbers as

an input coloring for this procedure. Generally, if the original number of colors n′, then the

resulting number of colors is m = O(∆2 · logn′).
Theorem 3.21. [51] The algorithm discussed above, given an n′-coloring of a graph G = (V,E)

with degree ∆, produces a 5
⌈
∆2 · lnn′

⌉
-coloring of G within one single round.

43

This theorem was significantly improved by Szegedy and Vishwanathan [69] who showed

that an n′-coloring can be converted into O(∆2 · log logn′)-coloring within one single round.

Note, however, that this algorithm can be invoked iteratively. It is easy to verify that within

log∗ n rounds the resulting coloring employs O(∆2 · log∆)-coloring. Using another set system of

Erdős et al. [25], one can further decrease the number of colors to O(∆2) within one additional

round.

Corollary 3.22. [51] An O(∆2)-coloring of an n-vertex graph with maximum degree ∆ can be

computed within log∗ n+O(1) rounds.

We remark that the algorithm for computing set-systems which was described above is ran-

domized. However, it can be easily derandomized (see [25, 51]) using an algebraic construction

based on polynomials. The resulting algorithm has similar properties to the ones that were

stated above. Using the algorithm of Szegedy and Vishwanathan [69], the running time in

Corollary 3.22 can be improved to 1
2 log

∗ n + O(1). In view of the lower bounds of Linial [51]

that we described in Section 4.2, this result is tight up to constant in the additive term.

44

4 Lower Bounds

This section is devoted to two lower bounds, both due to Linial [51]. The first one (Section 4.1)

shows that coloring the balanced d-regular tree unoriented tree Td with less than 1
2

√
d colors

requires Ω(lognlog d) time. The second one (Section 4.2) shows that O(1)-coloring an oriented path

requires at least 1
2 log

∗ n−O(1) time.

4.1 Coloring Unoriented Trees

We start with providing some intuition for the first result. There are known constructions

[55] of d-regular graphs Gd with girth(G) > logn
log d and chromatic number at least 1

2

√
d. These

constructions are based on Ramanujan graphs [55]. In fact, it is conjectured that the lower

bound on the number of colors can be raised from 1
2

√
d to Ω(d

log d) [55]. If this conjecture is

true then it will follow that coloring a d-regular tree with c · d
log d colors, for some fixed constant

c > 0, requires Ω(log nlog d) time.

Observe that from the perspective of many vertices v, within less that log n
log d rounds it cannot

distinguish between being in Gd or Td. (In fact, this is true if v is far away from tree leaves.)

Hence if Td can be legally α-colored, for some α < c ·
√
d colors for a sufficiently small constant

c > 0, within c · logn
log d rounds, then Gd can be α-colored as well. (In this case the distributed

algorithm for α-coloring Td could be executed on Gd, which would produce a legal α-coloring of

Gd.) But α < χ(Gd), i.e., Gd cannot be α-colored, no matter how many rounds are used. Thus

coloring Td with α < c ·
√
d colors requires more than c · log n

log d rounds.

We will provide two proofs for this result. The first proof is simpler, and applies to both

randomized and deterministic algorithms. The second one is more involved and applies only to

deterministic algorithms. However, the second proof illustrates an important proof technique.

This technique will also be used in Section 4.2.

4.1.1 The First Proof

Consider first the problem of distributed coloring n-vertex graphs Td and Gd, where the assign-

ment of identifiers (henceforth, Id-assignment) is the following one. Every vertex v selects its Id

uniformly at random from [n3]. For short, we will refer to these problems as coloring random

Td and coloring random Gd. Suppose for contradiction that there exists a distributed algorithm

A that requires c · logn
log d rounds or less, and colors random Td legally with c ·

√
d colors, with

a positive probability. (The algorithm A may be either deterministic or randomized. In the

former case the probability is taken over the choice of Ids, and in the latter case it is also taken

over the coin tosses of the algorithm.)

45

Consider an execution E of A on the random Gd. Let U ⊆ V (Td) be a subset of vertices of

Td which are at distance greater than c · logn
log d + 1 from their respective closest leaves. Observe

that U is not empty, for a sufficiently small c > 0. Let view(v,Gd,A) be the information

accumulated by a vertex v ∈ V (Gd) in an execution of A of random Gd after c · logn
log d rounds.

Similarly, let view(v′, Td,A) be the information accumulated by a vertex v′ ∈ U ⊆ V (Td) in

an execution of A on random Td after the same number of rounds. Both these views are

random variables, distributed precisely in the same way. Hence the distributions of the colors

computed by v ∈ V (Gd) and by v′ ∈ U ⊆ V (Td) are the same as well. For the tree Td the

algorithm A employs c ·
√
d colors, and so Gd will also be colored with the same number of

colors. Moreover, with a positive probability, the coloring ϕ′ produced by the algorithm is legal

for Td. In particular, with a positive probability, for every vertex v′ ∈ U and every neighbor w′

of v′ in Td, ϕ′(v′) 6= ϕ′(w′). Hence, with the same probability, for every vertex v ∈ V (Gd), the

coloring ϕ produced by the algorithm for random Gd satisfies for every neighbor w of v in Gd,

ϕ(v) 6= ϕ(w). Hence, with a positive probability, the coloring ϕ is a legal (c ·
√
d)-coloring for

Gd, but χ(Gd) > c ·
√
d, contradiction.

Corollary 4.1. There exists a constant c > 0, such that there is no algorithm for random Td

that employs c ·
√
d colors, runs for c · logn

log d rounds or less and produces a legal coloring with a

positive probability.

Suppose now for contradiction that there exists some (c ·
√
d)-coloring algorithm B for Td

that runs in c · lognlog d rounds and for any assignment of distinct Ids from the range [n3] to vertices

of Td with probability at least 1/2 this algorithm produces a legal coloring. Invoke B on random

Td. If the Id-assignment that was selected randomly assigns all vertices distinct Ids, then with

probability at least 1/2 the algorithm B will produce a legal coloring. The random assignment

satisfies this property with probability at least 1 − o(1), and so the algorithm B produces a

legal coloring for random Td with a positive probability at least (1/2 − o(1)). But this is a

contradiction to Corollary 4.1.

Theorem 4.2. There exists a constant c > 0 such that there is no algorithm that employs c ·
√
d

colors, runs for c · logn
log d rounds, and for any assignment of distinct Ids from the range [n3] to

vertices of Td provides a legal coloring with a constant probability.

It is also easy to see that the range [n3] in Theorem 4.2 can be decreased to [n] at the expense

of decreasing the lower bound c · logn
log d by a factor of 3. (Instead of considering only n-vertex

trees Td one will have to allow balanced d-regular trees with n1/3 vertices, and other n − n1/3

vertices forming an isolated component.)

Theorem 4.2 implies that for any α ≥ 3, any algorithm that α-colors unoriented trees requires

Ω(log nlogα) rounds. (Just consider a d-regular tree with d = C ·α2, for a sufficiently large constant C,

and use Theorem 4.2.) Remarkably, this lower bound is tight. In Chapter 5 we will describe an

46

algorithm that is based on forest-decomposition, which α-colors unoriented trees within O(lognlogα)

time!

There is also another important lower bound known. Specifically, Kuhn et al. [46, 48]

showed that MM and MIS require Ω(min{log∆,√logn}) time. Moreover, for the MM problem

this lower bound is shown for graphs G with girth(G) = Ω(
√
logn). (This is not the case for the

MIS problem.) The indistinguishability argument which we described above implies that this

lower bound for MM holds even for unoriented trees.

Theorem 4.3. [46, 48, 10] The MM problem for unoriented n-vertex trees requires Ω(
√
log n)

time. The lower bound applies both to deterministic and randomized algorithms.

This lower bound is tight as well. Specifically a randomized algorithm that solves MM in

O(
√
logn) time in graphs of constant arboricity was devised in [10].

4.1.2 The Second Proof

In this section we provide an alternative proof for Theorem 4.2. (In fact, we will show a slightly

weaker variant of it, in which we only allow deterministic algorithms.) Recall that for a graph

G, a parameter t ≥ 0, and a vertex v in G, we denote by Γ̂t(v) = {u | distG(u, v) ≤ t} the

t-neighborhood of v. For any Id-assignment Φ from [n] to Γ̂t(v) we define a vertex (Γ̂t(v),Φ) in

a graph Nt(G), which we will now describe. The vertices of this graph will be pairs (Γ̂t(v),Φ),

where v is a vertex of G, and Φ is an Id-assignment to vertices of Γ̂t(v). Given two vertices

(Γ̂t(v),Φ), (Γ̂t(u),Ψ) of Nt(G), there is an edge between them in Nt(G) iff all the following

conditions hold:

1. Φ (respectively, Ψ) is an Id-assignment for Γ̂t(v) (resp., Γ̂t(u)), for some neighboring

vertices v, u in G.

2. There exists an Id-assignment Υ for the entire graph G, whose restriction to Γ̂t(v) (respec-

tively, Γ̂t(u)) is Φ (resp., Ψ).

Suppose that we are given a distributed algorithm Π that runs for t rounds and colors G in α

colors. We can assume without loss of generality that the algorithm operates in two stages (in

every single vertex v). In the first stage v collects all the information about Γ̂t(v), i.e., the graph

G(Γ̂t(v)) and the labels of its vertices. In the second stage v invokes some function fΠ on Γ̂t(v)

and the assignment Ψ of its vertices to compute the color fΠ(v) = fΠ(Γ̂t(v),Φ) of v.

It is easy to verify that any other algorithm can be simulated by an algorithm that operates in

this way. Hence any deterministic algorithm Π that runs for t rounds can be fully characterized

by the function fΠ as above from nodes (Γ̂t(v),Φ) of Nt(G) to colors [α]. Observe also that

47

fΠ is an α-coloring of the graph Nt(G). Indeed if for neighboring pairs (Γ̂t(v),Φ), (Γ̂t(u),Ψ)

the function fΠ assigns the same color, then there exists an Id-assignment Υ for the entire

graph for which the algorithm Π returns the same color for both v and u. On the other hand,

(v, u) ∈ E, contradiction to the assumption that Π produces a legal α-coloring for G for any

input Id-assignment Υ for the vertices of G.

Corollary 4.4. If there exists a deterministic algorithm Π that runs for t rounds and colors G

in α (for every assignment of distinct Ids for its vertices), then χ(Nt(G)) ≤ α.

It follows that there is no deterministic algorithm that colors G in χ(Nt(G))−1 colors within

t rounds. Interestingly, the opposite is correct as well.

Lemma 4.5. For any graph G and positive integer t, there exists an algorithm that colors G

usin χ(Nt(G)) colors within t rounds. (Here G is a graph given in advance. An algorithm that

colors G is an algorithm that colors the graph for every possible assignment of distinct Ids to

the vertices of G.)

Proof. Let ϕ be a legal χ(Nt(G))-coloring of the graph Nt(G). Every vertex v is given Nt(G)

and ϕ. (This information can be ”hard-wired” into memories of vertices before the computation

starts.) In t rounds each vertex v collects the information about Γ̂t(v), including the Ids of its

vertices. Let Φ be the Id-assignment to Γ̂t(v) that the vertex v learns. Then v computes the

color ϕ(Γ̂t(v),Φ) of the node (Γ̂t(v),Φ) of Nt(G), and returns is as its ultimate color. It is easy

to verify that the resulting coloring is a legal χ(Nt(G))-coloring for G.

For most graphs it is very hard to analyze χ(Nt(G)). Some estimates are known only for

very few graph families. Specifically, for unoriented d-regular n-vertex trees G it is known (see

Section 4.1) that χ(Nt(G)) = Ω(
√
d) for t < logn

log d . Also, for an n-path Pn (and also for an

n-cycle Cn) it is known that χ(Nt(Pn)) ≥ log(2t) n (see Section 4.2). the latter implies that to

color Pn with a constant number of colors one needs at least 1
2 log

∗ n−O(1) rounds.

Consider again the d-regular n-vertex graph Gd with girth(Gd) >
logn
log d and χ(Gd) ≥ 1

2

√
d.

(See Section 4.1.) For any t, χ(Nt(Gd)) ≥ χ(Gd) ≥ 1
2

√
d. Set t = 1

2 · log n
log d , and consider the

d-regular unoriented tree Td. We will next show that χ(Nt(Td)) ≥ χ(Nt(Gd)). It will follow that

χ(Nt(Td)) ≥ 1
2

√
d, i.e., any t-round deterministic algorithm that colors Td legally (for any choice

of distinct Ids) must use at least 1
2

√
d colors.

Lemma 4.6. Nt(Gd) ⊆ Nt(Td).

Proof. Consider a vertex (Γ̂t(v),Φ) in Nt(Gd), i.e., v ∈ V (Gd) and Φ is an Id-assignment for

vertices of Γ̂t(v). One can pick an arbitrary vertex v′ ∈ U (i.e., a vertex in Td at distance at

least 1
2 · logn

log d + 1 from its closest leaf), and assign its vertices identities according to Φ. Hence

(Γ̂t(v),Φ) is a node in Nt(Td) as well. For an edge ((Γ̂t(v),Φ), (Γ̂t(u),Ψ)) in Nt(Gd), there

48

exist two neighboring vertices (v, u) ∈ E(Gd) and an Id-assignment Υ whose restriction to Γ̂t(v)

(respectively, Γ̂t(u)) is Φ (resp., Ψ). Pick two neighboring vertices v′, u′ in U (in Td), and assign

Ids to vertices of Γ̂t(v
′) ∪ Γ̂t(u

′) according to Υ. It follows that nodes (Γ̂t(v),Φ) and (Γ̂t(u),Ψ)

are neighboring in Nt(Td) as well.

We conclude that χ(Nt(Td)) ≥ χ(Nt(Gd)) ≥ 1
2

√
d, for t = 1

2 · logn
log d , proving the lower bound

of Theorem 4.2.

4.2 Coloring the n-path Pn

In this section we show that an O(1)-coloring of the n-vertex path Pn requires at least 1
2 log

∗ n−
O(1) rounds for deterministic algorithms. This result is due to Linial [51]. Naor [61] extended

this lower bound to randomized algorithms. Our presentation here is based on [51].

We will start with showing that χ(Nt(Pn)) ≥ 3 for t ≤ n−3
2 . As we saw in Section 4.1, this

implies that no deterministic algorithm that runs for at most n−3
2 rounds can legally 2-color Pn.

For a positive integer parameter s, let Gs be the graph whose vertices are s-tuples (a1, a2, ..., as),

ai 6= aj for i 6= j, and for every i ∈ [s], ai ∈ [n]. There are edges ((a1, a2, ..., as), (a2, a3, ..., as+1))

in Gs if (a1, a2, ..., as), (a2, a3, ..., as+1) are vertices of Gs and a1 6= as+1.

Consider the graph Nt(Pn), for some positive integer t. It contains the graph G2t+1. Indeed,

every node (a1, a,..., a2s+1) in G2t+1 can be implemented as a t-neighborhood of a vertex v in the

middle of the path Pn = P . (The identities a1, a2, ..., at, at+1, at+2, ..., a2t+1 are then assigned to

the vertices in the t-neighborhood of v. Specifically, v is assigned the Id that is equal to at+1.

The vertex u at distance t from v that lies on the left side of v is assigned the Id a1. The vertices

on the subpath of P that connects u to v are assigned Ids a2, ..., at. Symmetrically, the t vertices

that follow v on P are assigned IDs at+2, ..., a2t+1. Other vertices of P are assigned arbitrary

Ids from [n] \ {a1, ..., a2t+1}. See Figure 10.)

Fig. 10. Implementing a node (a1, a2, ..., a2t+1) of G2t+1 as a node of Nt(P).

An edge ((a1, ..., a2t+1), (a2, ..., a2t+1, a2t+2)) of G2t+1 is implemented similarly as an edge of

Nt(P). One just needs to assign the vertex consequent to the one that received Id a2t+1 the

Id a2t+2. (The vertex w in Figure 10.) Now let x be the neighbor of v that was assigned the

label at+2. The nodes (Γ̂t(v),Φ) and (Γ̂t(x),Φ
′) are neighboring vertices in Nt(P), where Φ is

49

the assignment (a1, ..., a2t+1) to the 2t+ 1 vertices of P centered at v, and Φ′ is the assignment

(a2, ..., a2t+2) to the 2t + 1 vertices of P centered at x. Hence G2t+1 is a subgraph of Nt(Pn),

and so χ(G2t+1) ≤ χ(Nt(Pn)).

We next argue that χ(G2t+1) ≥ 3, and this will emply the desired bound χ(Nt(Pn)) ≥ 3.

To complete the proof it is enough to show that G2t+1 contains an odd cycle, and thus it is

not bipartite. It is easy to verify that the sequence of nodes (1, 2, ..., 2t+1), (2, 3, ..., 2t+1, 2t+

2), (3, 4, ..., 2t + 2, 2t + 3), (4, 5, ..., 2t + 3, 1), (5, 6, ..., 2t + 3, 1, 2), ..., (2t + 3, 1, 2, ..., 2t) forms a

cycle of length (2t+ 3) in G2t+1, completing the proof. (See Figure 11.)

Fig. 11. An odd cycle in G2t+1.

Theorem 4.7. For t, 1 ≤ t ≤ n−3
2 , it holds that χ(G2t+1) ≥ 3. Hence Pn cannot be 2-colored

by a deterministic algorithm in n−3
2 or less rounds.

We will next strengthen the inequality χ(G2t+1) ≥ 3, and show that χ(G2t+1) ≥ log(2t) n.

Since χ(Nt(Pn)) ≥ χ(G2t+1), this would imply that no deterministic algorithm that runs for t

rounds can use less than log(2t) n colors.

For a positive integer s, let G′
s be the subgraph of Gs induced by nodes (a1, a2, ..., as) with

a1 < a2 < ... < as. We will view G′
s as a directed graph: each edge (a1, a2, ..., as), (a2, a3, ..., as+1)

will be oriented towards (a2, ..., as+1). For a directed graph H = (V,Q), The directed line graph

~L(H) = (Q, E) is given by E = {〈e = 〈u, v〉, e′ = 〈v, w〉〉 | e, e′ ∈ Q}. In the directed line graph

~L(G′
s) ofG

′
s an arc 〈(a1, ..., as), (a2, ..., as+1)〉 is connected to an arc 〈(a2, ..., as, as+1), (a3, ..., as+1, as+2)〉.

It follows that ~L(G′
s) is isomorphic to G′

s+1: we just map each arc 〈(a1, ..., as), (a2, ..., as+1)〉 of
G′

s to a node (a1, a2, ..., as+1) of G
′
s+1.

Lemma 4.8. For any directed graph H = (V,Q), χ(~L(H)) ≥ logχ(H).

50

Proof. We will argue that

χ(H) ≤ 2χ(
~L(H)). (4)

Let ϕ be an x-coloring of ~L(H), for some x ≥ χ(~L(H)). We define a coloring ψ for H in the

following way. For each index i ∈ [x] and vertex v ∈ V let

bi(v) =

{
1 if there exists an outgoing arc 〈v, u〉 with ϕ(〈v, u〉) = i

0 otherwise

Now ψ(v) = 〈b1(v), b2(v), ..., bx(v)〉. Obviously ψ(·) is a 2x-coloring. Next we argue the ψ(·) is

a legal coloring. Consider an edge e = 〈v, u〉 ∈ Q. Let i = ϕ(e). Then there exists an outgoing

edge of v ϕ-colored by i, but since ϕ() is legal, there is no outgoing edge of u ϕ-colored by i.

Hence bi(v) = 1 6= bi(u) = 0, and so ϕ(v) 6= ϕ(u). Hence ψ is a legal 2x-coloring of H, proving

(4).

Observe that G′
1 is just an n-clique Kn, with all edges 〈i, j〉, i < j, are oriented towards

the endpoint with a greater index. Hence χ(G′
1) = n. As a consequence (by Lemma 4.8), for

any positive integer s ≥ 2, χ(G′
s) ≥ log(s−1) n. In particular, for any positive integer t ≥ 1,

χ(G2t+1) ≥ χ(G′
2t+1) ≥ log(2t) n. Since G2t+1 ⊆ Nt(Pn), the next theorem follows.

Theorem 4.9. No deterministic algorithm that runs for t rounds can color Pn with less than

log(2t) n colors.

Set t = log∗ n
2 − 1. Then log(2t) n = log(log

∗ n−2) n > 4. Hence no deterministic algorithm that

runs in less than log∗ n
2 − 1 rounds can 4-color Pn. More generally, we have:

Corollary 4.10. O(1)-coloring Pn by a deterministic algorithm requires at least log∗ n
2 − O(1)

rounds.

As was mentioned above, this lower bound (due to [51]) was extended to randomized algo-

rithms in [61].

51

5 Forest-Decomposition Algorithms and Applications

Coloring forests can be performed extremely efficiently in the distributed setting, both in terms of

running time and number of colors. Using the algorithms of Cole and Vishkin [16] or Goldberg,

Plotkin and Shannon [29], one can compute 3-vertex-coloring of a forest in O(log∗ n) time.

However, coloring general graphs is a significantly more challenging task. The best currently

known deterministic algorithms for general graphs for (∆+ 1)-coloring require at least linear in

∆ time, unless ∆ is very large.1 Nevertheless, for a wide range of graph families, it is possible

to achieve much better results. If a graph can be decomposed into a reasonably small number

of oriented forests, then both the running time and the size of the employed coloring palette

can be reduced. Indeed, each of the forests in the decomposition can be colored quickly with

3 colors. However, using the decomposition to achieve a unified legal coloring of the entire

input graph is more complicated. In this chapter we describe an algorithm that computes a

forest-decomposition for graphs with bounded arboricity (see Section 2.3 for the definition of

arboricity), and uses it for coloring them efficiently. The material in this chapter is based on [6].

5.1 H-Partition

In this discussion we assume that all vertices know the arboricity a of the input graph and the

number of vertices n before the algorithm starts. (See [6] for extensions to scenarios in which

the arboricity or/and the number of vertices is unknown.) The algorithm starts with computing

an H-partition of the graph (to be defined shortly). Then the H-partition is used for computing

O(a)-forest-decomposition. Recall that the arboricity a is the minimum number of forests into

which the edge-set of the input graph can be decomposed. For an integer parameter A ≥ 2a, an

H-partition is a vertex-partition into subsets H1, H2, ..., Hℓ ⊆ V , such that each vertex in Hi,

1 ≤ i ≤ ℓ, has at most A neighbors in
⋃ℓ

j=iHj . The parameter A is called the degree of the

H-partition H1, H2, ..., Hℓ. The parameter ℓ is called the size of the H-partition. See Figure 12

in the end of this section for an illustration.

The procedure that computes an H-partition is called Procedure Partition. This procedure

accepts as input the arboricity a of the graph, and an arbitrarilly small positive real constant

ǫ ≤ 2. The parameter ǫ determines the quality of the resulting H-partition. In other words,

smaller values of ǫ result in H-partition with smaller degree, which, in turn, allows one to

compute a forest-decomposition with fewer forests. However, selecting small values for ǫ affects

the size of the H-partition, and, consequently, the running time is affected as well. Specifically,

1For randomized algorithms the situation is better. Specifically, algorithms that run in O(log n) time, for all

values of ∆, are known [1, 56, 57]. For deterministic algorithms one can compute a (∆+ 1)-coloring in 2O(
√
logn)

time [65].

52

Procedure Partition computes an H-partition with degree at most (2+ǫ)·a and size ℓ =
⌈
2
ǫ log n

⌉

within ℓ rounds.

During the execution of Procedure Partition each vertex in V is either active or inactive.

Initially, all the vertices are active. For every i = 1, 2, ..., ℓ, in the ith round each active vertex

with at most (2+ ǫ) ·a active neighbors joins the set Hi and becomes inactive. The pseudo-code

of Procedure Partition is presented below.

Algorithm 1 Procedure Partition(a,ǫ): partitions the vertices into ℓ =
⌈
2
ǫ log n

⌉
sets such that

every vertex v ∈ Hi, i ∈ {1, 2, ..., ℓ}, has at most (2 + ǫ) · a neighbors in
⋃ℓ

j=iHj .

Initially all vertices are active.

An algorithm for each vertex v ∈ V :

1: for round i = 1, 2, ..., ℓ do

2: if v is active and has at most (2 + ǫ) · a active neighbors then

3: make v inactive

4: add v to Hi

5: send the messages ’inactive’ and ’v joined Hi’ to all the neighbors

6: end if

7: for each received ’inactive’ message do

8: mark the sender neighbor as inactive

9: end for

10: end for

The next lemma shows that each vertex in the network becomes inactive during the execution,

and joins one of the sets H1, H2,, Hℓ.

Lemma 5.1. A graph G = (V,E) with arboricity a(G) has at least ǫ
2+ǫ · |V | vertices with degree

(2 + ǫ) · a or less.

Proof. Suppose for contradiction that there are more than 2
2+ǫ · |V | vertices with degree greater

than (2 + ǫ) · a. It follows that

2|E| =
∑

v∈V
deg(v) > ((2 + ǫ) · a) · |V | · 2

2 + ǫ
= 2 · a · |V | ≥ 2 · |E|

|V | − 1
· |V | > 2|E|.

This is a contradiction.

By the definition of arboricity, the subgraph induced by any subset of V of active vertices

has arboricity at most a as well.

Lemma 5.2. For any subgraph G′ of G, the arboricity of G′ is at most the arboricity of G.

53

By Lemmas 5.1 and 5.2, in each round at least (ǫ
2+ǫ)-fraction of the active vertices become

inactive, and so after log(2+ǫ)/2 n rounds all vertices become inactive. Since log(2+ǫ)/2 n ≤ 2
ǫ logn

for ǫ, 0 < ǫ ≤ 2, we have proved the following lemma.

Lemma 5.3. For a graph G with a(G) = a, and a parameter ǫ, 0 < ǫ ≤ 2, Procedure

Partition(a,ǫ) produces an H-partition H = {H1, H2,, Hℓ} of size ℓ ≤
⌈
log(2+ǫ)/2 n

⌉
≤

⌈
2
ǫ logn

⌉
.

The next lemma shows that the H-partition H has a small degree.

Lemma 5.4. The H-partition H = {H1, H2, ..., Hℓ} , ℓ ≤
⌈
2
ǫ log n

⌉
, has degree at most A =

(2 + ǫ) · a.

Proof. The vertex v was added to Hj in round number j. Every neighbor of v that belongs to

one of the sets Hj , Hj+1, ..., Hℓ was added to its set in round j or later. Therefore, at the end of

round j − 1 all its neighbors in Hj ∪Hj+1 ∪ ... ∪Hℓ were active. The vertex v has been added

because the number of its active neighbors was at most (2 + ǫ) · a. Thus the number of the

neighbors of v in Hj ∪Hj+1 ∪ ... ∪Hℓ is at most (2 + ǫ) · a.

We summarize the properties of Procedure Partition in the following theorem.

Theorem 5.5. For a graph G with arboricity a(G) = a, and a parameter ǫ, 0 < ǫ ≤ 2, Procedure

Partition(a, ǫ) computes an H-partition of size ℓ ≤
⌈
2
ǫ logn

⌉
with degree at most (2+ ǫ) ·a. The

running time of the procedure is O(logn).

This procedure can be also used with a second parameter q > 2. (For convenience, this

parameter is called ǫ when it is at most 2, and q when it is larger than 2.) Observe that Lemma

5.1 is applicable for all values of the second parameter. The number of rounds required to make

all vertices inactive is at most log 2+q
2
n = O(lognlog q), and thus, for q > 2, set ℓ =

⌊
log 2+q

2
n
⌋
.

Consequently, the resulting H-partition has size O(lognlog q) as well. On the other hand, by Lemma

5.4, the degree of the H-partition is at most (2 + q) · a.
Corollary 5.6. For a graph G with arboricity a(G) = a, and a parameter q, q > 2, Procedure

Partition(a,q) computes an H-partition of size O(lognlog q) with degree A ≤ (2+ q) ·a. The running

time of the procedure is O(lognlog q).

AnH-partition can be employed in order to compute a forest-decomposition as follows. Given

an H-partition, one can employ it for computing an acyclic orientation of the input graph, whose

out-degree is at most the out-degree of the H-partition. (More details are provided below.) Once

an acyclic orientation is computed, each vertex becomes responsible only for its outgoing edges.

In this way, for each edge e, exactly one of the endpoints of e is responsible for it. Next, each

vertex assigns distinct labels 1, 2, ... to its outgoing edges. We will soon argue that all edges in

the graph that receive the same label form a forest.

54

Now we turn to describe the procedure for computing forest-decomposition that is called

Procedure Forest-Decomposition. Similarly to Procedure Partition, it accepts as input the pa-

rameters a and ǫ. In the first step it computes an H-partition with degree at most (2 + ǫ) · a.
In the next step, it invokes a procedure called Procedure Orientation. Procedure Orientation

orients the edges of the graph as follows. For each edge e = (u, v), if the endpoints u, v are

in different sets Hi, Hj , i 6= j, then the edge is oriented towards the endpoint in the set with a

greater index. Otherwise, if i = j, the edge e is oriented towards the vertex with a greater Id

among the two vertices u and v. The orientation µ produced by this step is acyclic. By Lemma

5.4, each vertex has µ-out-degree at most (2 + ǫ) · a.

Finally, in the last step Procedure Forest-Decomposition partitions the edge set of the graph

into forests. Each vertex is in charge for its outgoing edges, and it assigns each outgoing edge

a different label from the set {1, 2, ..., ⌊(2 + ǫ) · a⌋}. This step will be henceforth referred as the

labeling step.

Algorithm 2 Forest-Decomposition(a,ǫ): partition the edge set into ⌊(2 + ǫ) · a⌋ forests.

1: Invoke Procedure Partition(a, ǫ) /* See Algorithm 1 */

2: µ := Orientation()

3: Assign a distinct label to each µ-outgoing edge of v from the set {1, 2, ..., ⌊(2 + ǫ) · a⌋}

The time complexity of Procedure Partition is O(logn), and the steps 2 and 3 of Procedure

Forest-Decomposition, orienting and labeling the edges, require O(1) rounds each. Hence the

overall time complexity of the forest-decomposition algorithm is O(logn).

Definition 5.1. Given an H-decomposition H = {H1, H2, ..., Hℓ} of a graph G = (V,E), the

H-index of a vertex v ∈ V is the unique index i ∈ [ℓ] = {1, 2, ..., ℓ} such that v ∈ Hi.

Lemmas 5.7-5.9 constitute the proof of correctness of the algorithm for computing a forest-

decomposition.

Lemma 5.7. The orientation µ formed by Algorithm 2 is consistent.

Proof. For an edge e = (u, v), if u orients e towards v then either the H-index of v is greater

than the H-index of u, or they have the same H-index but ID(u) < ID(v). In both cases v

orients e towards v as well.

Lemma 5.8. The orientation µ formed by the algorithm is acyclic.

Proof. We show that there are no directed cycles with respect to µ. Let C be a cycle of G. Let

v be a vertex in C such that the H-index i of v is the smallest index of a vertex in C, and such

that ID(v) is the smallest identity number in Hi ∩C. Let u,w denote the two neighbors of v in

C. Obviously, both edges (v, u) and (v, w) are oriented outwards of v, and thus, the µ-out-degree

55

of u in the cycle is 2. Hence C is not a directed cycle with respect to µ. Consequently, the

orientation µ is acyclic.

For each i ∈ [ℓ], consider the graph Gi = G(Hi) induced by the set Hi. Lemma 5.4 implies

that the maximum degree ∆(Gi) of a vertex in Gi is at most (2 + ǫ) · a. Moreover, a stronger

statement follows:

Lemma 5.9. Each vertex has µ-out-degree at most (2 + ǫ) · a.

Proof. Let v be a vertex of G. Let j be the H-index of v. Each outgoing edge of v is connected

to a vertex with an H-index that is greater or equal to j. Hence by Lemma 5.4, v has at most

(2 + ǫ) · a outgoing edges.

By Lemma 5.9, once the orientation µ is formed, each vertex can assign distinct labels to its

outgoing edges from the range 1, 2, ..., ⌊(2 + ǫ) · a⌋. Denote A = ⌊(2 + ǫ) · a⌋. The next lemma

shows that the undirected graph induced by the set of edges labeled with the label i, for any

i ∈ [A], does not contain cycles.

Lemma 5.10. For each label i, the set of edges labeled by i forms a forest.

Proof. By Lemma 5.8, each cycle of G has a vertex with two outgoing edges in this cycle.

Suppose for contradiction that there is a cycle C with all edges labeled by the same label i.

There exists a vertex v in this cycle and two edges e1, e2 adjacent to v oriented outwards of v.

Thus, the algorithm labeled the edges e1, e2 with different labels, contradiction.

We summarize this section with the following corollary.

Corollary 5.11. For a graph G with arboricity a = a(G), and a parameter ǫ, 0 < ǫ ≤ 2,

Procedure Forest-Decomposition(a, ǫ) partitions the edge set of G into A = ⌊(2 + ǫ) · a⌋ oriented

forests in O(logn) rounds. Moreover, as a result of its execution each vertex v knows the label

and the orientation of every edge (v, u) adjacent to v.

Similarly to Procedure Partition, Procedure Forest-Decomposition can be invoked with sec-

ond parameter q > 2. Lemmas 5.7 - 5.10 stay unchanged, and thus we obtain the following

corollary.

Corollary 5.12. For a graph G with a(G) = a, and a parameter q, q > 2, Procedure Forest-

Decomposition(a, q) partitions the edge set of G into at most (2 + q) · a forests within time

O(lognlog q).

See Figure 12 for an illustration.

56

Fig. 12. H-partition and Forest-Decomposition. (Some vertices and edges are omitted from the

figure for clarity.) An outgoing edge from a vertex u to a vertex v labeled with a label i means

that v is the parent of u in a tree of the ith forest Fi. Solid edges represent edges with the label

’1’. Dashed edges represent edges with the label ’2’.

5.2 An O(a)-coloring

A forest-decomposition allows us to compute a legal coloring of the entire graph very quickly.

Since each vertex belongs to at most A = O(a) forests, we can maintain a vector of size A

for each vertex, for representing colors in different forests. The ith coordinate of the vertex

represents the color that is assigned to the vertex in the ith forest. Next, we perform A parallel

invocations of the CV algorithm for 3-coloring oriented forests. (See Section 3.4.) Invocation i,

i = 1, 2, ..., A, computes a 3-coloring of the ith forest, and stores the result in the ith coordinate

of the vector. Observe that such a vector can be seen as an integer number in the range

{1, 2, ..., 3A}. Observe also, that for each pair of neighbors u, v in the input graph, there exist a

forest Fi, i ∈ {1, 2, ..., A}, in the decomposition, such that either u is the parent of v in the forest

Fi or vice versa. In any case, the ith coordinate of the vector of v and that of the vector of u

are different each from another. Thus, it is possible to compute a 3A-coloring of a graph which

is decomposed into A forests in O(log∗ n) time. The running time for computing a 3A-coloring

from scratch is O(log n). (Forest-decompositions can be computed in O(log n) time by Corollary

5.11. Observe that A = O(a), and so this is a 3O(a)-coloring.)

We summarize this discussion by the following theorem.

Theorem 5.13. A legal 3O(a)-coloring of an n-vertex graph G = (V,E) with arboricity a can be

computed deterministically within O(logn) time.

Although the above algorithm is very simple and very fast, it produces an output with quite

a large number of colors. Next, we discuss how to improve the number of colors to O(a). (Recall

that a ≤ ∆, and that for a wide range of graph families, a is significantly smaller than ∆.) This,

however, comes at a price of increasing the running time. The improved algorithm is called

Procedure Arb-Color. It colors the input graph G of arboricity a = a(G) using A + 1 colors,

57

where A = ⌊(2 + ǫ) · a⌋, and ǫ is an arbitrarily small positive parameter. The running time of

the algorithm is O(a · log n).

The algorithm starts by executing Procedure Forest-Decomposition with the input parameter

a = a(G). This invocation returns an H-partition of G of size ℓ ≤
⌈
2
ǫ log n

⌉
and degree at most

A. Then, for each index i, the graph Gi = G(Hi) induced by the set Hi is colored using the

KW algorithm for (∆ + 1)-coloring (see Section 3.8). By Lemma 5.4, for all i, i = 1, 2, ..., ℓ,

the subgraph Gi satisfies ∆(Gi) ≤ A. Hence the algorithm colors each graph Gi with at most

A+1 colors. Denote by ϕi the coloring of Gi. Although each ϕi is a legal coloring, the resulting

coloring of the entire input graph G is not necessarily legal. Thus, it needs to be converted into

a legal (A+ 1)-coloring of G. To this end the subgraphs G1, G2, ..., Gℓ are gradually recolored.

The recoloring starts from the last subraph Gℓ, and proceeds backwards, ending with the first

subgraph G1.

The recoloring is performed using a new orientation η of G, which is computed from the

colorings ϕ1, ϕ2, ..., ϕℓ. The new orientation η is computed using a procedure called Procedure

New-Orientation that works in the following way. For each edge (u, v) whose endpoints u and v

belong to Gi and Gj respectively, for some i < j, the edge is oriented towards v. For each edge

(u, v) whose both endpoints belong to the same Gi, for some 1 ≤ i ≤ ℓ, the edge is oriented

towards the vertex with a greater ϕi-color. (Since ϕi is a legal coloring of Gi, it necessarily holds

that ϕi(u) 6= ϕi(v).) This completes the description of Procedure New-Orientation.

Observe that the procedure orients all the edges in the input graph, and that for edges e

that cross between distinct subgraphs Gi and Gj , the orientations µ and η have assigned the

same direction to e. (Recall that the orientation µ was computed within Procedure Forest-

Decomposition. See Section 5.1.) However, inside subgraphs these orientations are different.

Specifically, the length of the orientation η restricted to a subgraph Gi is at most the number

of colors used by ϕi. (See Property 3.3.) This is in contrast to the orientation µ whose length

within Gi may be arbitrarily large.

The new orientation η is used for constructing a new coloring ϕ of the input graph. The

coloring is computed according to Property 3.2. Specifically, each vertex waits for all its parents

with respect to η to select a color. Then it selects its own color to be different from the selections

of all its parents. Since the length of η is O(a · ℓ) = O(a logn), and its out-degree is at most

the degree of the H-partition, the new coloring ϕ is computed in O(a logn) time, and employs

A+1 colors. The coloring ϕ is the final coloring returned by the algorithm. This completes the

description of Procedure Arb-Color. Its pseudocode is provided below.

58

Algorithm 3 Procedure Arb-Color(a,ǫ)

1: A := ⌊(2 + ǫ) · a⌋
2: H = (H1, H2..., Hℓ) := Forest-Decomposition(a,ǫ)

3: In parallel, color each graph Gi, i = 1, 2, ..., ℓ, with A + 1 colors using the KW algorithm.

Denote the resulting colorings ϕi, i = 1, 2, ..., ℓ.

4: η := New-Orientation()

5: ϕ := Compute (A+ 1)-coloring of G using η and Property 3.2

The correctness of the procedure follows from the above discussion. The running time of

step 2 is O(logn). The running time of step 3 is O(a log a + log∗ n). The running time of step

5 is proportional to the length of the orientation η, which is O(a logn). The other steps require

O(1) time. Thus, the overall running time of Procedure Arb-Color is O(a logn).

Theorem 5.14. For a graph G with arboricity a = a(G), and a positive parameter ǫ, 0 < ǫ ≤ 2,

Procedure Arb-Color(a, ǫ) computes an O(a) coloring of G in time O(a logn).

We remark that invoking Procedure Arb-Color with q > 2 as second parameter results in

inferior results than those given by Theorem 5.14. Specifically, it results in O(q · a)-coloring in

O(q · a · logn) time.

5.3 Faster Coloring

In some occasions it is important that the number of colors that an algorithm employs is as small

as possible. In other occasions the running time of the algorithm is crucial. Thus, sometimes

one may want to compromise the running time for achieving a smaller number of colors, and

sometimes the other way around. Thus, a tradeoff between the running time and the number of

colors is often handy. Next, we describe an algorithm (from [6]) for computing O(t · a)-coloring
in O(at · log n+ a) time, for a parameter t, 1 ≤ t ≤ A+ 1. (Recall that A = ⌊(2 + ǫ) · a⌋, for an
arbitrarily small positive constant ǫ ≤ 2.) The algorithm is called Procedure Tradeoff-Color.

We start with describing a special case in which the procedure is invoked with the parameter

t = A + 1. Later we describe the general case. The first steps of Procedure Tradeoff-Color are

similar to those of Procedure Arb-Color (Algorithm 3). Specifically, steps 1-3 are exactly the

same as in Procedure Arb-Color, and the only difference is that instead of steps 4-5 it invokes

a procedure called Recolor.

Procedure Recolor accepts as input the H-partition H = {H1, H2,, Hℓ} of the graph G

computed by Procedure Forest-Decomposition in step 2. Procedure Recolor proceeds iteratively,

and creates a new coloring ψ. Vertices of the set Hℓ retain their colors. For all other vertices

v ∈ V \Hℓ, ψ(v) is initialized as NULL. In iteration i, i = 1, 2, ..., ℓ− 1, vertices of the set Hℓ−i

59

are recolored. In the case of t = A + 1, each iteration requires exactly one round. All vertices

of Hℓ−i select a new color in parallel. A vertex v with ϕℓ−i(v) = k, where 1 ≤ k ≤ A + 1,

selects a new color from the range {(k − 1) · (A+ 1) + 1, (k − 1) · (A+ 1) + 2, ..., k · (A+ 1)} =

[(k− 1) · (A+1)+1, k · (A+1)], which is not used by any neighbor of v in
⋃ℓ

j=ℓ−iHj . (In other

words, ψ(v) is selected from the set [(k−1)(A+1)+1, k ·(A+1)]\{ψ(w) | w ∈ Γ(v)∩⋃ℓ
j=ℓ−iHj}.

Note that in this variant of the algorithm, when the value of ψ(v) is selected it holds that ψ(v) =

NULL for every w ∈ Hℓ−i.) Observe that there is at least one such color for any vertex v, because

deg(v,
⋃ℓ

j=ℓ−iHj) ≤ A, and so |{ψ(u) | u ∈ ⋃ℓ
j=ℓ−iHj , ψ(u) 6= NULL}| ≤ A as well.

Consider, for example, iteration 1. In this iteration the vertices of Hℓ−1 select a new color.

Specifically, all vertices v with ϕℓ−1(v) = 1 select a new color from the range {1, 2, ..., A + 1}.
In parallel, the vertices v with ϕℓ−1(v) = 2 select a new color from the range {A + 2, A +

3, ..., 2(A+ 1)}, and so on. Observe that for any pair of neighbors u, v that belong to the same

Hℓ−i, 1 ≤ i < ℓ, their ϕℓ−i-colors are different, and that distinct ϕℓ−i-colors are associated with

disjoint palettes (ranges). Hence u and v select distinct colors. Morover, any pair that belong

to distinct H-sets select distinct colors as well. In this case, the vertex with a smaller H-index

necessarily selects a new color which is distinct from the selection of its neighbor with a greater

H-index.

Now we turn to the general case where 1 ≤ t ≤ A + 1. Similarly to the previous case,

Procedure Tradeoff-Color begins with executing steps 1-3 as in Procedure Arb-Color. Then it

executes a general version of Procedure Recolor. (This version will be described shortly.) The

pseudocode of Procedure Tradeoff-Color is provided below.

Algorithm 4 Procedure Tradeoff-Color(a, ǫ, t)

1: Execute steps 1-3 of Procedure Arb-Color

2: Recolor(t, H)

Procedure Recolor recolors roughly t color classes of Hℓ−i in the same round. Specifically,

Procedure Recolor groups the (A + 1) color classes C1, C2, ..., CA+1 of Hℓ−i into p =
⌈
A+1
t

⌉

disjoint subsets S1, S2, ..., Sp. Each subset Sj , j = 1, 2, ..., p, contains the color classes Cr with

indices r ∈ Ij = {(j − 1)t+ 1, (j − 1)t+ 2,,min {j · t, A+ 1}}, i.e., Sj = {Cr | r ∈ Ij}.

The ith iteration of Procedure Recolor continues for p rounds. In round j, j = 1, 2, ..., p,

vertices of color classes Cr, r ∈ Ij , are recolored in parallel. To guarantee that no pair of

neighboring vertices u ∈ Cr, w ∈ C ′
r, r 6= r′, r, r′ ∈ Ij , will select the same color, the color classes

{Cr | r ∈ Ij} are assigned disjoint palettes {Pr | r ∈ Ij}, Pr = {(A+ 1)(r − 1− (j − 1)t) + 1,

(A+ 1)(r − 1− (j − 1)t) + 2, ..., (A+ 1)(r − 1− (j − 1)t) + (A+ 1)}.

In other words, the color class C(j−1)t+1 (i.e., r = (j − 1)t + 1) is assigned the palette

60

P(j−1)t+1 = {1, 2, ..., A+ 1}, the color class C(j−1)t+2 is assigned the palette

P(j−1)t+2 = {(A+ 1) + 1, (A+ 1) + 2, ..., 2(A+ 1)}, etc., for every j = 1, 2, ..., p.

Consider a vertex v ∈ Cr, r ∈ Ij . In round j of the ith iteration the vertex v selects a color

from its palette Pr which is not taken by any neighbor in the setW of already recolored vertices.

This completes the description of Procedure Recolor. Its pseudocode is provided below.

Algorithm 5 Procedure Recolor (t,H = (H1, H2, ..., Hℓ))

1: W := ∅ /* the set of recolored vertices */

2: for i := ℓ− 1 downto 1 do

3: k = ((ϕi(v)− 1) mod t)

4: for round p := 1 to
⌈
A+1
t

⌉
do

5: for each vertex v in Hi such that (p− 1) · t < ϕi(v) ≤ min{p · t, A+1} (in parallel) do

6: recolor v with a color from the set:

{k · (A+ 1) + 1, k · (A+ 1) + 2, ..., (k + 1) · (A+ 1)} \ {ψ(w) | w ∈W ∩ Γ(v)}
7: W :=W ∪ {v}
8: end for

9: end for

10: end for

Each palette Pr contains (A+1) colors. Consider a vertex v and the set W at the time when

v is recolored (in step 6 of Algorithm 5). It holds that deg(v,W) ≤ deg(v,
⋃ℓ

j=ℓ−iHj) ≤ A.

Hence there necessarily exists a color for v in its palette, which is not used by its neighbors in

W . Using an inductive argument on the number of iterations it can be shown that Procedure

Tradeoff-Color produces a legal coloring.

For an upper bound on its running time, observe that Procedure Recolor runs for O(logn)

iterations, and each iteration requires
⌈
A+1
t

⌉
= O(at) rounds. Hence the running time of Proce-

dure Recolor is O(at log n). The running time of the step which computes a forest-decomposition

is O(logn). Finally, invoking the KW algorithm (see Section 3.8, and step 3 of Procedure

Arb-Color, Algorithm 3) requires O(a log a+ log∗ n) rounds. Hence the overall running time of

Procedure Tradeoff-Color is O(at · log n+ a log a).

However, the improved running time of Procedure Tradeoff-Color (in comparison to the

running time of Procedure Arb-Color - see Theorem 5.14) comes at a price. Specifically, since we

used t disjoint palettes of size A+1 each, the number of colors that were used is t·(A+1) = O(t·a).
We summarize the properties of Procedure Tradeoff-Color in the following theorem.

Theorem 5.15. For a positive parameter t, 1 ≤ t ≤ A+ 1, Procedure Tradeoff-Color produces

an O(a · t)-coloring of the input graph in time O(at · log n+ a log a).

61

We remark that in Section 6 we will show that (∆ + 1)-coloring for general graphs can be

computed within O(∆+ log∗ n) time, rather than in O(∆ · log∆+ log∗ n) time. This speeds up

the algorithm of Theorem 5.15. Specifically, the improved running time is O(at · log n+ a).

Notice that by substituting t = 1 we obtain the O(a)-coloring algorithm (Procedure Arb-

Color) which was described in Section 5.2. (See Theorem 5.14.)

Next, we describe a variant of Procedure Tradeoff-Color, that accepts as input a = a(G),

and a parameter q, q > 2. (In other words, the second parameter that the procedure accepts is

now greater than 2, as opposed to ǫ ≤ 2.) This new variant computes an O(a2 ·q)-coloring. In its

first step it invokes Procedure Forest-Decomposition with the same pair of parameters a and q.

By Corollary 5.12, this procedure partitions the edge set of G into at most (2+q) ·a forests, and

it does so within time O(lognlog q). The other steps are very similar to those of the previous variant

(when invoked with t = A+ 1). The only difference is that the value of A is now (2 + q) · a and

not ⌊(2 + ǫ) · a⌋. By the same argument, this new variant computes an O(a · q · t)-coloring in

O
(
(2+q)·a

t · logn
log q + (2 + q) · a

)
time, for any t, 1 ≤ t ≤ (2 + q) · a = A. In particular, by setting

t = a · q we obtain an O(a2 · q2)-coloring within O(lognlog q + q · a) time.

Finally, set q′ = q2. We get an O(a2 · q′)-coloring within time O(log nlog q′ + a · √q′).
Corollary 5.16. For an n-vertex graph G with arboricity a and a parameter q > 2, Procedure

Tradeoff-Color invoked with parameters a and q computes an O(a2 · q)-coloring in time

O(lognlog q + a · √q).

Consider an unoriented n-vertex tree T . Observe that its arboricity a(T) is equal to 1.

Set q = ∆ǫ, for an arbitrarily small constant ǫ > 0. Corollary 5.16 implies an O(∆ǫ)-coloring

of T within O(logn
log∆) time. On the other hand, Linial [52] showed that an o(∆1/2)-coloring of

an unoriented ∆-regular tree requires Ω(logn
log∆) time (see Section 4.1). Therefore, remarkably,

the running time of the O(∆ǫ)-coloring algorithm (provided by Corollary 5.16) for graphs with

constant arboricity cannot be improved by more than a constant factor.

5.4 MIS algorithms

In this section we capitalize on the results of Section 5.3, and describe an algorithm that computes

an MIS in graphs with bounded arboricity in sublogarithmic time. The algorithm employs the

basic reduction from MIS to coloring. (See Section 3.2.)

First, observe that by Corollary 5.16, for any graph with arboricity O((log n)1/2−ǫ), for a

positive constant ǫ < 1
2 , a legal O(logn

log logn)-coloring can be found in O(logn
log logn) time. (To this

end, set q = (log n)ǫ.) Then the basic color reduction technique (see Section 3.2) that reduces

the number of colors, one color per round, can be used to achieve (∆+1)-coloring in additional

O(logn
log logn) rounds. We summarize this fact in the following corollary.

62

Corollary 5.17. For a graph G with arboricity a(G) = O((log n)1/2−ǫ), 0 < ǫ < 1/2, both

(∆ + 1)-coloring and O(logn
log logn)-coloring can be found in O(logn

log logn) time.

Corollary 5.17 can be used in conjunction with the basic reduction from MIS to coloring.

(See Section 3.2.) Specifically, given an O(logn
log logn)-coloring, the reduction produces an MIS by

handling one color class in each round. The overall running time is O(log n
log logn). Consequently,

we obtain an MIS algorithm for graphs with bounded arboricity that runs is sublogarithmic

time.

Theorem 5.18. Consider an n-vertex graph G with arboricity a(G) = O((logn)1/2−ǫ), 0 < ǫ <

1/2. Procedure Tradeoff-Color combined with the standard reduction from an MIS to coloring,

computes an MIS of G in time O(logn
log logn).

Whenever a = Ω(
√
log n) the same reduction can be used in conjunction with Lemma 5.15.

The running time of the resulting algorithm for computing MIS becomes O(at · logn+a · t). This
expression is optimized by setting t =

√
log n.

Theorem 5.19. Consider an n-vertex graph G with arboricity a(G) = Ω(
√
logn). Procedure

Tradeoff-Color invoked with parameters a and t =
√
log n, combined with the standard reduction

from MIS to coloring, computes an MIS of G in time O(a · √log n).

In particular, Theorem 5.19 implies that an MIS can be computed deterministically in poly-

logarithmic time on graphs with polylogarithmic arboricity. (This follows from Theorem 5.14

as well.)

In [6] it is shown that the algorithms presented in this section can be extended to scenarios

in which the vertices do not know the value of the arboricity a or the number of vertices n at

the beginning of the computation. The effect of the generalization on the running time of these

algorithms is minor. The description of these extensions is outside the scope of this monograph.

A far more general approach can be found in [41]. This approach allows one to transform

algorithms that require some global knowledge into algorithms that do not require it, for a wide

range of distributed algorithms.

63

6 Defective Coloring

In this section we discuss computation of defective colorings (see also Section 2.4), and show

how defective colorings can be transformed into legal ones. Specifically, we describe a (∆ + 1)-

coloring algorithm that requires O(∆) + log∗ n time, which is based on defective coloring. The

results of this section are due to [7, 44].

In this section and later we assume that all vertices know ∆ and n before the beginning of

execution. In the previous section we noted that many distributed algorithms can be extended

to work without knowing in advance such parameters. In particular, it is shown in [41] that

the legal (∆+1)-coloring algorithms described in this section can be generalized to the scenario

when ∆ and n are not known in advance. The generalization affects the running time only by

constant factors.

6.1 Employing Defective Coloring for Computing Legal Coloring

In a graph G colored by a defective coloring ψ a vertex may have a color identical to colors of

some of its neighbors. Nevertheless, the number of neighbors with an identical color is bounded

by the defect of ψ. This property allows one to employ defective colorings in order to compute

legal colorings efficiently. Suppose that ψ is a d-defective p-coloring, for some integers d and

p. Each vertex v in G has at most d neighbors colored with the color ψ(v). Therefore, for

i = 1, 2, ..., p, the subgraph Gi ⊆ G induced by all vertices that are colored with color i, has

maximum degree at most d. Hence, Gi can be colored with (d+ 1)-colors, rather than (∆+ 1).

Moreover, the running time of computing a (d + 1)-coloring of Gi depends on d as well. For

example, one can use the KW algorithm (see Section 3.8) to compute a (d + 1)-coloring of Gi

in O(d log d) + log∗ n time.

Suppose that we could compute a ⌊∆/p⌋-defective p-coloring ψ of the graph G, for any p, 1 ≤
p ≤ ∆. In this case d = ⌊∆/p⌋. Suppose also that the running time of this computation would be

f(n,∆), for some function f . Then we could color legally, in parallel, the subgraphsG1, G2, ..., Gp

induced by the color classes of ψ. We would use the color palette P1 = {1, 2, ..., d+1} for G1, the

color palette P2 = {d+ 2, d+ 3, ..., 2(d+ 1)} for G2, and so on. Coloring all graphs Gi with the

palettes Pi results in a legal (⌊∆/p+ 1⌋ ·p) = O(∆)-coloring of G. (The coloring is legal because

any pair of neighbors that belong to the same Gi are colored with distinct colors, as a result

of invoking the KW algorithm on Gi. Any pair of vertices that belong to different subgraphs

Gi and Gj are colored using disjoint palettes Pi and Pj .) Since the KW algorithm is used for

coloring the subgraphs Gi, the overall running time would be f(n, d)+O(∆/p·log(∆/p))+log∗ n.

Thus, the ability to compute a ⌊∆/p⌋-defective p-coloring efficiently, for sufficiently large p,

64

would result in a legal O(∆)-coloring algorithm with sublinear in ∆ running time. Unfortunately,

computing such a defective coloring is a challanging open problem. (Though, in the sequential

setting, a ⌊∆/p⌋-defective p-coloring, can be computed for any input graph G, and any parameter

p, using a simple greedy algorithm [54]. See Section 2.4.) On the other hand, a defective coloring

with somewhat weaker parameters is sufficient for computing a (∆+1)-coloring in O(∆)+log∗ n

time. Specifically, an O(∆/p)-defective p2-coloring is appropriate for this goal, and it can be

efficiently computed in the distributed setting. In this section we discuss how to use an O(∆/p)-

defective p2-coloring for computing a legal (∆+1)-coloring. In the next section we describe how

to compute an O(∆/p)-defective p2-coloring from scratch.

We will be using the following theorem that states that an appropriate defective coloring

can be computed efficiently. In the next section we discuss an algorithm that computes it, and

prove its correctness.

Theorem 6.1. Let p be a parameter such that p ≤ ∆ǫ, for an arbitrarily small constant ǫ > 0.

It is possible to compute an O(∆/p)-defective p2-coloring within O(∆3ǫ) + log∗ n deterministic

time.

Remark: This theorem is from [7]. A faster algorithm for computing an O(∆/p)-defective

p2-coloring for any p, 1 ≤ p ≤ ∆, was devised in [44]. The running time of that algorithm is

log∗ n+O(1).

We start with presenting a legal (∆ + 1)-coloring algorithm that runs in O(∆ log log∆ +

log∗ n) time. This is already a significant improvement over the KW algorithm. This improved

algorithm is called A2. (The KW algorithm will be denoted by A1.) The algorithm accepts as

input a graph G. It starts with computing an O(∆/p)-defective p2-coloring ψ of G, where p =

⌊log∆⌋. Recall that the color classes of ψ induce a partition into p2 subgraphs G1, G2, ..., Gp2 ,

with maximum degree O(∆/p) = O(∆/ log∆) each. Next, the algorithm A2 computes legal

colorings of G1, G2, ..., Gp2 , in parallel. It does so by assigning disjoint palettes P1,P2,,Pp2

to the subgraphs, and employing the KW algorithm for computing an O(∆/ log∆)-coloring for

each subgraph Gi, i = 1, 2, ..., p2, in parallel. These colorings constitute a legal coloring of the

entire graph using O(∆/p · p2) = O(∆ log∆) colors. Finally, on its last step, the algorithm A2

reduces the number of colors from O(∆ log∆) to (∆ + 1) using the KW iterative procedure.

(Recall that the KW iterative procedure starts from a legal m-coloring, for some m > ∆, and

computes a legal (∆ + 1)-coloring in O(∆ log m
∆) time. See Section 3.8.) See Algoritm 6 for the

pseudocode of A2. The proof of correctness of the algorithm, and its running time analysis, are

provided below.

65

Algorithm 6 A2(G)

1: p := ⌊log∆⌋
2: ψ := compute an O(∆/p)-defective p2-coloring of G

3: Let G1, G2, ..., Gp2 denote the subgraphs induced by the color classes of ψ

4: for i = 1, 2, ..., p2, in parallel do

5: ϕi := compute a legal O(∆/p)-coloring of Gi using the KW algorithm

6: end for

7: ϕ := compute a legal O(∆ · p)-coloring from ϕ1, ϕ2, ..., ϕp2

8: ϕ′ := invoke the KW iterative procedure on ϕ

9: return ϕ′

Theorem 6.2. Algorithm A2 computes a legal (∆+ 1)-coloring of G in O(∆ log log∆+ log∗ n)

time.

Proof. First, we prove the correctness of the algorithm. Recall that all vertices know ∆ before

the execution starts. Let c be the constant hidden in the O-notation in the defect parameter

in line 2 of the algorithm. The constant c is independent of the input graph, and thus can

be provided to the vertices before the execution starts, as well. Therefore, in line 5 of the

algorithm, for each vertex v ∈ Gi, i = 1, 2, ..., p2, a color ϕi(v) is computed such that ϕi(v) ∈
{(i − 1) · (c · ⌊∆/p⌋ + 1) + 1, (i − 1) · (c · ⌊∆/p⌋ + 1) + 2, ..., i · (c · ⌊∆/p⌋ + 1)}, and for each

neighbor u of v in Gi, it holds that ϕi(u) 6= ϕi(v). In line 7 a coloring ϕ of the entire graph is

computed, by setting for each v ∈ Gi, ϕ(v) := ϕi(v), for all i = 1, 2, ..., p2. The coloring ϕ is

legal since for any pair of neighbors u, v, they either belong to the same set Gi, which implies

ϕ(u) = ϕi(u) 6= ϕi(v) = ϕ(v), or belong to distinct sets Gi and Gj , i 6= j. In the latter case the

ranges from which the colors ϕi(u) and ϕj(v) were selected are disjoint, and thus ϕ(u) 6= ϕ(v) as

well. Therefore, ϕ is a legal coloring that employs ((c · ⌊∆/p⌋+1) · p2) = O(∆ · p) = O(∆ log∆)

colors. In the last step this coloring is transformed into a legal (∆ + 1) coloring of G using the

KW iterative procedure. This completes the correctness proof.

Next, we analyze the running time of the algorithm. By Theorem 6.1, line 2 requires O(∆3·ǫ+

log∗ n) time. Line 5 invokes the KW algorithm on graphs with maximum degree O(∆/p) =

O(∆/ log∆). This requires O(∆/ log∆ · log(∆/ log∆)+ log∗ n) = O(∆+ log∗ n) time. Line 7 is

performed locally without any communication. Line 8 invokes the KW iterative procedure on a

graph with an initial m-coloring, where m = O(∆ log∆). The running time of this invocation is

O(∆ · log(m∆)) = O(∆ log log∆). Hence, the overall running time is O(∆ log log∆+ log∗ n).

Next, we build a series of algorithms A3,A4,A5, ... that compute (∆ + 1)-coloring. Each

algorithm Ak, k = 3, 4, 5, ..., improves upon the algorithm Ak−1. Specifically, for any constant

66

integer k > 2, the running time of Ak is O(∆ log(k)∆+ log∗ n). The structure of an algorithm

Ak is very similar to that of A2. The main difference is that instead of using the KW algorithm

in line 5, it invokes the algorithm Ak−1. In addition, the values of some parameters are changed

appropriately. See the pseudocode of an algorithm Ak below. Its analysis is provided in the

next theorem.

Algorithm 7 Ak(G)

1: p :=
⌊
log(k−1)∆

⌋

2: ψ := compute an O(∆/p)-defective p2-coloring of G

3: Let G1, G2, ..., Gp2 denote the subgraphs induced by the color classes of ψ

4: for i = 1, 2, ..., p2, in parallel do

5: ϕi := compute a legal O(∆/p)-coloring of Gi using the algorithm Ak−1

6: end for

7: ϕ := compute a legal O(∆ · p)-coloring from ϕ1, ϕ2, ..., ϕp2

8: ϕ′ := invoke the KW iterative procedure on ϕ

9: return ϕ′

Theorem 6.3. For any constant integer k ≥ 2, the algorithm Ak computes a legal (∆ + 1)-

coloring of G in O(∆ log(k)∆+ log∗ n) time.

Proof. We prove the theorem by induction on k. The base case (k = 2) follows directly from

Theorem 6.2. For the induction step, assume that an algorithmAk−1 computes a (∆+1)-coloring

in O(∆ log(k−1)∆+ log∗ n) time. Next, we analyze the algorithm Ak. The proof of correctness

for Ak is very similar to the proof of Theorem 6.2. Thus, we present here only the running

time analysis. Line 2 of Algorithm Ak requires O(∆3ǫ + log∗ n) time, by Theorem 6.1. By the

induction hypothesis, line 5 of Ak requires O(∆/p · log(k−1)(∆/p) + log∗ n) = O(∆ + log∗ n)

time. (Recall that p =
⌊
log(k−1)∆

⌋
.) Line 8 of Ak invokes the KW iterative procedure on an

m-colored graph with m = O(∆ · p) = O(∆ · log(k−1)∆). The running time of this invocation

is O(∆ · log(m∆)) = O(∆ log(k)∆). Therefore, the overall running time of the algorithm Ak is

O(∆ log(k)∆+ log∗ n).

The series of algorithms A2,A3,A4, ...,Ak can be extended to superconstant values of k. In

particular, for k = ⌈log∗∆⌉, the algorithm Ak requires O(∆ + log∗∆ log∗ n) time. By a more

sophisticated algorithm, this can be improved to O(∆)+log∗ n. Since this algorithm is somewhat

technically involved, we will not present it here. (The details can be found in [7].) Instead, we

describe an algorithm due to [44] that achieves the same running time, but employs a different

technique. However, it is still based on computation of defective colorings. It requires computing

a (∆/c)-defective O(c2)-coloring, for a constant c. Observe that it is possible to achieve such a

67

Algorithm 8 Procedure Delta-Col(G′)

1: if (∆′ < ∆̃/ log ∆̃) then

2: ϕ′ := compute a legal (∆′ + 1)-coloring using the KW iterative procedure

3: else

4: d := ⌊∆′/2⌋
5: ψ := compute a d-defective c-coloring using Theorem 6.4

/* c = O(1) is a universal constant */

6: for all colors i ∈ [c] in parallel do

7: denote by Gi the subgraph induced by all vertices with ψ-color i

8: Delta-Col(Gi) /* recursive call */

9: end for

10: ϕ := compute a legal c · (d+ 1)-coloring from ϕ1, ϕ2, ..., ϕc

11: ϕ′ := invoke the KW iterative procedure with input coloring ϕ

12: end if

13: return ϕ′

coloring using Theorem 6.1, within o(∆) + log∗ n time. To this end, one needs to select p to be

larger than the constant hidden in the O-notation of the defect parameter O(∆/p) in Theorem

6.1. We summarize this in the next theorem.

Theorem 6.4. For any constant integer c > 0, a (∆/c)-defective O(c2)-coloring can be computed

in o(∆) + log∗ n time.

The additive term of log∗ n in the running time given in Theorem 6.4 corresponds to an

initial stage of the algorithm for computing defective coloring. This stage computes a legal

O(∆2)-coloring. In the consequent stages of the algorithm it is used to compute a (∆/c)-

defective O(c2)-coloring in o(∆)-time. Therefore, if a legal O(∆2)-coloring is provided a priori,

computing the defective coloring as above requires o(∆) time (rather than o(∆) + log∗ n time).

Using Theorem 6.4 a legal (∆ + 1)-coloring algorithm that runs in O(∆) + log∗ n time is

obtained in the following way. The algorithm accepts as input the graph G. First, it computes a

(∆/2)-defective O(1)-coloring ψ of G. Then it recursively computes legal (∆/2+ 1)-colorings of

the O(1) graphs induced by the color classes of ψ. Next, these colorings are merged into a unified

legal O(∆)-coloring of G. Finally, the number of colors is reduced to (∆+1). This completes the

description of the algorithm. Its pseudocode is provided below. In the pseudocode, ∆̃ denotes

the maximum degree in the input graph G. ∆′ = ∆(G′) denotes (an upper bound on) the

maximum degree of the graph G′ in which the procedure is invoked. (G′ is a subgraph of G. In

the first invocation G′ = G and ∆′ = ∆̃). Next, we prove the correctness of the algorithm and

analyze its running time.

68

Theorem 6.5. Procedure Delta-Col invoked on an input graph G with maximum degree ∆

computes a legal (∆ + 1)-coloring of G in O(∆) + log∗ n time.

Proof. We start with proving the correctness of the algorithm. The proof is by induction on ∆.

For the base case (∆ = 1), the algorithm computes a legal (∆+ 1)-coloring of G in line 2 of the

algorithm. For the induction step, assume that the algorithm is correct for any ∆′ < ∆. We

prove the correctness for graphs with ∆(G) = ∆ = ∆̃. The algorithm computes a d-defective

c-coloring of G in line 5. It induces a partition of G into c subgraphs G1, G2, ..., Gc, each

with maximum degree at most d = ∆/2. Then, Procedure Delta-Col is invoked recursively on

these subgraphs in line 8. By the induction hypothesis, it computes legal (∆/2 + 1)-colorings

ϕ1, ϕ2, ..., ϕc, for G1, G2, ..., Gc, respectively. Consequently, these colorings can be transformed

into a legal (c ·(∆/2+1))-coloring of G, in line 10 of the algorithm. Then, the number of colors is

reduced to (∆+1) using the KW iterative procedure, in line 11. This completes the correctness

proof.

Next, we analyze the running time of the algorithm. First, we note that computing a d-

defective c-coloring requires o(∆) + log∗ n only in the first time the computation is performed.

(See Theorem 6.4, and the discussion that follows it.) In the next computations of defective

colorings, the running time becomes o(∆). This is possible since during the first computation an

O(∆̃2)-coloring ψ of the input graph is computed in log∗ n+O(1) time. Given the O(∆̃2)-coloring

ψ of the input graph we compute an O(∆′2)-coloring ψ′ of a subgraph G′ in O(1) time via the

algorithm of Linial [52]. Specifically, ∆′ satisfies ∆′ ≥ ∆̃/ log ∆̃. Hence ψ can be viewed also as

an O(∆′2 log2∆′)-coloring of G′. Such a coloring can be converted into an O(∆′2)-coloring of G′

within O(1) rounds. (See Chapter 3.10.) Therefore, the factor of log∗ n+O(1) appears only in

the initial invocation. Thus, the running time of the algorithm is f(n,∆) = log∗ n+O(1)+T (∆),

where T (∆) is a recursive function. By lines 5, 8, and 11 of the algorithm, we conclude that

T (∆) = o(∆)+T (∆/2)+O(∆) = T (∆/2)+O(∆), if ∆ ≥ ∆̃/ log ∆̃. Otherwise, by lines 1-2 it is

easy to verify that T (∆) = O(∆ log∆) = O(∆̃). The recursive equation T (∆) = T (∆/2)+O(∆)

solves to T (∆̃) = O(∆̃).

Theorem 6.5 in conjunction with Theorem 6.1 can be used to devise a tradeoff between the

running time and the number of colors in a straightforward way. Specifically, for any p ≤ ∆1/4,

a legal O(∆ · p)-coloring can be computed in O(∆/p) + log∗ n time. To this end, compute an

O(∆/p)-defective p2-coloring ϕ′, in time O(∆3ǫ) + log∗ n = O(∆3/4) + log∗ n. Then compute a

legal O(∆/p)-coloring of each subgraph induced by a color class of ϕ′. These computations can

be performed for all color classes of ϕ′ in parallel, and using disjoint color palettes. This step

requires O(∆/p) + log∗ n time. As a result a legal O(∆ · p)-coloring is obtained. The overall

running time is O(∆/p+ log∗ n). We remark that using a more sophisticated procedure one can

69

obtain a tradeoff for the entire range 1 ≤ p ≤ ∆. (See [7, 44].) We summarize this in the next

theorem.

Theorem 6.6. For any p, 1 ≤ p ≤ ∆, a legal O(∆ · p)-coloring can be computed in O(∆/p +

log∗ n) time.

6.2 Defective Coloring Algorithms

In the previous section we demonstrated how a legal coloring can be computed by combining

defective colorings. In this section we describe algorithms for computing defective colorings from

scratch. Combining the algorithms from the previous section with the algorithms from this one

results in an efficient algorithm for computing legal colorings from scratch.

6.2.1 Procedure Refine

Many algorithms for computing a legal (∆+1)-coloring employ the following standard technique.

Whenever a vertex is required to select a color it selects a color that is different from the colors

of all its neighbors. Its neighbors select their colors in different rounds. On the other hand, if

one is interested in a defective coloring, a vertex can select a color that is used by some of its

neighbors. Moreover, some neighbors can perform the selection in the same round. Consequently,

the computation can potentially be significantly more efficient than that of a (∆ + 1)-coloring.

We start with presenting a procedure, called Refine, that accepts as input a graph with an

m-defective χ-coloring ϕ, and a parameter p, 1 ≤ p ≤ ∆, for some integers m, χ, and p, and

computes an (m + ⌊∆/p⌋)-defective p2-coloring in time O(χ). The procedure employs acyclic

partial orientations. (See Section 3.3 for definitions concerning acyclic partial orientations.)

While acyclic orientations are useful for computing legal colorings, acyclic partial orienta-

tions are useful for computing defective ones. Specifically, Procedure Refine computes such an

orientation, and then uses it for computing a defective coloring. In order to compute the partial

orientation, it orients each edge (u, v) for which ϕ(u) 6= ϕ(v) towards the endpoint with the

smaller ϕ-color. All other edges remain undirected. (These are the edges that connect vertices

with the same ϕ-color.) Denote the resulting orientation by η. Since not all edges have to be

oriented, the length of an acyclic partial orientation may be significantly smaller than the length

of any possible complete orientation of the input graph. (The length of an orientation is defined

in Definitions 3.1 - 3.2.) Consequently, if it is possible to employ a partial orientation instead

of a complete one, then the coloring computation can be performed much faster.

Once an acyclic partial orientation is obtained, in the way that was described above, Proce-

dure Refine employs it to computes a new defective coloring ϕ′. It proceeds in two stages. In

70

the first stage each vertex v computes a new color ψ(v) from the range [p] = {1, 2, ..., p} in the

following way. Once v receives the color ψ(u) from each of its parents u, it sets ψ(v) to be the

color from [p] that is used by the minimal number of its parents, breaking ties arbitrarily. In

other words, v selects a color i, such that for every j = 1, 2, ..., p, it holds that

|{u is a parent of v : ψ(u) = i}| ≤ |{u is a parent of v : ψ(u) = j}| .

In particular, if there is a color in the range [p] that is not used by any parent, then it is

selected. Then v sends its selection ψ(v) to all its neighbors. In the second stage the orientation

is reversed, and each vertex v computes a new color Ψ(v) from the range [p] in a similar way.

Specifically, it waits for all its parents to select a Ψ-color, and then selects a color which is used

by the minimal number of parents. Denote the reversed orientation by η̄. (Observe that the

parents of v in the orientation η̄ are the children of v in the orientation η.) Then v sends its

selection Ψ(v) to all its neighbors.

Once the vertex v has computed both colors ψ(v) and Ψ(v), it sets its final color ϕ′(v) =

(Ψ(v)−1)·p+ψ(v). Intuitively, the color ϕ′(v) can be seen as a pair (Ψ(v), ψ(v)). This completes

the description of Procedure Refine. Next, we show that the procedure is correct.

Lemma 6.7. The coloring ϕ′ produced by Procedure Refine is an (m + ⌊∆/p⌋)-defective p2-
coloring.

Proof. First, observe that for each vertex v, it holds that 1 ≤ ψ(v),Ψ(v) ≤ p, and thus, 1 ≤
ϕ′(v) ≤ p2. It is left to show that for each vertex v, the number of neighbors u of v with

ϕ′(u) = ϕ′(v) is at most (m+ ⌊∆/p⌋). Recall that procedure Refine accepts a defective coloring

ϕ as input. For a vertex v ∈ V , denote by S(v) the set of neighbors of v with a smaller ϕ-

color. Denote by G(v) the set of neighbors of v with a greater ϕ-color. Notice that S(v) and

G(v) correspond to the parents and the children of v, respectively, in the orientation η. Each

vertex v has at most m neighbors z such that ϕ(v) = ϕ(z). By the pigeonhole principle, the

number of neighbors u of v with ϕ(u) < ϕ(v) and ψ(u) = ψ(v) is at most ⌊|S(v)| /p⌋, since
v selected ψ(v) to be the color from [p] that is used by the minimal number of its neighbors

from S(v). Similarly, the number of neighbors w of v with ϕ(w) > ϕ(v) and Ψ(w) = Ψ(v) is

at most ⌊|G(v)| /p⌋. Observe that for any neighbor u of v, if ϕ′(u) = ϕ′(v) then ψ(u) = ψ(v)

and Ψ(u) = Ψ(v). Consequently, the number of neighbors u with ϕ′(u) = ϕ′(v) is at most

(m+ ⌊|S(v)| /p⌋+ ⌊|G(v)| /p⌋) ≤ (m+ ⌊deg(v)/p⌋) ≤ (m+ ⌊∆/p⌋).

The two stages of Procedure Refine can be executed in parallel. Thus, Refine can be executed

within χ+ 1 rounds. This is argued formally in the next lemma.

Lemma 6.8. The time complexity of Procedure Refine is χ.

71

Proof. We prove by induction on i that after i rounds, i = 1, 2, ..., χ, each vertex with ϕ(v) ≤ i

has selected its color ψ(v). For the base case, consider all the vertices v with ϕ(v) = 1. There

are no vertices u with ϕ(u) < 1, and thus, each vertex v with ϕ(v) = 1 selects the color ψ(v) in

the first round. Now, for i ≥ 2, assume that after (i−1) rounds, each vertex with ϕ(v) ≤ (i−1)

has selected its color ψ(v). Then, by the induction hypothesis, in round i, for a vertex v with

ϕ(v) = i, all the neighbors u of v satisfying ϕ(u) < ϕ(v) = i have selected their color ψ(u) in

round (i− 1) or earlier. Hence, if v has not selected the color ψ(v) before round i, it necessarily

selects it in round i. Therefore, after χ rounds all the vertices in the graph have selected the

color ψ(v) and the first stage is completed. Similarly, the second stage is completed after another

χ rounds. The computation of ϕ′(v) from ψ(v) and Ψ(v) is performed immediately after the

second stage is finished, and it requires no additional communication. Finally, note that the two

stages can be executed in parallel. Thus, the running time is χ.

For a graph G = (V,E) whose vertices are provided with an m-defective k-coloring, for some

parameters m and k, we say that G is m-defective k-colored.

We summarize this section with the following corollary.

Corollary 6.9. For positive integers χ, m, and p, suppose that Procedure Refine is invoked on

a graph G with maximum degree ∆. Suppose also that G is m-defective χ-colored. Then the

procedure produces an (m+ ⌊∆/p⌋)-defective p2-coloring of G within at most χ rounds.

6.2.2 Procedure Defective-Color

In this section we describe an algorithm called Procedure Defective-Color. The algorithm accepts

as input a graph G = (V,E), and two integer parameters p, q such that 1 ≤ p ≤ ∆, p2 < q,

and q < c′ · ∆2, for some positive constant c′ > 0. It computes an O(log∆
log(q/p2)

· ∆/p)-defective
p2-coloring of G in time O(log∗ n+ log∆

log(q/p2)
· q) from scratch. In particular, if we set q = ∆ǫ · p2

for an arbitrarily small positive constant ǫ, we get an O(∆/p)-defective p2-coloring algorithm

with running time O(log∗ n+∆ǫ ·p2). The algorithm starts by computing a legal coloring with a

very large number of colors. Next, the algorithm proceeds in phases. In each phase the number

of colors is reduced by a factor of q/p2. However, this increases the defect parameter of the

coloring by an additive term of ⌊∆/p⌋. Selecting appropriate parameters for p and q enables us

to keep the defect parameter and the running time in check.

Next, we describe the algorithm in detail. The algorithm starts by computing an O(∆2)-

coloring of the input graph. This coloring ϕ can be computed in log∗ n+O(1) time from scratch

using the algorithm of Linial [52]. Let c, c > 0, be a constant such that c · (∆2) is an upper

bound on the number of colors employed. Let h =
⌊
c ·∆2/q

⌋
. (The constant c′ mentioned in

the beginning of the section is sufficiently small to ensure that h ≥ 1.) Each vertex v with

72

1 ≤ ϕ(v) ≤ h · q joins the set Vj with j = ⌈ϕ(v)/q⌉. Vertices v that satisfy h · q < ϕ(v) ≤ c ·∆2

join the set Vh. In other words, the index j of the set Vj to which the vertex v joins is determined

by j = min {⌈ϕ(v)/q⌉ , h}. Observe that for every index j, 1 ≤ j ≤ h − 1, the set Vj is colored

with exactly q colors, and Vh is colored with q′ colors with q ≤ q′ ≤ 2q. By definition, for each

j, 1 ≤ j ≤ h − 1, Vj is 0-defective q-colored (i.e., the defect is m = 0 and the number of colors

is k = q), and Vh is 0-defective q′-colored (m = 0, k = q′). For each j, 1 ≤ j ≤ h, denote this

coloring of Vj by ψj . Then, for each graph G(Vj) induced by the vertex set Vj , Procedure Refine

is invoked on G(Vj) with the parameter p, in parallel for j = 1, 2, .., h. As a result of these

invocations, each graph G(Vj) is now ⌊∆/p⌋-defective p2-colored. Let ϕ′
j denote this coloring.

Next, each vertex v selects a new color ϕ′′(v) by setting ϕ′′(v) = ϕ′
j(v) + (j − 1) · p2, where j

is the index such that v ∈ Vj . The number of colors used by the new coloring ϕ′′ is at most

h ·p2 ≤ c · (∆2) ·p2/q. It follows that the coloring ϕ′′ is a ⌊∆/p⌋-defective (c · (∆2) ·p2/q)-coloring
of G.

This process is repeated iteratively. On each iteration the vertex set is partitioned into

disjoint subsets Vj , such that in each subset the vertices are colored by at most q different

colors, except one subset in which the vertices are colored by at most 2q colors. Then, in parallel,

the coloring of each subset is converted into a p2-coloring. Consequently, in each iteration the

number of colors is reduced by a factor of at least q/p2. (Except for the last iteration in which the

number of colors is larger than p2 but smaller than 2q, and it is reduced to p2.) However, for a

vertex v, the number of neighbors of v that are colored by the same color as v, that is, the defect

def ϕ(v) of v, may grow by an additive term of ⌊∆/p⌋ in each iteration. The process terminates

when the entire graph G is colored by at most p2 colors. (After logq/p2(c · ∆2) iterations all

vertices know that G is colored by at most p2 colors.) In each iteration an upper bound χ on

the number of currently employed colors is computed. In the last iteration, if χ < q then all the

vertices join the same set V1, and consequently V1 = V , and Procedure Refine is invoked on the

entire graph G. See Figure 13 for an illustration. The pseudo-code of the algorithm is provided

below.

73

Fig. 13. An execution of Procedure Defective-Color with the parameters p and q, such that

q = 3p2, on an initially (6q)-colored graph G. Each oval represents a subgraph. The range

inside the oval represents the color palette employed by the subgraph. For j, 1 ≤ j ≤ 6, the

set Vj changes after each iteration, and contains all vertices that are currently colored using the

palette {(j − 1) · q + 1, (j − 1) · q + 2, ..., j · q}.

74

Algorithm 9 Procedure Defective-Color(p, q)

Algorithm for each vertex v ∈ V

1: ϕ := color G with (c ·∆2) colors

2: χ := c ·∆2 /* the current number of colors */

3: i = 0 /* the index the of current iteration */

4: while χ > p2 do

5: if χ < q then

6: j := 1

7: else

8: j := min {⌈ϕ(v)/q⌉ , ⌊χ/q⌋}
9: end if

10: set Vj to be the set of v

11: ψj(v) := ϕ(v)− (j−1) · q /* ψj(·) is an (i · ⌊∆/p⌋)-defective (2q)-coloring of G(Vj) */

12: ϕ′
j := Refine(G(Vj), ψj ,p) /*ϕ′

j(·) is an ((i+1) ⌊∆/p⌋)-defective p2-coloring of G(Vj) */

13: ϕ(v) := ϕ′′(v) := ϕ′
j(v) + (j − 1) · p2

14: χ := (max {⌊χ/q⌋ , 1}) · p2 /* ϕ(·) is an ((i+ 1) ⌊∆/p⌋)-defective χ-coloring of G */

15: i := i+ 1

16: end while

17: return ϕ

In what follows we prove the correctness of Procedure Defective-Color. We start with proving

the following invariant regarding the variable χ. Let χi denote the value of χ at the end of the

ith iteration. For technical convenience, we define χ0 to be the value of χ at the beginning of

the first iteration.

Lemma 6.10. For i = 0, 1, 2, ..., after the ith iteration, the number of colors employed by ϕ is

at most χi.

Proof. The proof is by induction on i.

Base (i = 0): In the first step of Procedure Defective-Color, the graph G is colored using (c ·∆2)

colors. Therefore, after 0 iterations, the number of colors employed by ϕ is at most χ0 = c ·∆2.

Induction step: By the induction hypothesis, after iteration (i − 1), the number of colors

employed by ϕ is at most χi−1. In iteration i the vertex set V of G is partitioned into h =

max {⌊χi−1/q⌋ , 1} disjoint subsets Vj , j = 1, 2, ..., h. Each of these subsets except Vh is colored

with at most q colors. The set Vh is colored with at most 2q colors. Procedure Refine produces

a new coloring in each set Vj such that the number of colors used in the set Vj is at most p2, for

j = 1, 2, ..., h. Consequently, the number of colors used by ϕ at the end of iteration i is at most

(max {⌊χi−1/q⌋ , 1}) · p2 = χi. (See steps 8, 13, and 14 of Algorithm 9.)

75

By step 14 of Algorithm 9, χi+1 ≤ max
{
χi · p2/q, p2

}
, for i = 0, 1, 2, ..., and χ0 = c · ∆2.

Therefore,

χi ≤ max
{
c ·∆2 · (p2/q)i, p2

}
. (5)

Next, we analyze the defect of the coloring produced by Procedure Defective-Color.

Theorem 6.11. Procedure Defective-Color invoked with the parameters p, q, computes an

O(log∆
log(q/p2)

·∆/p)-defective p2-coloring.

Proof. We prove by induction on i that after i iterations ϕ(·) is an (i ·∆/p)-defective
(max

{
c ·∆2 · (p2/q)i, p2

}
)-coloring of G.

Base (i = 0): Observe that a 0-defective (c ·∆2)-coloring is computed in the first step of the

algorithm. Therefore, before the beginning of the first iteration, ϕ is a 0-defective (c · ∆2)-

coloring of G.

Induction step: Let ϕ be the coloring produced after i − 1 iterations. By the induction

hypothesis, ϕ is an ((i − 1) · ∆/p)-defective (max
{
c ·∆2 · (p2/q)i−1, p2

}
)-coloring of G. In

iteration i, the vertex set V of G is partitioned into h = max {⌊χi−1/q⌋ , 1} disjoint subsets Vj .

If there is only one subset V1 = V , then G(V1) = G is colored with at most 2q colors. Otherwise,

each induced graph G(Vj), 1 ≤ j < h, is colored by q different colors. The induced graph G(Vh)

is colored by at most 2q colors. Therefore, for each j, 1 ≤ j ≤ h, the coloring ψj computed in step

11 of the ith iteration is an ((i−1) ·∆/p)-defective (2q)-coloring of G(Vj). In step 12, Procedure

Refine is invoked on G(Vj) with p as input. As a result, an ((i − 1) · ∆/p + ∆/p)-defective

p2-coloring ϕ′
j of G(Vj) is produced. In other words ϕ′

j is an (i · ∆/p)-defective p2-coloring of

G(Vj), i.e., def (ϕ
′
j) ≤ i ·∆/p. To finish the proof, we next argue that def (ϕ′′) is at most i ·∆/p

too. (The coloring ϕ′′ is defined in line 13 of Algorithm 9.)

Consider a vertex v, and a neighbor u of v. First, suppose that v ∈ Vj , u ∈ Vℓ, and j 6= ℓ.

Suppose without loss of generality that j < e. Then

ϕ′′(v)− ϕ′′(u) = (ϕ′
j(v)− ϕ′

ℓ(u)) + (j − ℓ) · p2 ≥ ϕ′
j(v)− ϕ′

ℓ(u) + p2.

Since ϕ′
j(v)− ϕ′

ℓ(u) ≥ −p2 + 1, it follows that ϕ′′(v) 6= ϕ′′(u).

Second, consider a neighbor w ∈ Vj of v. If ϕ′
j(v) 6= ϕ′

j(w) then also

ϕ′′(v) = ϕ′
j(v) + (j − 1) · p2 6= ϕ′′(w) = ϕ′

j(w) + (j − 1) · p2.

Since def (ϕ′
j) ≤ i·∆/p, there are at most (i·∆/p) neighbors w ∈ Vj of v such that ϕ′

j(w) = ϕ′
j(v).

Consequently, the coloring ϕ = ϕ′′ that is produced in line 13 of the ith iteration is an (i ·∆/p)-
defective (max

{
c ·∆2 · (p2/q)i, p2

}
)-coloring of G. This completes the inductive proof. By (5)

after log(c·∆2)
log(q/p2)

iterations, ϕ is a (log(c·∆
2)

log(q/p2)
·∆/p)-defective p2-coloring of G.

76

Procedure Defective-Color starts with computing an O(∆2)-coloring. The algorithm of Linial

[52] computes a (c ·∆2)-coloring in time log∗ n+O(1). The number of iterations performed by

Procedure Defective-Color is at most logq/p2(c·∆2) = log(c·∆2)
log(q/p2)

. Each iteration invokes Procedure

Refine that requires O(q) time, and performs some additional computation that requires O(1)

time. The running time of Procedure Defective-Color is given below.

Theorem 6.12. Procedure Defective-Color invoked with parameters p,q, runs in T (n) + O(q ·
log∆

log(q/p2)
) time, where T (n) is the time required for computing O(∆2)-coloring. If Linial’s al-

gorithm is used for O(∆2)-coloring, the running time of Procedure Defective-Color is O(q ·
log∆

log(q/p2)
) + log∗ n. It produces an O(log∆

log(q/p2)
·∆/p)-defective p2-coloring.

Observe that by substituting p = ∆ǫ, q = ∆3ǫ, for a sufficiently small constant ǫ > 0, into

Theorem 6.12, we obtain Theorems 6.1 and 6.4. Those theorems, in turn, imply Theorems

6.5 and 6.6, i.e., that (∆ + 1)-coloring can be computed in O(∆) + log∗ n deterministic time,

and that an O(∆ · p)-coloring can be computed in O(∆/p + log∗ n) deterministic time, for any

1 ≤ p ≤ ∆. Moreover, an O(∆2)-coloring can, in fact, be computed in 1
2 log

∗ n + O(1) time

[69]. Using the algorithm of [69] instead of Linial’s Algorithm [51] within the above algorithm

produces a (∆ + 1)-coloring in O(∆) + 1
2 log

∗ n time.

77

7 Arbdefective Coloring

In his seminal paper [51] in 1987 Linial devised an O(∆2)-coloring algorithm that runs in log∗ n+

O(1) time. (See Section 3.10 in the current monograph.) He also raised a major open question

which triggered a lot of research in the area of distributed symmetry breaking. His question

was whether in deterministic polylogarithmic time one can come up with a coloring algorithm

whith significantly less than ∆2 colors. This section is based on the paper [8] by the authors

of this monograph. This paper showed that ∆1+o(1)-coloring can be computed in deterministic

polylogarithmic time (specifically, in O(f(∆) · log∆ · logn) time, where f(∆) = ω(1) is an

arbitrarily slowly growing function). This result answered Linial’s question in the affermative.

The main technical tool introduced in [8] on our way to this result was the notion of arbdefective

coloring. In this section we describe algorithms for computing arbdefective colorings, and show

how they can be used for producing legal colorings.

7.1 Small Arboricity Decomposition

In this section we discuss a generalization of defective coloring which is called arbdefective color-

ing. A b-arbdefective k-coloring is a coloring of the vertices with k colors, such that each color

class induces a subgraph with arboricity at most b. Arbdefective coloring partitions the input

graph into subgraphs of bounded arboriciy, but the maximum degree of these subgraphs may

be unbounded. Nevertheless, one can still efficiently compute legal colorings of such subgraphs

using the algorithms described in Section 5. The challanging task is to compute appropriate par-

titions of bounded-arboricity subgraphs. This seems to be a more difficult task than computing

defective coloring. We start with describing an algorithm for computing an O(a2/3)-arbdefective

O(a1/3)-coloring. (Later we discuss algorithms that apply to a wider range of parameters.) This

algorithm employs some of the procedures described in previous sections. In particular, it em-

ploys Procedure Defective-Color that computes O(∆/p)-defective p2-coloring. But in contrast to

the coloring produced by this procedure, the product of the parameters of the arbdefective col-

oring is O(a2/3 ·a1/3) = O(a). In other words, the product of the parameters of the arbdefective

coloring is linear in a, while the product of parameters of the defective coloring is superlinear

in ∆. This makes arbdefective colorings very useful for efficient computation of legal colorings.

In fact, it turns out that by using arbdefective colorings one can compute a legal coloring much

more efficiently than by using defective ones.

The algorithm for computing an O(a2/3)-arbdefective O(a1/3)-coloring accepts as input a

graph G. The first stage of the algorithm computes an acyclic partial orientation with certain

helpful properties. Specifically, the orientation is sufficiently short, and has bounded deficit.

This stage is called Procedure Partial-Orientation. (See Algorithm 10 for its pseudocode. The

78

argument t is set as a1/3.) Procedure Partial-Orientation starts with computing an H-partition

H = H1, H2, ..., Hℓ of G, ℓ = O(logn), with degree A = O(a). Recall that each subgraph G(Hi),

i ∈ {1, 2, .., ℓ}, has maximum degree at most A. (See Lemma 5.4.) Next, for i = 1, 2, ..., ℓ in

parallel, it computes an O(a2/3)-defective O(a2/3)-coloring ψi of G(Hi). (To this end, it invokes

Procedure Defective-Color on G(Hi) with the parameters p = a1/3, q = a2/3+ǫ, for an arbitrarily

small positive constant ǫ. See Theorem 6.12.)

The colorings ψi are used to compute an acyclic partial orientation µ of the input graph

as follows. Each edge that connects endpoints from distinct H-sets is oriented towards the

endpoint with greater H-index. Each edge that connects endpoints from the same H-set, but

with distinct colors, is oriented towards the endpoint with the greater color. The rest of the

edges, that connect endpoints from the same set and with the same color, remain unoriented.

This completes the description of Procedure Partial-Orientation.

Algorithm 10 Procedure Partial-Orientation(G, t)

1: H1,H2,...,Hℓ := an H-partition of G.

2: for i = 1, 2, ..., ℓ in parallel do

3: compute an ⌊a/t⌋-defective O(t2)-coloring ψi of G(Hi).

4: end for

5: for each edge e = (u, v) in E in parallel do

6: if u and v belong to different H-sets then

7: orient e towards the endpoint with greater H-index.

8: else

9: /* u, v ∈ Hi for some i, 1 ≤ i ≤ ℓ */

10: if u and v have different colors then

11: orient e towards the endpoint with greater ψi-color.

12: end if

13: end if

14: end for

The orientation produced by invoking the procedure on the input graphG, and the parameter

t =
⌊
a1/3

⌋
, has out-degree O(a) (by Lemma 5.4) and length O(a2/3 · log n) (as we shortly prove).

In addition, it has another helpful property. The number of unoriented edges connected to each

vertex, that is, the maximum deficit is bounded. (See Definition 3.2 (3).) Since each vertex

v ∈ V has at most O(a2/3) neighbors in the same H-set Hi with the same ψi-color, the deficit

of the orientation µ which was obtained from the colorings ψi by Algorithm 10 is O(a2/3).

Next, we analyze the length of µ. To prove that the length of µ is O(a2/3 logn) consider the

graphG′ which is obtained by removing all unoriented edges fromG. For an index i ∈ {1, 2, ..., ℓ},

79

for each vertex v ∈ Hi, consider the ordered pair 〈ψi(v), i〉 as the color of v in G′. Then G′

is colored legally using O(a2/3 logn) colors. Denote this coloring by ρ. Observe that µ is an

induced orientation of the coloring ρ. Thus, by Property 3.3, the length of µ is O(a2/3 logn).

For future reference we summarize the properties of µ below.

Corollary 7.1. The acyclic partial orientation µ which was produced by Algorithm 10 invoked

with t =
⌊
a1/3

⌋
has out-degree A = O(a), length ℓ = O(t2 · logn) = O(a2/3 logn), and deficit

d = O(a/t) = O(a2/3).

Once a partial orientation µ has been computed, it is used for computing an O(a2/3)-

arbdefective O(a1/3)-coloring ϕ. To this end each vertex v selects its color ϕ(v) once all its

parents have done so. It selects a color from the range {1, 2, ...,
⌊
a1/3

⌋
}, which is used by the

minimum number of parents. This completes the description of the algorithm. Its pseudocode

is provided below. (The parameters t and k are set to t = k =
⌊
a1/3

⌋
.) Next we prove its

correctness.

Algorithm 11 Procedure Arbdefective-Coloring(G, k, t)

1: µ = Partial-Orientation(G, t)

2: once all the parents u of v with respect to µ have selected a color ϕ(u) do

v selects a color ϕ(v) from the palette {1, 2, ..., k} which is used by the minimum number of

parents of v

Lemma 7.2. The coloring ϕ produced by the above algorithm invoked with the parameters k =
⌊
a1/3

⌋
and t =

⌊
a1/3

⌋
is an O(a2/3)-arbdefective O(a1/3)-coloring.

Proof. The number of colors used by ϕ is at most k = t = O(a1/3). For any i ∈ {1, 2, ..., t},
consider the subgraph Gi of G induced by all vertices v with ϕ(v) = i. We need to prove that

a(Gi) = O(a2/3), for all i = {1, 2, ..., t}. To this end we first note that for each vertex v ∈ V ,

the number of parents of v in G (under the orientation µ) that have the same ϕ-color as that

of v is at most O(a2/3). Indeed, the out-degree of µ is A = O(a), and each vertex v selects

a color ϕ(v) = i ∈ {1, 2, ..., t} that is used by the minimum number of parents. Therefore, by

pigeonhole principle, v has at most O(A/t) = O(a2/3) parents (under µ) in G with the same

ϕ-color as that of v.

Observe that v ∈ V (Gi). Although v has O(a2/3) parents under µ in G, note that µ is a

partial orientation. Therefore, it may leave some edges incident on v in Gi unoriented. Next we

show that these edges can also be oriented while preserving an upper bound of O(a2/3) on the

maximum out-degree.

Consider the orientation µ restricted to the subgraph Gi. The number of parents under µ

in Gi of a vertex v ∈ Gi is O(a2/3). Denote be E′
i the set of edges of Gi that are oriented by

80

µ, and by E′′
i the set of edges of Gi which are not oriented. Consider the graph G′

i = (V,E′
i).

The orientation µ restricted to G′
i is an acyclic complete orientation with out-degree O(a2/3). In

other words, each vertex in G′
i has O(a2/3) parents under µ. Therefore, the arboricity of G′

i is

O(a2/3). On the other hand, the graph G′′
i = (V,E′′

i) consists of all unoriented edges of Gi with

respect to the restriction of the orientation µ to Gi. Therefore, each unoriented edge of Gi is

also unoriented in G. Recall that µ has deficit d = O(a2/3). Therefore, each vertex in G belongs

to at most d unoriented edges. Consequently, each vertex in Gi belongs to at most d unoriented

edges of Gi as well. Therefore, the maximum degree of G′′
i , which includes only unoriented edges,

is also at most d. Consequently, a(G′′
i) ≤ ∆(G′′

i) ≤ d = O(a2/3). Therefore, the arboricity of

G′
i ∪G′′

i is O(a2/3) · 2 = O(a2/3). Since E(Gi) = E′
i ∪ E′′

i , it follows that a(Gi) = O(a2/3).

Lemma 7.3. An O(a2/3)-arbdefective O(a1/3)-coloring of a graph G with arboricity a can be

computed within O(a2/3+ǫ · logn) time, for an arbitrarily small positive constant ǫ.

Proof. The first stage of Algorithm 11 involves invoking Procedure Partial-Orientation, which, in

turn, invokes Procedure Partition and Procedure Defective-Color. Procedure Partition requires

O(logn) time. (See Theorem 5.5.) Procedure Defective-Color invoked with q = a2/3+ǫ, p = a1/3,

requires O(q · log a
log q/p2

+log∗ n) = O(a2/3+ǫ+log∗ n) time. (See Theorem 6.12.) The second stage

employs the partial orientation µ that was computed in the first stage, for computing the coloring

ϕ. The running time depends linearly on the length of the orientation. Therefore, the running

time of the second stage is O(a2/3 log n). Hence, the overall running time is O(a2/3+ǫ · logn).

Once an O(a2/3)-arbdefective O(a1/3)-coloring ϕ is computed, it can be used for obtaining

a legal coloring. Specifically, ϕ partitions the input graph G into subgraphs G1, G2, ..., Gt, each

of arboricity O(a2/3). Therefore, for 1 ≤ i ≤ t in parallel, Gi can be colored with O(a2/3)-

colors within O(a2/3 log n) time, by Corollary 5.14. By using t = O(a1/3) unique palettes of

size O(a2/3) each for G1, G2, ..., Gt, a legal O(a)-coloring of the input graph G is obtained. To

summarize, an O(a)-coloring can be computed from scratch within O(a2/3+ǫ · log n) time, for an

arbitrarilly small positive constant. Note that this is already a significant improvement over the

bound O(a · log n). (See Theorem 5.14.)

7.2 Efficient Coloring Algorithms

In this section we dicuss how to improve further the running time of the algorithm that computes

a legal O(a)-coloring. Before we describe the improved algorithm, we analyze the performance

of Procedure Arbdefective-Coloring in the general scenario of accepting any positive parameters

k, t, rather then fixing k = t =
⌊
a1/3

⌋
. (See Algorithm 11.) As a first step, we generalize

Corolary 7.1.

81

Lemma 7.4. Let ǫ be an arbitrarily small positive constant. Procedure Partial-Orientation

invoked on a graph G and an integer parameter t > 0 produces an acyclic orientation µ of

out-degree ⌊(2 + ǫ) · a⌋, length O(t2 · log n), and deficit at most ⌊a/t⌋. The running time of the

procedure is O(logn).

Proof. The out-degree of the oreintation µ is at most A = ⌊(2 + ǫ) · a⌋, by Lemma 5.4. Next,

we analyze the length of the orientation µ. Consider a directed path (oriented consistently with

respect to µ) in a subgraph G(Hi), 1 ≤ i ≤ ℓ. The length of this path is at most the number of

colors used in the defective coloring ψi of G(Hi), which is O(t2). Now consider a directed path

P in the graph G with respect to the orientation µ. The path may contain up to O(logn) edges

that cross between different H-sets. Between any pair of such edges in the path, there are up

to O(t2) consequent edges whose endpoints belong to the same H-set. Hence, the length of a

directed path P in G is O(t2 logn). (See Figure 14.) For analyzing the deficit, observe that for

every vertex v ∈ Hi, for some i, 1 ≤ i ≤ ℓ, the number of edges which are not oriented by µ and

incident to v is at most the defect of the coloring ϕi of Hi. Indeed, the only edges incident to

v that are left unoriented by the procedure are edges (v, u) with v, u ∈ Hi and ϕi(u) = ϕi(v).

Therefore the deficit of µ is at most ⌊a/t⌋.

Fig. 14. A directed path P = (v11, v12, ..., vℓ4) with respect to the orientation produced by

Algorithm 10. In this example each Hi is colored with 4 colors. For all i ∈ {1, 2, ..., ℓ}, j ∈
{1, 2, 3, 4}, vij is colored by j. P contains at most ℓ − 1 = O(log n) edges that cross between

different Hi’s.

Next, we analyze the running time of the procedure. Procedure Partial-Orientation starts

with computing an H-partition. This step requires O(logn) time. For the step that computes

an ⌊a/t⌋-defective O(t2)-coloring of a graph G(Hi) that has maximum degree A = O(a), we

use an algorithm by Kuhn. (Theorem 4.9 in [44].) This algorithm requires O(log∗ n) time.

Alternatively, if t is reasonably small (i.e., t < log1/2−η n, for some small constant η > 0), one

can also use the algorithm from Theorem 6.12 with p = t, q = t2+η. The running time of this

82

step is O(t2+η + log∗ n) = o(log n). Other steps require O(1) time.

We remark that without using the algorithm of [44], the running time of the procedure

becomes O(t2+η + logn) (instead of O(logn)). This is also sufficient for deriving main results of

this section.

Corollary 7.5. Procedure Arbdefective-Coloring invoked on a graph G and two positive integer

parameters k and t computes an ⌊a/t+ (2 + ǫ) · a/k⌋-arbdefective k-coloring in time O(t2 logn).

Proof. By Lemma 7.4, the orientation µ which is returned in step 1 of Procedure Arbdefective-

Coloring is a partial orientation with length ℓ = O(t2 · logn), out-degree m = ⌊(2 + ǫ) · a⌋, and
deficit τ ≤ ⌊a/t⌋. Consider the coloring ϕ returned by step 2 of the procedure. The arboricity

of a subgraph induced by a color class i, 1 ≤ i ≤ k, of ϕ is at most ⌊m/k⌋ + τ . (Notice that µ

is acyclic, and each vertex has at most ⌊m/k⌋ parents with its color, and at most τ unoriented

edges incident on it. Now the arboricity bound follows similarly to the proof of Lemma 7.2.)

Hence, the arbdefective coloring ϕ has arbdefect at most ⌊τ + ⌊m/k⌋⌋ =
⌊
⌊a/t⌋+ ⌊(2+ǫ)·a⌋

k

⌋
≤

⌊a/t+ (2 + ǫ) · a/k⌋. Step 2 requires O(ℓ) = O(t2 · log n) time. The invocation of Procedure

Partial-Orientation requires, by Theorem 7.4, O(logn) time. Hence the overall running time of

Procedure Arbdefective-Coloring is O(t2 · logn) +O(logn) = O(t2 · logn).

Now we are ready to describe the improved algorithm for O(a)-coloring. The main idea of the

improved algorithm is invoking Procedure Arbdefective-Coloring several times. Since Procedure

Arbdefective-Coloring produces subgraphs of smaller arboricity than that of the input graph,

it can be invoked again on the subgraphs, producing a refined decomposition, in which each

subgraph has even smaller arboricity. For example, invoking the procedure on a graph G with

the parameters k = t =
⌈
a1/6

⌉
, results in an O(a5/6)-arbdefective O(a1/6)-coloring. Invoking the

Procedure Arbdefective-Coloring with the same parameters again on all the O(a1/6) subgraphs

induced by the initial arbdefective coloring results in an O(a2/3)-arbdefective O(a1/6)-coloring

of each subgraph. If distinct palettes are used for each subgraph, the entire graph is now

colored with an O(a2/3)-arbdefective O(a1/3)-coloring. The running time of this computation

is O(t2 · logn) = O(a1/3 logn). This computation is much faster than a single invocation of

Procedure Arbdefective-Coloring with the parameters k = t =
⌈
a1/3

⌉
, even though the latter

invocation yields the same (up to constant factors) results. However, to obtain a legal coloring of

the original graph G, each subgraph still has to be colored legally. Given an O(a2/3)-arbdefective

O(a1/3)-coloring π, we can convert it into a legal O(a)-coloring within additional O(a2/3 log n)

time. (This is accomplished by O(a2/3)-coloring each of the O(a1/3) subgraphs induced by color

classes of π.) To speed up this computation, the arboricity of all subgraphs has to be decreased.

Therefore, we need to invoke Procedure Arbdefective-Coloring more times to achieve an o(a2/3)-

arbdefective coloring. Indeed, applying Procedure Arbdefective-Coloring with k = t =
⌈
a1/6

⌉

83

on each of the O(a1/3) subgraphs produces an O(
√
a)-arbdefective O(

√
a)-coloring of the entire

input graph. This, in turn, directly gives rise to an O(a)-coloring within O(
√
a · log n) time.

We employ this idea in the following algorithm called Procedure Legal-Coloring. The proce-

dure receives as input a graph G and a positive integer parameter p. Procedure Legal-Coloring

proceeds in phases. In the first phase Procedure Arbdefective-Coloring is invoked on the input

graph G with the parameters k := p and t := p. Consequently, a decomposition into p subgraphs

is produced, in which each subgraph has arboricity O(a/p). In each of the consequent phases

Procedure Arbdefective-Coloring is invoked in parallel on all subgraphs in the decomposition

that was created in the previous phase. As a result, a refinement of the decomposition is pro-

duced, i.e., each subgraph is partitioned into p subgraphs of smaller arboricity. Consequently,

after each phase, the number of subgraphs in G grows by a factor of p, but the arboricity of each

subgraph decreases by a factor of Θ(p). Hence, the product of the number of subgraphs and

the arboricity of subgraphs remains O(a) after each phase. (As long as the number of phases

is constant.) Once the arboricities of all subgraphs become small enough, Lemma 5.14 is used

for a fast parallel coloring of all the subgraphs, resulting in a unified legal O(a)-coloring of the

input graph.

84

Algorithm 12 Procedure Legal-Coloring(G, p)

1: G1 := G

2: α := a(G1) /* a(G) is assumed to be known to all vertices */

3: G := {G1} /* The set of subgraphs */

4: while α > p do

5: Ĝ := ∅ /* Temporary variable for storing refinements of the set G */

6: for each Gi ∈ G in parallel do

7: G′
1, G

′
2, ..., G

′
p := Arbdefective-Coloring(Gi , k := p , t := p)

/* G′
j is the subgraph of Gi induced by all the vertices that are assigned the color j by

the arbdefective coloring */

8: for j := 1, 2, ..., p in parallel do

9: z := (i− 1) · p+ j /* Computing a unique index for each subgraph */

10: Ĝz := G′
j

11: Ĝ := Ĝ ∪ {Ĝz}
12: end for

13: end for

14: G := Ĝ
15: α := ⌊α/p+ (2 + ǫ) · α/p⌋

/* The new upper bound for the arboricity of each of the subgraphs */

16: end while

17: A := ⌊(2 + ǫ)α⌋+ 1

18: for each Gi ∈ G in parallel do

19: color Gi legally using the palette {(i− 1) ·A+ 1, (i− 1) ·A+ 2, ..., i ·A}
/* Using Lemma 5.14 */

20: end for

Let η be an arbitrarily small positive constant. We show that invoking Procedure Legal-

Coloring on G with the input parameter p :=
⌊
aη/2

⌋
results in an O(a)-coloring in O(aη log n)

time. The following lemma constitutes the proof of correctness of the algorithm.

We assume without loss of generality that the arboricity a is sufficiently large to guarantee

that p ≥ 16. (Otherwise, it holds that a ≤ 172/η, i.e., the arboricity is bounded by a constant.

In this case, by Lemma 5.14, one can directly compute an O(1)-coloring in O(logn) time).

Let αi and Gi denote the values of the variables α and G, respectively, in the end of iteration

i of the while-loop of Algorithm 12 (lines 4-16).

Lemma 7.6. (1) (Invariant for line 16 of Algorithm 12) In the end of iteration i of the while-

loop, i = 1, 2, ..., each graph in the collection Gi has arboricity at most αi.

85

(2) The while-loop runs for a constant number of iterations. (Assuming that p =
⌊
aη/2

⌋
.)

Specifically, the number of iterations is at most 4/η.

(3) For i =1,2,..., after i iterations, it holds that αi · |Gi| ≤ (3 + ǫ)i · a.

Proof. The proof of (1): The proof is by induction on the number of iterations. For the base

case, observe that after the first iteration, G contains at most p subgraphs produced by Proce-

dure Arbdefective-Coloring. The arboricity of each subgraph is at most ⌊a/t+ (2 + ǫ) · a/k⌋ =
⌊a/p+ (2 + ǫ) · a/p⌋ = α1.

For the inductive step, consider an iteration i, i ≥ 2. By the induction hypothesis, each

subgraph in Gi−1 has arboricity at most αi−1. During iteration i, Procedure Arbdefective-

Coloring is invoked on all subgraphs in Gi−1. Consequently, Gi contains new subgraphs, each

with arboricity at most ⌊αi−1/p+ (2 + ǫ) · αi−1/p⌋, which is exactly the value αi of α in the end

of iteration i. (See line 15 of Algorithm 12.)

The proof of (2): The variable α is initialized as a. In each iteration the variable α is

decreased by a factor of at least b = p/(3+ ǫ). Hence, the number of iterations is at most logb a.

Recall that p =
⌊
aη/2

⌋
. For any 0 < ǫ < 1/2, and a sufficiently large a, it holds that

logb a =
log a

log(p/(3 + ǫ))
≤ log a

log(14a
η/2)

=
2/η · log aη/2
log aη/2 − 2

≤ 4/η.

The proof of (3): The correctness of this assertion follows directly from the fact that in

each iteration the number |G| of subgraphs grows by a factor of p, and the arboricity of each

subgraph decreases by a factor of at least p/(3 + ǫ).

The next theorem follows from Lemma 7.6.

Theorem 7.7. Invoking Procedure Legal-Coloring on a graph G with arboricity a with the

parameter p =
⌊
aη/2

⌋
for a positive constant η < 1, computes a legal O(a)-coloring of G within

O(aη · log n) time.

Proof. We first prove that the coloring is legal. Observe that the selection of unique indices

in line 9 guarantees that any two distinct subgraphs that were added to the same set Ĝ are

colored using distinct palettes. In addition, in each iteration each vertex belongs to exactly one

subgraph in G. Consequently, once the while-loop terminates, each vertex v belongs to exactly

one subgraph in G. Let Gi ∈ G be the subgraph that contains v. Let α′ denote the value of α

on line 17 of Algorithm 12, i.e., right after the while-loop. As we have seen, the arboricity of Gi

is at most α′. Hence, Gi is colored legally using a unique palette containing A = ⌊(2 + ǫ)α′ + 1⌋
colors. Consequently, the color of v is different from the colors of all its neighbors, not only in

Gi, but in the entire graph G.

86

Now we analyze the number of colors in the coloring. By Lemma 7.6, the number of colors

employed is (⌊(2 + ǫ)α′⌋+ 1) · |G| ≤ (3 + ǫ)c · a, for some explicit constant c. (For a sufficiently

large a, the appropriate constant is c = 4/η+1.) Hence, the number of employed colors is O(a).

Next, we analyze the running time of Procedure Legal-Coloring. By Lemma 7.6(2), during

the execution of Procedure Legal-Coloring, the Procedure Arbdefective-Coloring is invoked for

a constant number of times. Note also that each time it is invoked with the same values of

the parameters t = k = p =
⌊
aη/2

⌋
. Hence, by Corollary 7.5, executing the while-loop requires

O(t2 log n) = O(aη log n) time. By Lemma 5.14, the additional time required for coloring all

the subgraphs in step 19 of Algorithm 12 is O(p logn) = O(aη/2 log n). (By the termination

condition of the while-loop (line 4), once the algorithm reaches line 19, it holds that α ≤ p.)

Therefore, the total running time is O(aη log n).

Theorem 7.7 implies that for the family of graphs with polylogarithmic (in n) arboricity, an

O(a)-coloring can be computed in time O((log n)1+η′), for an arbitrarily small positive constant

η′. In the case of graphs with superlogarithmic arboricity, even better results than those that

are given in Theorem 7.7 can be achieved. In this case one can execute Procedure Legal-

Coloring with the parameter p =
⌊

aη
′

logn

⌋
. Since a is superlogarithmic in n, and η′ > 0 is a

constant, it holds that p > aη
′/2, for a sufficiently large n. Therefore, Procedure Legal-Coloring

executes its loop for a constant number of times. Consequently, the number of colors employed

is still O(a). The running time is the sum of running time of Procedure Arbdefective-Color

and the running time of computing legal colorings of graphs of arboricity at most p, which is

O(a2η
′

log2 n
· logn+ aη

′

logn · logn) = O(a2η
′
). If we set η′ = η/2, the running time becomes O(aη). We

summarize this result in the following corollary.

Corollary 7.8. Let η be an arbitrarily small constant. For any graph G, a legal O(a)-coloring

of G can be computed in time O(aη + (log n)1+η).

Next, we demonstrate that one can trade the number of colors for time. Specifically, we

show that if one is allowed to use slightly more than O(a) colors, the running time can be

bounded by polylog(n), for all values of arboricity a. To this end we select the parameter p

to be polylogarithmic in a. With this value of p the running time O(p logn) of the coloring

step in line 19 of Algorithm 12 becomes polylogarithmic. Moreover, setting the parameters

t and k to be polylogarithmic in a results in a polylogarithmic running time of Procedure

Arbdefective-Coloring. (By Corollary 7.5 the running time of a single invocation of Procedure

Arbdefective-Coloring is O(t2 · log n).) The number of iterations of the while-loop is O(logp a).

Consequently, the total running time is also polylogarithmic. However, the number of iterations

becomes superconstant. Hence the number of colors grows beyond O(a). The specific parameters

we select are p = k = t = f(a)1/2, for an arbitrarily slow-growing function f(a) = ω(1). The

results of invoking Procedure Legal-Coloring with these parameters are given below.

87

Theorem 7.9. Invoking Procedure Legal-Coloring with the parameter p = f(a)1/2, f(a) = ω(1)

as above, requires O(f(a) log a log n) time. The resulting coloring employs a1+o(1) colors.

Proof. Set b = p/(3+ ǫ). The number of iterations is at most logb a = O(log a
log f(a)). Each iteration

requires O(p2 log n) = O(f(a) log n) time. Hence the running time of Procedure Legal-Coloring

is

logb a ·O(f(a) log n) = O(
f(a)

log f(a)
log a logn).

By Lemma 7.6(3), the total number of employed colors is at most

a · (3 + ǫ)O(log a/ log f(a)) = a1+O(1/ log f(a)) = a1+o(1).

More generally, as evident from the above analysis, the running time of Algorithm 12 is

O(p2 logp a logn), and the number of colors used is 2O(logp a) · a. Another noticeable point on

the tradeoff curve is on the opposite end of the spectrum, i.e., p = C, for some sufficiently large

constant C. (The constant need to be larger than 16. See the discussion preceding Lemma

7.6.) Here the tradeoff gives rise to a1+C′·(1/ logC)-coloring in O(log a log n) time, for some fixed

constant C ′. (The constant C ′ does not depend on C, and thus, logC can be made arbitrarilly

larger than C ′.)

Corollary 7.10. For an arbitrarily small constant η > 0, Procedure Legal-Coloring invoked with

p = 2O(1/η) produces an O(a1+η)-coloring in O(log a log n) deterministic time.

Corollary 7.10 also implies that any graph G for which there exists a constant ν > 0 such

that a ≤ ∆1−ν can be colored with o(∆) colors in O(log a logn) time. This goal is achieved

by computing an O(a1+ν)-coloring of the input graph G. Since a1+ν ≤ ∆1−ν2 , this is an o(∆)-

coloring of G. Therefore, Corollary 7.10 gives rise to a deterministic polylogarithmic (∆ + 1)-

coloring algorithm for a very wide family of graphs. This fact is summarized in the following

corollary.

Corollary 7.11. For the family of graphs with arboricity a ≤ ∆1−ν , for an arbitrarily small

constant ν, one can compute (∆ + 1)-coloring within O(log a logn) deterministic time.

Also, since a ≤ ∆, Corollary 7.10 implies that an O(∆1+η)-coloring can be computed in

O(log∆ log n) deterministic time, for an arbitrarily small constant η > 0. Similarly, Theorem

7.9 implies that ∆1+o(1)-coloring can be computed in O(f(∆) log∆ logn) time, for an arbitrarily

slowly growing function f = ω(1). These results from [8] answer in the affirmative an open

question of Linial [51]. (See the discussion in the beginning of this section.)

88

8 Edge-Coloring and Maximal Matching

In this section we explore colorings of the edge-set of a graph. Since an edge-coloring of a graph

G can be computed using a vertex coloring of the line-graph L(G), all algorithms described in the

previous sections for vertex-coloring can be used for computing edge-colorings as well. However,

line graphs have some special properties that are absent in general graphs. These properties

allow for more efficient computation of vertex-coloring of line graphs, which, in turn, gives rise

to efficient edge-coloring algorithms on general graphs. These algorithms are the subject of

the current chapter. The algorithms in Section 8.1 are due to Panconesi and Rizzi [64]. The

algorithms in Section 8.2 are from [9].

8.1 Edge-Coloring and Maximal Matching using Forest-Decomposition

We start with describing a (2∆− 1)-edge-coloring distributed algorithm for oriented trees (due

to [64]). Next it will be used as a building block for computing edge-colorings of general graphs.

The algorithm for oriented trees is called Procedure Tree-Edge-Color. It accepts as input an

oriented tree T = (V,E). Each vertex v ∈ V holds a list lv of colors that are forbidden for

edges adjacent on v. Initially, lv = ∅ for all v ∈ V . The procedure starts with computing a

3-vertex-coloring of T using the algorithm of Cole and Vishkin [16]. Then it proceeds in three

phase. In phase i, i = 1, 2, 3, all vertices v ∈ V colored by i, in parallel, assign colors ϕ to

edges (v, w) incident on them which connect them with their children w. A color for an edge

(v, w) is selected from the pallete [2∆− 1] \ (lv ∪ lw). The colors are selected such that for each

pair of children w,w′ of v, ϕ(v, w) 6= ϕ(v, w′). Then all vertices v ∈ V update their lists lv to

contain the colors of all edges incident on v that have already been colored. This completes the

description of the algorithm. Its pseudocode is provided below.

89

Algorithm 13 Procedure Tree-Edge-Color(T)

An algorithm for each vertex v ∈ V :

1: ψ := 3-vertex-coloring of T

2: for i := 1, 2, 3 do

3: if ψ(v) = i then

4: for each child w of v do

5: /* Iterations are performed sequentially, but within a single round (locally) */

6: ϕ(v, w) := a color from [2∆− 1] \ (lv ∪ lw)
7: lv = lv ∪ {ϕ(v, w)}
8: end for

9: for each child w of v, in parallel do

10: send ϕ(v, w) to w

11: end for

12: end if

13: if v receives a color ϕ(u, v) from its parent u then

14: lv = lv ∪ {ϕ(u, v)}
15: end if

16: send lv to all neighbors

17: end for

Lemma 8.1. Procedure Tree-Edge-Color computes a legal (2∆−1)-edge-coloring of an oriented

tree T .

Proof. First we show that each edge e = (v, w) ∈ E is assigned a color from [2∆ − 1] during

an execution of the algorithm. Suppose without loss of generality that v is the parent of w. In

round i = ψ(v) ∈ [3] the edge e is assigned a color. Notice that the palette [2∆− 1] \ (lv ∪ lw) is
not empty, since lv and lw contain the colors assigned to edges incident on v and w, respectively.

Thus |lv| ≤ ∆ − 1 and |lw| ≤ ∆ − 1. (Because at the time of selection of the color of (v, w),

each of the vertices v and w have at most ∆ − 1 colored edges incident on them.) Therefore,

|[2∆− 1] \ (lv ∪ lw)| ≥ 1, and so there exists an available color for e.

Next, we show that the coloring is legal. Let e = (v, w), e′ = (v, u) be a pair of edges that

share a common vertex v. If v is the parent of w and u, then e and e′ are assigned distinct

colors during an execution of the loop in lines 4-8. Otherwise, either v is the child of w, or v is

the child of u. Suppose without loss of generality that the latter is the case. Then w is the child

of v. Consequently, e and e′ are assigned colors in distinct phases. (Because ψ(u) 6= ψ(v), u is

the parent of v, and v is the parent of w.) Suppose without loss of generality that the color of

e′ is selected in a later phase. Then ϕ(e′) is selected from the palette [2∆− 1] \ (lv ∪ lu), where

90

ϕ(e) ∈ lv. Therefore, ϕ(e
′) 6= ϕ(e).

Lemma 8.2. The running time of Procedure Tree-Edge-Color is log∗ n+O(1).

Proof. The first step that computes 3-vertex-coloring requires log∗ n + O(1) time. Next, we

show that each of the three phases of the algorithm (lines 2 - 17) can be performed within a

constant number of rounds. In the beginning of a phase i, each vertex v knows the sets lw of

all its neighbors w that were computed in previous phases. These sets do not change during the

execution of the loop (lines 4 - 8), because ψ(w) 6= i for all neighbor w of v. Therefore, the loop

can be performed locally. Hence, the entire phase can be implemented within a single round.

Thus, the overall running time is log∗ n+O(1).

Procedure Tree-Edge-Color can be extended to work on an oriented forest in a straightfar-

ward way. Simply invoke procedure Tree-Edge-Color in all the trees of the forest in parallel.

Obviously, the resulting coloring is a legal (2∆− 1)-edge coloring of the forest, since edges from

different forests do not share common vertices. The running time of the algorithm on forests

remain log∗ n+O(1). We call the extended algorithm Procedure Forest-Edge-Color.

Procedure Tree-Edge-Color can be also extended to compute a maximal matching (hence-

forth, MM). Like Procedure Tree-Edge-Color, the modified procedure, called Tree-MM, also

starts with computing a 3-vertex-coloring ψ of T . Then it proceeds in 3 phases, and in phase

i = 1, 2, 3 the vertices v with ψ(v) = i are active. In phase i, i ∈ [3], vertices v with ψ(v) = i

decide the status of their descending edges (v, u). (We say that the edge (v, u) is descending if

v is the parent of u.) Like in Procedure Tree-Edge-Color, this is done locally sequentially by

v. Specifically, if v is unmatched then it picks an arbitrary unmatched child u of v (if exists),

and inserts the edge (v, u) into the matching. Then v and u infrom their neighbors that they

became matched. The analysis of Procedure Tree-MM is analogous to that of Procedure Tree-

Edge-Color. The running time of both procedures is log∗ n + O(1). It also extends to oriented

forests, and computes MM in them in log∗ n+O(1) time. This extended routine will be referred

to as Procedure Forest-MM.

Next, we show how to extend these algorithms further, to work on general graphs. This

extension, however, comes at a price of increasing the running time. The algorithm for general

graphs is called Procedure Simple-Edge-Color. It accepts as input a graph G. First, it computes a

∆-forest-decomposition of G. To this end it orients the edges towards endpoints with greater Ids.

Then each vertex assigns distinct labels from the set [∆] to its outgoing edges. For i = 1, 2, ...,∆,

all edges that were assigned the label i form a forest Fi. Next, Procedure Simple-Edge-Color

proceeds in ∆ phases. In each phase i = 1, 2, ...,∆, it computes an edge-coloring of the forest Fi

in a way that avoids conflicts with previously colored forests. In other words, in the beginning

91

of phase i, for each vertex v ∈ V , the list of forbidden colors lv contains the colors of all edges

incident on v that have been colored before phase i. Thus, once a color for an edge is selected,

it is not only distinct from the colors of ajacent edges in the same forest, but also from the

adjacent edges in other forests that have been already colored. This completes the description

of the algorithm. Its pseudocode is provided below. (We remark that 3-vertex coloring of all

forests can be performed in parallel before the bginning of executing the ∆ phases of edge-

coloring forests. In this way the step of computing 3-vertex-coloring in each phase (line 1 of

Algorithm 13) actually will not require any computation, since the coloring has been already

computed earlier. See lines 2-4 of Algorithm 14.)

Algorithm 14 Procedure Simple-Edge-Color(G)

An algorithm for each vertex v ∈ V :

1: {F1, F2, ..., F∆} := ∆-forest-decomposition

2: for i := 1, 2, ...,∆, in parallel do

3: ψi := 3-vertex-coloring of Fi

4: end for

5: lv := ∅
6: for i := 1, 2, ...,∆ do

7: Forest-Edge-Color(Fi)

8: lv := {ϕ(v, u) | u ∈ Γ(v), (v, u) is colored}
9: end for

Lemma 8.3. For any graph G = (V,E), Procedure Simple-Edge-Color computes a legal (2∆−1)-

edge-coloring of G.

Proof. Similarly to the proof of Lemma 8.1, before a color for an edge (u, v) ∈ E is selected, it

holds that |lu| ≤ ∆ − 1 and |lv| ≤ ∆ − 1. Thus there always exists an available color for (u, v)

from [2∆− 1] \ (lu ∪ lv). Next we show that the coloring is legal. Let e = (v, w), e′ = (v, u) be a

pair of edges in E that share a common vertex v. If e, e′ ∈ Fi, for some i ∈ [∆], then ϕ(e) 6= ϕ(e′)

by the correctness of Procedure Tree-Edge-Color. (We remark that Procedure Tree-Edge-Color

is correct even if in the beginning of its execution some lists lx satisfy lx 6= ∅, as long as there

are always available colors for edges (x, y) ∈ E from [2∆ − 1] \ (lx ∪ ly).) If e ∈ Fi, e
′ ∈ Fj for

some i < j then the color of e′ is selected in a later phase than that of e. Consequently, at the

time of selection of the color of e′ = (v, u) it holds that ϕ(e) = ϕ(v, w) ∈ lv. Therefore, the

selected color of e′ satisfies ϕ(e′) ∈ [2∆ − 1] \ (lv ∪ lu), and thus, ϕ(e′) 6= ϕ(e). The remaining

case i > j is symmetrical.

Lemma 8.4. The running time of Procedure Simple-Edge-Color is O(∆) + log∗ n.

92

Proof. Computing ∆-forest-decomposition in line 1 requires O(1) time. Computing 3-vertex-

coloring for ∆ forests in parallel in lines 2 - 4 requires log∗ n+O(1) time. Each of the ∆ phases

in lines 6 - 9 requires O(1) time. Therefore, the overall running time is O(∆) + log∗ n.

The next theorem summarizes the analysis of Procedure Simple-Edge-Color.

Theorem 8.5. A (2∆ − 1)-edge-coloring of general graphs can be computed in O(∆) + log∗ n

time.

Procedure Forest-MM can be extended in an analogous way to produce an MM for a general

graph in time O(∆) + log∗ n.

Next consider the (2∆ − 1)-edge-coloring and the MM problems in graphs of bounded ar-

boricity (at most a). One can use an algorithm similar to Procedure Simple-Edge-Color, except

that instead of computing a ∆-forest-decomposition in line 1 of Algorithm 14 we compute a

forest-decomposition into A ≤ a · q forests, for some parameter q > 2. The rest of the algorithm

is identical to Algorithm 14, but ∆ has to be replaced by A in lines 2 and 6. The modified

algorithm will be called Procedure Arb-Edge-Color.

The same analysis as in Lemmas 8.3 and 8.4 shows that Procedure Arb-Edge-Color produces

a (2∆− 1)-edge-coloring within O(A)+ log∗ n time, in addition to the time required to compute

the forest-decomposition. The latter is, by Lemma 5.12, O(lognlog q). Hence the overall running

time is O(a · q+ logn
log q). For graphs with arboricity a ≤ log1−ǫ n, for some constant ǫ > 0, we can

set q = logǫ/2 n, and obtain running time O(logn
log logn). Also, evidently, the running time of this

algorithm is polylogarithmic in n as long as the arboricity is polylogarithmic in n. (By setting

q = 3 one gets here time O(a + log n).) Moreover, similarly to Procedure Simple-Edge-Color,

Procedure Arb-Defective-Color can also be easily extended to compute a MM within the same

time.

Theorem 8.6. [6] For graphs with arboricity a ≤ log1−ǫ n, for some constant ǫ > 0, it is possible

to compute (2∆− 1)-coloring and MM in O(logn
log logn) deterministic time. Moreover, they can be

always computed in time O(a+ log n).

8.2 Edge-Coloring using Bounded Neighborhood Independence

A graph with bounded neighborhood independence c is a graph in which every 1-neighborhood

of a vertex contains at most c independent vertices, for some integer parameter c > 0. In other

words, for each vertex v ∈ V , the size of any independent set I ⊆ Γ(v) is at most c. Consider, for

example, the line graph L(G) of a graph G = (V,E). A vertex v in L(G) corresponds to an edge

ev ∈ G. An independent set of vertices I ∈ Γ(v) corresponds to a set of edges JI ⊆ E, such that

each e ∈ JI share a common endpoint with ev, but each pair of edges e, e′ ∈ JI do not intersect.

93

Therefore, |JI | ≤ 2, and consequently, |I| ≤ 2. Thus, any line graph L(G) has neighborhood

independence bounded by 2. In this section we show that graphs with bounded neighborhood

independence can be vertex-colored much faster than by using algorithms for general graphs

described in previous sections. In particular, these results apply to vertex-coloring of line graphs,

which, in turn, gives rise to efficient edge-coloring algorithms for general graphs. The results in

this section are from [9].

As a first step we show that graphs with bounded neighborhood independence and bounded

arboricity must also have bounded degree. This fact allows one to compute defective colorings

of graphs with bounded neighborhood independence more efficiently than in general graphs.

Specifically, for general graphs it is currently knwon only how to compute efficiently O(∆/p)-

defective p2-coloring (see Section 6.2) and O(a/p)-arbdefective O(p)-coloring (see Chapter 7).

On the other hand, for graphs with bounded neighborhood independence, O(∆/p)-defective

O(p)-coloring can be computed very efficiently for reasonably small values of p ≥ 1. Efficient

defective coloring with these parameters (notice that the product of the defect and the number

of colors is linear in ∆) gives rise to efficient algorithms for legal O(∆)-vertex-coloring of graphs

with bounded neighborhood independence.

Lemma 8.7. A graph G = (V,E) with arboricity bounded by a and neighborhood independence

bounded by c, for some integer parameters a, c > 0, has maximum degree at most 2a · c.

Proof. First, notice that G can be vertex-colored legally using 2a colors, because χ(G) ≤
degen(G) + 1 ≤ 2a(G) = 2a. (See Section 2.3.2, Lemma 2.23). Let v ∈ V be a vertex such

that deg(v) = ∆(G). The subgraph G(Γ(v)) can be colored with 2a colors as well. Let ϕ be

such a coloring. By the pigeonhole principle, there exists a color k, 1 ≤ k ≤ 2a, such that

|{u ∈ Γ(v) | ϕ(u) = k}| ≥ deg(v)
2a . On the other hand, all vertices colored by the same color

form an independent set. The size of the independent set {u ∈ Γ(v) | ϕ(u) = k} is at most c.

Therefore, c ≥ deg(v)
2a = ∆

2a . Hence, ∆(G) ≤ 2a · c.

By Lemma 8.7, an O(∆/p)-arbdefective O(p)-coloring of a graph with neighborhood inde-

pendence bounded by c is also an O((2∆/p) · c)-defective O(p)-coloring of the graph. Therefore,

for obtaining defective colorings of such graphs, it is sufficient to compute an appropriate arbde-

fective coloring. Next, we describe an efficient algorithm for computing an O(∆/p)-arbdefective

O(p)-coloring. This algorithm is called Procedure Arbdefective-Coloring-Bounded. It is very sim-

ilar to Procedure Arbdefective-Coloring. (See Section 7.1, Algorithm 11.) The only difference

is that in the beginning of the partial-orientation phase the partition H consists only of a single

graph H1 = G, i.e., the entire input graph. The pseudocode of the procedure is provided in

Algorithms 16 below. It employs Algorithm 15 as a sub-routine.

94

Algorithm 15 Procedure Partial-Orientation-Bounded(G, t)

1: compute a ⌊∆/t⌋-defective O(t2)-coloring ψ of G.

2: for each edge e = (u, v) in E in parallel do

3: if u and v have different ψ-colors then

4: orient e towards the endpoint with a greater ψ-color.

5: end if

6: end for

Algorithm 16 Procedure Arbdefective-Coloring-Bounded(G, k, t)

1: µ = Partial-Orientation-Bounded(G, t)

2: once all the parents u of v with respect to µ have selected a color ϕ(u) do

v selects a color ϕ(v) from the palette {1, 2, ..., k} which is used by the minimum number of

parents of v

Procedure Partial-Orientation-Bounded computes an orientation µ with deficit ⌊∆/t⌋ and

lengthO(t2). Thus, Procedure Arbdefective-Coloring-Bounded computes a (∆/t+∆/k)-arbdefective

k-coloring. The running time of step 1 of Procedure Partial-Orientation-Bounded is log∗ n+O(1),

by using the algorithm of Kuhn [44]. The other steps of the procedure require constant time.

Thus, the running time of step 1 of Algorithm 16 is log∗ n + O(1). Step 2 of Algorithm 16

requires time proportional to the length of µ, which is O(t2). We summarize the properties of

the algorithm in the next theorem.

Theorem 8.8. For positive integer parameters t, k, satisfying 0 < t, k < ∆, an (∆/t + ∆/k)-

arbdefective k-coloring of an input graph G can be computed in O(t2) + log∗ n time.

We remark that Theorem 8.8 holds for general graphs, and not only on graphs with bounded

neighborhood independence. However, for graphs with bounded neighborhood independence,

Theorem 8.8 in conjunction with Lemma 8.7 imply that defective colorings of such graphs with

appropriate parameters can be computed efficiently.

Corollary 8.9. Let G be a graph with neighborhood independence bounded by c, for some integer

c > 0. For positive integer parameters t, k, satisfying 0 < t, k < ∆, a (2·(∆/t+∆/k)·c)-defective
k-coloring of the graph G can be computed in O(t2) + log∗ n time.

Proof. Let ϕ be an (∆/t+∆/k)-arbdefective k-coloring ofG computed by procedure Arbdefective-

Coloring-Bounded. The arboricity of a subgraph Gi induced by a color class i of ϕ, for 1 ≤ i ≤ k,

is at most (∆/t+∆/k). Thus by Lemma 8.7, the maximum degree of Gi is 2 · (∆/t+∆/k) · c.
Thus, ϕ is a (2 · (∆/t+∆/k) · c)-defective k-coloring.

For graphs in which the neighborhood independence is bounded by a constant, the above

95

corollary implies an O(∆/p)-defective p-coloring, for an integer 0 < p < ∆. (To this end, set

t = k = p.) Such a coloring can be used to achieve a legal O(∆)-vertex-coloring of such graphs

faster than in O(∆ + log∗ n) time. Specifically, compute an O(∆2/3)-defective ∆1/3-coloring ψ

in O(∆2/3 + log∗ n) time. Then compute a legal O(∆2/3)-coloring ϕ of each subgraph induced

be a color class of ψ, using distinct palettes. This requires O(∆2/3 + log∗ n) time as well.

Overall, a legal O(∆)-coloring of the entire input graphs is obtained in O(∆2/3 + log∗ n) time.

This approach can be improved if the computation of defective colorings is performed several

times recursively, similarly to the approach in Section 7.2. In other words, we need to compute

defective colorings on subgraphs induced by color classes of a coloring ψ returned by Procedure

Arbdefective-Coloring-Bounded. To this end, we show that the family of graphs with bounded

neighborhood independence is closed under taking vertex-induced subgraphs.

Lemma 8.10. Let G = (V,E) be a graph with neighborhood independence bounded by c. For

any V ′ ⊆ V , the neighborhood independence of the induced subgraph G′ = G(V ′) is at most c as

well.

Proof. For a vertex u ∈ V ′, ΓG′(u) is the neighborhood of u in G′, and ΓG(u) is the neighborhood

of u in G. Suppose for contradiction that there exists a vertex u ∈ V ′ such that there is an

independent set W ⊆ ΓG′(u) with cardinality |W | > c. For a pair of vertices v, w ∈W , it holds

that (v, w) /∈ E. (Because v, w ∈ V ′ and v, w ∈ V . Therefore if (v, w) ∈ E, then (v, w) must be

present in any induced subgraph that contains the vertices u,w. But the vertices v and w are

not connected in G(V ′), thus they are not connected in G as well.) In addition, ΓG′(u) ⊆ ΓG(u).

Therefore, W ⊆ ΓG(u) is an independent set with more than c vertices, and it is contained in

the neighborhood ΓG(u) of the vertex u. This is a contradiction.

The improved algorithm for computing vertex-colorings of graphs with bounded neighbor-

hood independence is called Procedure Legal-Coloring-Bounded. It accepts as input a graph G

with neighborhood independence bounded by c, a parameter d which is an upper bounded on

∆(G), and a parameter p > 4 · c. If d ≤ p then a (d+ 1)-coloring is directly computed on G in

O(d)+log∗ n time using Algorithm 8 from Section 6. Otherwise, an O(c·d/p)-defective p-coloring
ψ of G is computed. The p color classes of ψ induce the subgraphs G1, G2, ..., Gp, each with

maximum degree O(c · d/p). Next, Procedure Legal-Coloring-Bounded is invoked recursively on

G1, G2, ..., Gp in parallel. These invocations produce legal q-colorings of G1, G2, ..., Gp. (We will

analyze the value of q later.) Then these colorings are merged into a unified O(q · p)-coloring of

the input graph G. This completes the description of the algorithm. Its pseudocode is provided

below.

96

Algorithm 17 Procedure Legal-Color-Bounded(G, d, p)

1: if d ≤ p then

2: ϕ := a (d+ 1)-coloring of G

3: return ϕ

4: else

5: ψ := Arbdefective-Coloring-Bounded(G, k := p, t := p)

6: denote by Gi the graph induced by color class i of ψ, i ∈ {1, 2, ..., p}
7: for i = 1, 2, ..., p, in parallel do

8: ϕi := Legal-Color-Bounded(Gi, ⌊4 · c · d/p⌋ , p)
9: ϕ(v) := (ϕi(v)− 1) · p+ i

10: end for

11: return ϕ

12: end if

Lemma 8.11. Suppose that Procedure Legal-Color-Bounded is invoked on a graph G with

bounded neighborhood independence c, and the parameters d = ∆ = ∆(G) and p > 4 · c. Then

the procedure produces a legal ((4c)logp/4c ∆∆)-vertex coloring in O((p2+log∗ n) · logp/4c∆) time.

Proof. First we prove that the procedure invoked with the above parameters produces the re-

quired coloring. The proof is by induction on the recursion depth.

Base: If d ≤ p then the procedure computes in line 2 a legal (∆ + 1)-coloring of G.

Step: If d > p then the procedure computes a ⌊4 · c · d/p⌋-defective p-coloring ψ of G in line

5. (See Corollary 8.9.) Denote d′ = ⌊4 · c · d/p⌋. By induction hypothesis, each of the sub-

graphs G1, G2, ..., Gp is colored legally with at most ((4c)logp/4c d
′
d′) colors in line 8. Next, in

line 9 these colorings are transformed into a legal coloring with at most ((4c)logp/4c d
′
d′) · p ≤

((4c)logp/4c d
′
4 · c · d/p) · p ≤ (4c)logp/4c d

′+1 · d ≤ (4c)logp/4c(d
′·p/4c) · d ≤ (4c)logp/4c d · d.

Next, we analyze the running time of the procedure. Observe that in each recursive invoca-

tion, the bound on the maximum degree of the subgraph on which the procedure is invoked is

decreased by a factor of at least p/4c > 1. Consequently, the depth of the recursion tree is at

most logp/4c∆. The running time of the procedure is given by T (d) = T (4·c·d/p)+O(p2)+log∗ n.

This recursive formula solves to T (∆) = O((p2 + log∗ n) · logp/4c∆).

Consider a graph G with neighborhood independence bounded by c = O(1). By setting

p = ∆ǫ in Lemma 8.11, for an arbitrarilly small constant ǫ > 0, we obtain a legal O(∆)-vertex-

coloring of G in O(∆2ǫ + log∗ n) time. Alternatively, by setting p = (log∆)ǫ, we obtain a legal

∆1+o(1)-vertex-coloring in O((log∆)1+2ǫ + log∗ n · log∆
log log∆) time. Finally, by setting p = c′ for a

large constant c′ ≫ c, we obtain a legal O(∆1+ǫ)-vertex-coloring in O(log∗ n · log∆) time. These

results (due to [9]) are summarized in the following theorem.

97

Theorem 8.12. Consider a graph G with neighborhood independence bounded by c = O(1). Let

ǫ > 0 be an arbitrarilly small constant.

(1) An O(∆)-vertex-coloring of G can be computed in O(∆ǫ + log∗ n) time.

(2) A ∆1+o(1)-vertex-coloring of G can be computed in O((log∆)1+ǫ + log∗ n · log∆
log log∆) time.

(3) An O(∆1+ǫ)-vertex-coloring of G can be computed in O(log∗ n · log∆) time.

We conclude this section by arguing that the techniques described above can be used to

devise very efficient edge-coloring algorithms for general graphs. These algorithms are based

on the observation that line graphs have neighborhood independence bounded by 2. (See the

discussion in the beginning of this section).

Recall that for any graph G and positive integer k, a legal k-coloring of vertices of L(G)

is a legal k-coloring of edges of G, and vice versa. Recall also that the maximum degree

∆(L(G)) of the line graph L(G) satisfies ∆(L(G)) ≤ 2(∆ − 1), where ∆ = ∆(G). Conse-

quently, if we are given a line graph L(G) of a graph G with ∆(G) = ∆, one can compute an

O(∆(L(G))) = O(∆)-vertex-coloring of L(G) in O(∆ǫ + log∗ n) time, for any constant ǫ > 0.

Similarly, one can also compute ∆1+o(1)-vertex-coloring (respectively, O(∆1+ǫ)-vertex-coloring)

of L(G) in O((log∆)1+ǫ + log∗ n · log∆
log log∆) (resp., O(log∗ n · log∆)) time. These vertex colorings

give rise directly to edge coloring of G with the same number of colors.

On the other hand, in the distributed edge-coloring problem we are given as input the graph

G, rather than its line graph L(G). Nevertheless, one can simulate the distributed computation

of an algorithm on L(G) using the network G = (V,E). To this end each vertex of L(G) is

simulated by one endpoint of an appropriate edge in G. Consequently, a message sent over an

edge of L(G) will be sent over at most two edges in the simulation on G.

Lemma 8.13. Any algorithm with running time T for the line graph L(G) of the input graph

G can be simulated by G, and requires at most 2T +O(1) time.

Proof. For each edge e ∈ E, one of the endpoints of e simulates a vertex in L(G) that corresponds

to e. (Note that each vertex in G may simulate many vertices of L(G).) Specifically, for each

edge e = (u, v) ∈ E, such that Id(u) < Id(v), the vertex that corresponds to e in L(G) is

simulated by u. We denote the vertex in L(G) that corresponds to e by ve. The Id of ve is

set as the ordered pair 〈Id(u),Id(v)〉. This guarantees unique Ids for vertices in L(G). Sending

a message from a vertex w in L(G) to its neighbor w′ is simulated as follows. If the vertices

that simulate w and w′ are neighbors in G, the message is sent directly. Otherwise, the distance

between the simulating vertices is 2. The vertices w and w′ correspond to edges e and e′ in E

that share a common endpoint v′. In this case the message is sent from the vertex that simulates

w to v′, and from v′ to the vertex that simulates w′. Hence any algorithm for the line graph can

be simulated on the original graph, increasing the running time by a factor of at most 2. The

98

additive term of O(1) in the running time above reflects the time spent for computing unique

Ids for vertices of L(G).

Since L(G) has neighborhood independence bounded by 2, we can apply Lemma 8.13 in

conjunction with Theorem 8.12, and obtain the following theorem.

Theorem 8.14. Consider a graph G = (V,E), and let ǫ > 0 be an arbitrarilly small constant.

(1) An O(∆)-edge-coloring of G can be computed in O(∆ǫ + log∗ n) time.

(2) A ∆1+o(1)-edge-coloring of G can be computed in O((log∆)1+ǫ + log∗ n · log∆
log log∆) time.

(3) An O(∆1+ǫ)-edge-coloring of G can be computed in O(log∗ n · log∆) time.

99

9 Randomized Algorithms

In the previous sections we dealt with deterministic algorithms. In the current section we turn

to describing randomized ones. The best currently known randomized algorithms for distributed

symmetry breaking problems are much more efficient than the best-known deterministic ones

(unless the maximum degree of the input graph is very small). However, randomized algorithms

have the drawback that with some (very small) probability over the coin tosses of the algorithms

they may fail or not terminate within the expected time.

9.1 Simple Algorithms

Many randomized algorithms adhere to the following approach.1 The algorithm proceeds in

phases. In each phase each vertex randomly selects a value from some appropriate set. Based

on the selected value and the values of the neighbors, each vertex either makes a final decision

(e.g., of a color), or continues to the next phase. All vertices that make their final decision

form a subset of a correct solution. Then these vertices are removed from the graph, and the

algorithm continues in the same way on the residual subgraph. An important requirement in

this approach is that partial solutions should be correct not only inside each subset, but also in

the union of all subsets that were removed from the graph, after each phase. Once the algorithm

terminates, the union of all subsets forms the input graph with the required solution.

We begin with describing a 2∆-vertex-coloring algorithm that works according to the ap-

proach described above. The algorithm is called Procedure Rand-2Delta. It accepts as input a

graph G. In each round each vertex v draws uniformly at random (henceforth, u.a.r.) a color cv

from the set [2∆] = {1, 2, ..., 2∆}. If a vertex selects a color that is different from the selections

of all its neighbors, and from the final decisions of all its neighbors, then cv becomes the final

decision of v. In this case v terminates. Otherwise it discards the color cv, and proceeds to the

next round. This completes the description of the procedure. Its pseudocode is provided below.

Its properties are analyzed in the following lemmas.

1This approach dates back to Luby’s randomized O(log n)-time algorithm for the MIS problem [56]. The

algorithms we describe in this section can be viewed as simplified variants of the algorithms from [56, 57].

100

Algorithm 18 Procedure Rand-2Delta(G)

An algorithm for each vertex v ∈ V .

Initialy Tv = ∅, Fv = ∅, for each v ∈ V .

/* Tv is the set of temporary colors selected by neighbors of v. */

/* Fv is the set of final colors selected by neighbors of v. */

1: for each round do

2: Tv = ∅
3: cv := draw a color from [2∆] u.a.r., independently of other vertices

4: send the color cv to all neighbors

5: for each received color cu from a neighbor u do

6: Tv := Tv ∪ {cu}
7: end for

8: if cv /∈ Tv ∪ Fv then

9: send the message ”final cv” to all neighbors

10: select cv as the final color ϕv of v and terminate

11: else

12: for each received message ”final cu” from a neighbor u do

13: Fv := Fv ∪ {cu}
14: end for

15: discard cv and continue to the next round

16: end if

17: end for

For a vertex v ∈ V , denote by ϕ(v) the final color of v (if v terminates). Otherwise ϕ(v) is

undefined.

Lemma 9.1. If all vertices terminate, Procedure Rand-2Delta computes a legal 2∆-vertex-

coloring of the input graph.

Proof. If all vertices terminate, then each vertex selects a color from the set [2∆]. Consider a

pair of neighbors u, v ∈ V . Let i, j be the rounds in which u and v terminate, respectively.

Suppose for contradiction that ϕ(u) = ϕ(v). Then, obviously, i 6= j. (Otherwise, in round i it

holds that cu = cv, and thus both vertices continue to round i + 1. This is a contradiction.)

Suppose without loss of generaility that i < j. Then after round i it holds that ϕ(u) ∈ Fv.

Therefore, ϕ(v) 6= ϕ(u) since ϕ(v) /∈ Tv ∪ Fv. Again, a contradiction.

Lemma 9.2. During the execution of Procedure Rand-2Delta all vertices terminate within

O(logn) rounds with probability 1− 1/nc, for an arbitrarilly large constant c.

101

Proof. Consider a vertex v ∈ V . We analyze the probability that v terminates in round i,

conditioned on that it has not terminated before round i, for any i > 0. Notice that the size

of the set Tv ∪ Fv is at most ∆, since each neighbor of v contributes at most one color to this

set. Consequently, there are at least ∆ available colors for v in [2∆] \ (Tv ∪ Fv). Thus, the

probability that cv is such a color is at least ∆/2∆ = 1/2. Hence, assuming that v did not

terminate before round i, it terminates in round i with probability at least 1/2, independently

of all other vertices.

The probability that some given vertex v does not terminate within i rounds is at most (1/2)i.

By the union bound, the probability that there exists a vertex v ∈ V that does not terminate

within i rounds is at most n · (1/2)i. Hence, after (c+1) · log n rounds, with probability at least

1− n · (1/2)i ≥ 1− 1/nc, all vertices terminate.

A slight modification of Procedure Rand-2Delta allows computing a (∆+ 1)-coloring within

O(logn) time. To this end, each vertex in each round selects a color from the set {0, 1, 2, ...,∆+

1}. The color 0 is a special color whose selection probability is 1/2. For any other available color

c ∈ {1, 2, ...,∆+1}\Fv, the color c is selected with probability 1
2(∆+1−|Fv |) . Note that the colors

in Fv are permanently selected by neighbors of v, and, therefore, are not considered for selection

by v. (Thus their selection probability is 0). The other steps of the procedure remain the same,

except that the color 0 is never set as a final color. A vertex that selects 0 will continue to the

next round. The pseudocode of the modified procedure, Procedure Rand-Delta-Plus1 is provided

below.

102

Algorithm 19 Procedure Rand-Delta-Plus1(G)

An algorithm for each vertex v ∈ V .

Initialy Tv = ∅, Fv = ∅, for each v ∈ V .

1: for each round do

2: Tv := ∅
3: cv := draw u.a.r. a bit from {0, 1}
4: if cv = 0 then

5: discard cv and continue to the next round

6: else

7: cv := draw u.a.r. a color from [∆ + 1] \ Fv, independently of other vertices

8: send the color cv to all neighbors

9: for each received color cu from a neighbor u do

10: Tv := Tv ∪ {cu}
11: end for

12: if cv /∈ Tv ∪ Fv then

13: send the message ”final cv” to all neighbors

14: select cv as the final color ϕv of v and terminate

15: else

16: for each received meassage ”final cu” from a neighbor u do

17: Fv := Fv ∪ {cu}
18: end for

19: discard cv and continue to the next round

20: end if

21: end if

22: end for

It can be easily verified that if all vertices terminate then the graph is colored with (∆ + 1)

colors. The next lemma shows that all vertices terminate within O(logn) rounds with high

probability.

Lemma 9.3. During the execution of Procedure Rand-Delta-Plus1 all vertices terminate within

O(logn) rounds with probability 1− 1/nc, for an arbitrarilly large constant c.

Proof. Consider a vertex v ∈ V . We analyze the probability the v terminates in round i,

conditioned on that it has not terminated before round i, for any i > 0. This is the probability

that v selects a color cv > 0, and that it is different from the selections of all neighbors. Suppose

that indeed cv > 0. Then cv is distinct from all colors in Fv. The probability that a given

neighbor u of v selects the same color cu = cv in this round is at most 1
2(∆+1−|Fv |) . (Because the

103

probability that u selects a color greater than 0 is 1/2, and v has ∆+1− |Fv| different colors to
select from.) By the union bound, the probability that v selects a color that is equal to a color

of some neighbor of v is at most (∆ + 1 − |Fv|) · 1
2(∆+1−|FV |) = 1/2. Thus, if v selects a color

cv > 0, it is distinct from the colors of its neighbors with probability at least 1/2. It holds that

cv > 0 with probability 1/2. Thus v terminates with probability at least 1/4.

The probability that some given vertex v does not terminate within i rounds is at most (3/4)i.

By the union bound, the probability that there exists a vertex v ∈ V that does not terminate

within i rounds is at most n · (3/4)i. Hence, after (c + 1) · 4 logn rounds, with probability at

least 1− n · (3/4)i ≥ 1− 1/nc, all vertices terminate.

We summarize this discussion with the following theorem.

Theorem 9.4. A (∆+1)-coloring of a graph G can be computed within O(log n) time with high

probability.

We conclude this section by presenting an extremely simple algorithm that computes an

O(logn)-defective O(∆/ log n)-coloring within O(1) time. Actually, the algorithm does not

require any communication whatsoever. It is called Procedure Rand-DC. It consists of one single

line. Its pseudocode is provided below.

Algorithm 20 Procedure Rand-DC(G)

An algorithm for each vertex v ∈ V .

1: select a color from the set {1, 2, ..., ⌈deg(v)/(ρ · log n)⌉} uniformly at random

/* ρ is a sufficiently large fixed constant. */

We analyze the performance of Procedure Rand-DC in the next theorem.

Theorem 9.5. Procedure Rand-DC computes an O(logn)-defective O(∆/ log n)-coloring of the

input graph G within O(1) time, with probability 1− 1/nc, for an arbitrarilly large constant c.

Proof. The running time analysis is trivial. Next we prove the correctness of the algorithm.

Consider a vertex v ∈ V . If deg(v) ≤ ρ · logn, then v has at most O(logn) neighbors that have

selected the same color as v did, and we are done. Otherwise, for each neighbor u of v, let Xv

denote the random indicator variable, such that Xv = 1 if v selects the same color as u, and

Xv = 0 otherwise. Let X =
∑

v∈Γ(v)Xv be the sum of at most ∆ indicator variables. The

expected number of neighbors of v that select the same color as v is IIE(X) = deg(v)
⌈deg(v)/(ρ·logn)⌉ ≤

ρ logn. Observe also that IIE(X) > 1
2ρ log n, since deg(v) > ρ · log n. By Chernoff bound for

upper tails (see, e.g., [2], Chapter A.1), for any γ > 0, it holds that

Pr[X > (1 + γ)IIE(X)] <

(
eγ

(1 + γ)1+γ

)IIE(X)

.

104

We set γ ≥ 1. It holds that Pr[X > 2IIE(X)] < (e/4)IIE(X) < 1/nc+1, for a sufficiently large

constant ρ. By the union bound the probability that all vertices have at most 2ρ logn neighbors

with the same color is 1− n/nc+1 = 1− 1/nc.

9.2 A Faster O(∆)-Coloring Algorithm

In this section we describe a more sophisticated algorithm that achieves a running time of

O(
√
logn) for O(∆)-vertex-coloring. This result is due to Kothapalli et al. [43], but the al-

gorithm and the analysis that we present here are different from those of [43]. The algorithm

proceeds in two stages. The first stage is similar to the algorithms described in the previous

section, but it is performed for O(
√
log n) rounds instead of O(log n). It is probable that as

a result some vertices do not terminate by the end of this stage. Nevertheless, the subgraph

of remaining vertices has, with high probability, some helpful properties. These properties are

used to complete the solution in the second stage. Specifically, given an acyclic orientation of

the input graph, in the beginning of the second stage the length of the orientation restricted to

the remaining graph is O(
√
log n) with high probability. This allows one to use Property 3.2

(see Section 3.3) for computing a (∆+ 1)-coloring of the remaining subgraph. If a fresh palette

of size (∆ + 1) is used in the second stage, a legal O(∆)-coloring for the entire input graph is

obtained.

The procedure for computing an O(∆)-coloring is called Fast-Rand-Color. It accepts as input

the graph G. In the first stage it computes an acyclic orientation by directing all edges towards

endpoints with greater Ids. Then it invokes Procedure Rand-2Delta for
⌈
ρ
√
log n

⌉
rounds, for a

sufficiently large constant ρ. In the second stage a (∆+ 1)-coloring is computed using Property

3.2 on the subgrph of remaining vertices (that have not terminated in the previous stage). This

completes the description of the algorithm. Its pseudocode is provided below.

Algorithm 21 Procedure Fast-Rand-Color(G)

An algorithm for each vertex v ∈ V .

1: for each neighbor u of v do

2: orient the edge (u, v) towards the endpoint with greater Id

3: end for

4: for round R = 1, 2, ...,
⌈
ρ
√
log n

⌉
do

5: execute an iteration of Rand-2Delta(G)

6: end for

7: if v has not terminated then

8: compute a coloring using the palette {2∆ + 1, 2∆ + 2, ..., 3∆ + 1} by using Property 3.2

9: end if

105

By the correctness of Procedure Rand-2Delta, it follows that Procedure Fast-Rand-Color

computes a legal O(∆)-coloring on the subgraph of vertices that terminate in the first stage (lines

1-6). By Property 3.2, the coloring computed in the second stage (lines 7-9) on the remaining

vertices is a legal (∆ + 1)-colorings. Since the palettes used in the two stage are disjoint, the

final coloring is a legal (3∆ + 1)-coloring. For the running time analysis, it is sufficient to show

that in the beginning of the second stage all consistently-oriented paths have length at most
√
log n, with high probability. (In this case a (∆ + 1)-coloring can be computed within at most

√
log n rounds, by Property 3.2.) We will prove this for graphs with ∆ < 2o(

√
log n). For graphs

with larger degree, a slightly different algorithm (which will be described in the sequel) provides

the desired results.

Lemma 9.6. Suppose that Procedure Fast-Rand-Color is invoked on a raph G with ∆ < 2o(
√
logn).

In the beginning of the second stage (lines 7-9 of Procedure Fast-Rand-Color) all consistently-

oriented paths have length at most
√
log n with probability 1 − 1/nc, for an arbitrarilly large

constant c.

Proof. Consider some consistently-oriented path P = 〈v1, v2, ..., vk〉 in G of length k =
⌈√

log n
⌉

(with respect to the orientation computed in lines 1-3). We show that with high probability

at least one vertex of P terminates during the first stage. Each vertex of P terminates with

probability at least 1/2 in each round, and remains active with probability at most 1/2. In

any given round R ∈ {1, 2, ...,
⌈
ρ
√
logn

⌉
}, for i = 1, 2, ..., k, the probability that vi remains

active conditioned on that v1, v2, ..., vi−1 remain active in round R is at least 1/2 as well. (One

can assume without loss of generality that vi draws a color after v1, v2, ..., vi−1 do so.) Thus

the probability that all vertices of P remain active during a single round is at most 1/2k.

For R ∈ {1, 2, ...,
⌈
ρ
√
logn

⌉
}, the probability that all vertices of P remain active in round R

conditioned on that they all remain active in rounds 1, 2, ..., R−1, is 1/2k. Thus, the probability

of all of them to remain for
⌈
ρ
√
logn

⌉
rounds is at most 1/2k·⌈ρ

√
logn⌉ ≤ 1/2ρ·log n = 1/nc+2, for

a constant ρ = c+ 2.

The number of different paths of length k is at most n ·∆k ≤ n2. (Recall that ∆ < 2o(
√
logn).)

Thus, by the union bound, the probability that there exists a consistently-oriented path of length

k in which all vertices remain for
⌈
ρ
√
log n

⌉
rounds is at most n2 · (1/nc+2) = 1/nc.

To complete the analysis we need to consider the case that ∆ ≥ 2Ω(
√
logn). In this case

before executing Procedure Fast-Rand-Color, we invoke Procedure Rand-DC (see Algorithm

20) that partitions the input graph into O(∆/ logn) vertex-disjoint subgraphs with maximum

degree O(logn). By Lemma 9.6, executing Procedure Fast-Rand-Color in all these subgraphs

in parallel results in an O(logn)-coloring in each of them with probability 1 − 1/nc. By using

disjoint palettes, one obtains an O(∆)-coloring of the input graph. The success probability is at

106

least (1− 1/nc)n > 1− 1/nc−2. We summarize this section with the following theorem.

Theorem 9.7. An O(∆)-coloring of an input graph G can be computed in O(
√
log n) time, with

probability 1− 1/nc, for an arbitrarilly large constant c.

This result was recently improved in [10]. Specifically, Barenboim et al. [10] devised a

randomized O(∆)-coloring algorithm with running time 2O(
√
log logn), and a (∆ + 1)-coloring

algorithm with running time O(log∆) + 2O(
√
log logn).

9.3 Randomized MIS

9.3.1 A High-Level Description

In this section we describe a randomized algorithm that computes an MIS in O(log∆
√
log n)

time. This result is due to [10]. Since for ∆ = 2Ω(
√
logn) the algorithm of Luby [56] computes

an MIS in time O(logn) ≤ O(log∆
√
log n), we henceforth assume that ∆ ≤ 2

√
log n. Before we

describe the algorithm we introduce a defenition that will be useful in this section.

Definition 9.1. Given a graph G = (V,E) and a vertex set C ⊆ V , the weak radius of C with

respect to a vertex v ∈ C, denoted wrad(C, v), is the maximum distance in G of a vertex u ∈ C

from v. The weak radius of C, denoted by wrad(C), is given by

wrad(c) = min
v∈C

{wrad(C, v)}.

The algorithm consists of two main stages. In the first stage it computes an independent

set I of the input graph G, which is, however, not necessarily maximal. Nevertheless, with high

probability, it satisfies some very helpful properties. Next, the vertices of I and their neighbors

are removed from G. Let G′ be the subgraph induced by the set of remaining vertices. In the

second stage an MIS I ′ of G′ is computed. (Observe that I∪I ′ is an MIS of G.) This computation

relies upon properties that hold with high probability after the first stage. Specifically, with high

probability, all connected components of G′ have weak radius O(
√
log n). Consequently, an MIS

of G′ can be computed in O(
√
log n) time.

We start with presenting a high-level description of the algorithm. Initially all vertices are

active. During an execution vertices become inactive. In the beginning an empty set U is

initialized. During the execution certain active vertices join U . The vertices join in such a way

that the set U remains independent throughout the entire execution, and it is an MIS once the

execution terminates. A vertex becomes inactive if it joins U , or if at least one of its neighbors

joins U . The algorithm terminates once all vertices become inactive.

Suppose first that we are given a procedure Decide() that is executed by each vertex and

requires one round. Procedure Decide satisfies the following four properties: (1) After a single

107

execution of Procedure Decide by all vertices, each vertex becomes inactive with probability at

least ρ, for a constant 0 < ρ < 1. (2) For a vertex v, denote by E(v) the event that v becomes

inactive as a result of invoking Procedure Decide by all vertices in the same round. For any

subset of vertices X ⊆ V , such that for any pair x, x′ of distinct vertices from X, it holds that

distG(x, x
′) ≥ 5, the events {E(x) | x ∈ X} are mutually independent. (3) If a pair of active

neighbors execute Procedure Decide, at most one of them joins U (even if these executions are

performed in distinct rounds). (4) If in a certain round a vertex v decides to join U , then in

that round all its neighbors decide not to join. (Consequently, v and all its neighbors become

inactive.)

Denote λ = ⌊logn⌋. In the first stage the algorithm executes Procedure Decide() for d · λ =

O(
√
logn) rounds, for a positive constant d to be determined later. In each of these rounds it

is executed on the set of remaining active vertices. Let V ′ denote the set of remaining active

vertices once the first stage completes. In the second stage, it computes an MIS of the set

V ′ as follows. Denote the graph induced by V ′ by G′ = G(V ′). Each active vertex v collects

the topology of the connected component in G′ that contains v, and computes an MIS of this

connected component locally. By the ”topology” of a vertex set Z ∈ V we mean the identities

of all vertices of Z, the edge set E(Z), and all local variables of vertices in Z. This completes

the high-level description of the algorithm. Its pseudocode is provided below.

Algorithm 22 A high-level description of the randomized MIS algorithm

An algorithm for each vertex v ∈ V . Initially, all vertices are active

1: for i = 1, 2, ..., d ·
⌊√

logn
⌋
do

2: if v is active then

3: Decide()

4: end if

5: end for

6: if v is active then

7: Denote by G′ the subgraph induced by all active vertices

8: G′
v := collect the topology of the connected component in G′ that contains v

9: Compute an MIS of G′
v locally

10: end if

We assume that all vertices of a connected component G′
v run locally the same centralized

deterministic procedure Central-MIS for computing an MIS. Since any two vertices u,w in G′
v

collect the same topology on line 8 of Algorithm 22, their inputs to Procedure Central-MIS are

identical. Thus executions of Procedure Central-MIS on different vertices of G′
v produce the

same output. Hence the MIS is computed in a consistent way by different vertices of the same

108

connected component. Finally, each vertex v ∈ G′
v selects the output for v based on the output

for v of Procedure Central-MIS invoked on G′
v.

The correctness of the algorithm follows from the fact that in the first stage (lines 1 - 5) all

inactive vertices are either belong to U , or have a neighbor in U . In addition, by property (3)

of Procedure Decide, no two neighbors can join U . In the second stage (lines 6-10) an MIS is

computed on connected components of the graph G′ induced by the remaining active vertices.

Hence each vertex in G′ either joins U , or has a neighbor in its connected component that joins

U . Moreover, any pair of vertices that belong to distinct connected components and join U ,

are not connected by an edge. Therefore, all vertices of G either belong to U or have neighbors

that belong to U , and no two neighbors in G join U . (A pair of vertices that join U in distinct

stages are not connected, because all neighbors of a vertex that joins in the first stage do not

join. This is guaranteed by property (4) of Procedure Decide.) Therefore, U is an MIS. We

summarize this discussion in the following theorem.

Theorem 9.8. Algorithm 22 computes a Maximal Independent Set of G.

Next, we analyze the running time of the algorithm. We will show that all connected com-

ponents of G′ have weak diameter at most
√
log n with high probability. In other words, for any

pair of vertices u, v, such that distG(u, v) >
√
logn, there is no path in G′ connecting u and

v. Consequently, each vertex can collect the entire information of its connected component in

O(
√
logn) time. The next lemma analyzes the probability that all vertices on a certain path

remain active after a certain number of rounds. (Recall that E(v) is the event that a vertex

v becomes inactive as a result of executing Procedure Decide, and ρ is a lower bound on the

probability that E(v) occurs, for any v ∈ V .)

Lemma 9.9. Let P be a path in G that contains k vertices u1, u2, ..., uk, such that E(u1), E(u2), ...,
E(uk) are independent. Suppose also that all vertices execute Procedure Decide for ℓ rounds.

Then the probability that all the vertices of P remain active is at most (1− ρ)k·ℓ.

Proof. Since the events are independent, the probability that u1, u2, ..., uk remain active in a

single round is at most (1−ρ)k. We now prove the assertion of the lemma by induction on ℓ. The

induction base, ℓ = 1, was already shown. For the induction step observe that the probability

that u1, u2, ..., uk survive (i.e., remain active) for ℓ rounds conditioned on them surviving for

ℓ− 1 rounds is Πk
i=1IIP(E(ui)) ≤ (1− ρ)k. This completes the proof.

Suppose that a path contains k ≥ 1/5 · √logn vertices u1, u2, ..., uk, such that the events

E(u1), E(u2), ..., E(uk) are independent. Then the probability that all vertices u1, u2, ..., uk re-

main active for d · √logn rounds is at most

(1− ρ)1/5·
√
log n·d·

√
logn = ((1− ρ)log n)d/5 ≤ 1/nc

′
,

109

for c′ = c′(d). The exponent c′ can be made as large as one wishes, by increasing the value of d.

(Recall that (1− ρ) ≤ 1 is a positive constant.) Note also that since ∆ ≤ 2
√
logn, the number of

different paths in G of length µ =
⌊√

log n
⌋
is at most n ·∆

√
logn = O(n2).

Let P be the set containing all the paths P in G of length µ that satisfy the following

property: the path P contains k ≥ 1/5 · √log n vertices u1, u2, ..., uk, such that the events

E(u1), E(u2), ..., E(uk) are independent. By the union bound, the probability that after the first

stage there remains a path in P in which all vertices are active is O(n2/nc
′
) ≤ 1/nc

′′
, for an

arbitrarily large constant c′′ > 0. However, this fact by itself is insufficient to show that all

connected components of G′ (the graph induced by the active vertices remaining after the first

stage) have weak diameter O(
√
log n). We next prove a stronger claim that says that for each

pair of vertices u, v such that distG(u, v) ≥
√
log n, there is no path in G′ connecting u and v.

Definition 9.2. A sequence Q = (q0, q1, ..., qk) of vertices is called a well-spread sequence if

there exists a path R = (r0, r1, ..., r5k) in G = (V,E) such that the following two conditions hold:

(1) For every index j ∈ [0, k], it holds that r5j = qj.

(2) For every pair of distinct indices i, j ∈ [0, k], it holds that distG(qi, qj) ≥ 5.

Lemma 9.10. Let P be a simple path between a pair of vertices u, v ∈ V with distG(u, v) ≥ 5k,

for some integer k ≥ 0. Then P contains a well-spread sequence Q ⊆ V (P) of length |Q| = k+1.

Proof. Denote P = (u = w0, w1, ..., v = wt), t ≥ 5k. The proof is by induction on k.

Base (k = 0): Set Q = (q0 = w0), R = (r0 = q0 = w0). This completes the proof of the

induction base.

Step (k ≥ 1): Let i be the largest index such that distG(w0, wi) = 5. It follows that

distG(wi, wt) ≥ distG(w0, wt)−distG(w0, wi) ≥ 5(k−1). Let σ = (r0 = w0, r1, r2, r3, r4, r5 = wi)

be an arbitrary shortest path between w0 and wi in G. Let P
′ = (wi, wi+1, ..., wt). Denote also

q0 = w0. By the choice of i, for every index j ∈ [i, t], distG(q0, wj) ≥ 5. By the induction

hypothesis, there exists a well-spread sequence Q′ = (q′0, q
′
1, ..., q

′
k−1), Q

′ ⊆ V (P ′). Hence there

exists a path R′ = (r′0, r
′
1, ..., r

′
5(k−1)) with r′5j = q′j , for every j ∈ [0, k − 1]. We form the well-

spread sequence Q = (q0) ◦ Q′, by concatenating the sequence (q0) with the sequence Q′. The

respective path R is formed by R = σ ◦R′. Observe that qj+1 = q′j , for every index j ∈ [0, k−1],

and r5+i = r′i, for every i ∈ [0, 5(k − 1)]. See Figure 15 for an illustration.

By induction hypothesis, for every pair of distinct indices i, j ∈ [1, k], distG(qi, qj) =

distG(q
′
i−1, q

′
j−1) ≥ 5. Also, since for every index j ∈ [1, k], qj = q′j−1 ∈ V (P ′), it follows

that distG(q0, qj) ≥ 5 as well.

110

Fig. 15. Obtaining the path 〈r0, r1, ..., r5k〉. The vertex rj+5 equals to wr′ , for the maximum r′

such that distG(rj , wr′) = 5. The path P is depicted by a thick line.

Recall that for a well-spread sequence Q = (q0, q1, ..., qk), the events {E(qj) | j ∈ [0, k]} are

mutually independent. (See the properties of Procedure Decide in the beginning of this section.)

Corollary 9.11. A path P that satisfies the conditions from the assertion of Lemma 9.10

contains a sequence Q ⊆ V (P), Q = (q0, q1, ..., qk) such that the events {E(qj) | j ∈ [0, k]} are

mutually independent.

Let R denote the set of all paths of length µ =
⌊√

log n
⌋
in G = (V,E). Let Q′ denote the

set of well-spread sequences of length ⌊µ/5⌋. Observe that |R| ≤ n ·∆µ ≤ n2, and so

|Q′| ≤ n ·∆µ ≤ n2 (6)

as well. The probability that after the first stage there remains a path P that connects two

vertices at distance at least µ whose all vertices are active is at most the probability that there

remains a well-spread sequence Q ∈ Q′ of length ⌊µ/5⌋ with all vertices active. The latter

probability is at most 1/nc
′′
, for an arbitrary large constant c′′ > 0. (Because the probability of

all these vertices to remain active is at most (1−ρ)1/5·
√
logn·d·

√
logn = ((1−ρ)log n)d/5, for a large

constant d.) Hence, after the first stage, with high probability, there is no path P in G consisting

of active vertices, that connects a pair of vertices u, v such that distG(u, v) ≥ √
log n. Thus,

the graph G′ induced vertices that remain active after the first stage has weak diameter smaller

than
√
log n, with high probability. We summarize this discussion in the following lemma.

Lemma 9.12. After the first stage of Algorithm 22 (lines 1 - 5) the weak diameter of the

subgraph G′ induced by the remaining active vertices is smaller than
√
log n, with high probability.

For a graph G′ with weak diameter K <
√
log n, an MIS is computed within K rounds in

the following way. For i = 1, 2, ...,K, suppose that before the beginning of round i, each vertex

v knows its entire (i − 1)-hop neighborhood Γ̂i−1(v,G) with respect to G. On round i, each

vertex v sends the representation of G(Γ̂i−1(v,G)) to all its neighbors in G. Once v receives a

111

message from all its neighbors it computes the representation of G(Γ̂i(v,G)). In round k̂ each

vertex v computes the representation of G(Γ̂K(v,G)). Denote by G′
v the connected component

of v in G′. For any u ∈ G′
v it holds that distG(v, u) ≤ K. Therefore u ∈ Γ̂K(v). Hence G′

v is

a subgraph of the graph G(Γ̂K(v,G)) induced by Γ̂K(v,G). Next, v computes G′
v from Γ̂K(v),

and runs a deterministic local centralized algorithm for computing an MIS on G′
v. All vertices

in G′
v perform the same local deterministic computation (run Procedure Central-MIS), resulting

in an identical MIS of G′
v for all vertices in this connected component. In particular, for each

vertex in G′
v this computation determines whether it should join the MIS.

To summarize, the second stage of Algorithm 22 (lines 6 - 10) requires, with high probability,

O(
√
logn) time as well. We summarize the properties of Algorithm 22 in the following theorem.

Theorem 9.13. Given Procedure Decide that satisfies the four properties mentioned above and

has running time τ , Algorithm 22 computes an MIS in O(
√
log n · τ) time, for an input graph

G with maximum degree ∆ ≤ 2
√
logn.

As was mentioned above, for ∆ > 2
√
logn the running time of O(log∆ · √log n) follows

trivially from Luby’s logarithmic bound of O(logn).

9.3.2 Procedure Decide

In this section we describe a variant of Procedure Decide that is used in conjunction with

Algorithm 22. This variant, however, does not compute an MIS for the entire input graph, but

rather for the subraph of G induced by vertices with degree at least ∆/2. (Although the MIS

may include some vertices of G with smaller degrees.) This computation eliminates the vertices

with large degrees, and the residual subgraph has maximum degree at most ∆/2. This stage

is repeated for log∆ iterations to eliminate all vertices. As a result we obtain an MIS for the

entire input graph.

Procedure Decide accepts an input a parameter γ > 1. It draws a biased random bit, with 1

having probability 1
γ+1 , and 0 having probability 1− 1

γ+1 . Denote this probability distribution

by D(γ). Each vertex sends its random bit to all its neighbors. Once a vertex receives the bits

of all its neighbors, it decides to join the MIS (and becomes inactive) if it has drawn 1 and all

its neighbors have drawn 0. In this case its neighbors decide not to join, and become inactive

as well. If a vertex does not decide to join, and none of its neighbors decides to join, then it

remains active. This completes the description of the procedure. Its pseudocode is provided

below.

112

Algorithm 23 Procedure Decide(γ)

An algorithm for each vertex v ∈ V .

1: b := draw a bit from D(γ)

2: send b to all neighbors

3: for all active neighbors u of v in parallel do

4: bu := receive a bit from u

5: end for

6: if b = 1 and for all active neighbors u of v it holds that bu = 0 then

7: v joins the MIS

8: v sends ”joined MIS” to all neighbors and becomes inactive

9: end if

10: if v receives the message ”joined MIS” from a neighbor then

11: v does not join the MIS and becomes inactive

12: end if

Next, we describe a variant of Algorithm 22 that employs Procedure Decide. This algorithm

is called Procedure Compute-MIS. The algorithm proceeds in phases. For j = 0, 1, ..., ⌊log∆⌋,
in phase j the algorithm invokes Procedure Decide with the parameter γ = ∆/2j for O(

√
log n)

times. As a result, with high probability, all connected components in the subgraph induced by

active vertices with sufficiently large number of active neighbors have weak diameter O(
√
logn).

(Specifically, it holds for the subgraph induced by active vertices with at least γ/2 active neigh-

bors each. Henceforth, we call the number of active neighbors of a vertex v the active degree of

v, and denote it actdeg(v).) Next, an MIS is computed in these connected components, and all

their vertices become inactive. Consequently, the remaining active vertices induce a subgraph

with maximum degree at most γ/2. After phase ⌊log∆⌋, with high probability, all remaining

active vertices have active degree 0. Thus, they constitute an independent set. All these re-

maining vertices join the MIS, and the algorithm terminates. The pseudocode of Procedure

Compute-MIS is provided below.

113

Algorithm 24 Procedure Compute-MIS()

An algorithm for each vertex v ∈ V . Initially, all vertices are active

1: for j = 0, 1, ..., ⌊log∆⌋ do

2: γ = ∆/2j

3: for i = 1, 2, ..., d ·
⌊√

logn
⌋
do

4: /* d is a large constant */

5: if v is active then

6: Decide(γ) /* See Algorithm 23 */

7: end if

8: end for

9: if v is active then

10: Denote by G′ the subgraph induced by active vertices u with actdeg(u) ≥ γ/2

11: if v ∈ G′ then

12: G′
v := collect the topology of the connected component in G′ that contains v

13: Compute an MIS of G′
v locally

14: end if

15: if v joins the MIS or a neighbor of v joins the MIS then

16: v becomes inactive

17: end if

18: end if

19: end for

20: if v is active and has no active neighbors then

21: v joins the MIS and becomes inactive

22: end if

Observe that if at the beginning of iteration j of the external for-loop of Algorithm 24 (lines

1-19) (henceforth, phase j), for j = 0, 1, ..., ⌊log∆⌋, the graph induced by the active vertices has

maximum degree γj = ∆/2j , then in the end of phase j the graph induced by the active vertices

has maximum degree at most γj/2. (Because an MIS is computed on the subgraph G′ induced

by the active vertices that have at least γj/2 active neighbors each. See lines 10-14 of Algorithm

24. Consequently, all vertices of G′ become inactive.) Thus, once the algorithm terminates,

no active vertices remain. This implies the correctness of the algorithm, because each inactive

vertex either belongs to the MIS or has a neighbor in the MIS, and no two neighbors join the

MIS. This discussion is summarized in the following theorem.

Theorem 9.14. Procedure Compute-MIS computes an MIS of the input graph.

For the procedure to be efficient, collecting the information of connected components should

require
√
logn rounds. Thus, the following requirement to Algorithm 24 has to be added. Line

114

12 of Algorithm 24 must terminate in µ =
⌊√

logn
⌋
rounds. If it does not terminate on time,

then the algorithm fails to produce an MIS. Fortunately, it is possible to show that with high

probability all such computations terminate on time. To this end we will show that with high

probability weak diameters of all connected components in G′ are smaller than
√
log n, for any

phase j. (Observe also that if this is indeed the case, then the vertices can devote exactly
⌊√

log n
⌋
rounds for performing lines 9-18. Consequently, all vertices start a phase j in the same

time, for all j = 0, 1, ..., ⌊log∆⌋.)

Let Ĝj denote the subgraph induced by the vertices that are active in the beginning of phase

j, and that have active degree at least γj/2 = ∆/2j

2 . The maximum degree of Ĝj is at most

γj . First, we show that Procedure Decide that accepts γj as input satisfies the following four

required properties.

Lemma 9.15. Suppose that Procedure Decide(γj) is executed by all active vertices. Then the

following four assertions hold.

(1) Each vertex v in Ĝj becomes inactive with probability ρ, for a constant 0 < ρ < 1.

(2) For any well-spread sequence Q = (u1, u2, ...uk) ⊆ V , for some integer k > 0, the events

E(u1), E(u2), ..., E(uk) are independent.

(3) If a pair of active neighbors execute Procedure Decide, at most one of them joins the MIS.

(4) If a vertex v decides to join the MIS, then all its neighbors decide not to join. Consequently,

v and all its neighbors become inactive.

Proof. (1) A vertex v ∈ Ĝj has k active neighbors, for some integer k, γj/2 ≤ k ≤ γj . The

vertex v becomes inactive if either it joins the MIS or one of its neighbors joins the MIS. In

other words, it becomes inactive if either (a) v draws bv = 1 and all its active neighbors draw 0,

or (b) v draws bv = 0, an active neighbor w of v draws bw = 1, and all the active neighbors of

w draw 0.

Denote by {w1, w2, ..., wk} the set of active neighbors of v. Denote γ = γj . First, we compute

the probability that exactly one of the vertices {v, w1, w2, ..., wk} draws 1 and all the rest draw

0. We denote this event by E . The probability of E is

IIP(E) = (k + 1) · 1

γ + 1
·
(
1− 1

γ + 1

)k

≥
(γ
2
+ 1
)
· 1

γ + 1
·
(
1− 1

γ + 1

)γ+1

≥ 1

8
.

Consider a vertex w ∈ {v, w1, w2, ..., wk}. Let E ′(w) denote the event that all active neighbors

of w that are not in {v, w1, w2, ..., wk} have drawn 0. The probability of E ′(w) is

IIP(E ′(w)) ≥
(
1− 1

γ + 1

)γ

≥ 1/4. (7)

See Figure 16 for an illustration.

115

Fig. 16. In this example w2 is the only vertex in Γ̂(v) that has drawn 1. All its neighbors

z1, z2, ..., zγ have drawn 0.

Recall that bw denotes the bit that w has drawn. Observe that

IIP(v becomes inactive) ≥ IIP(E ∧ (∃w such that ((bw = 1) ∧ E ′(w))))

= IIP(∃w such that ((bw = 1) ∧ E ′(w)) | E) · IIP(E)
≥ 1

8
· IIP(∃w such that ((bw = 1) ∧ E ′(w)) | E).

Observe that conditioned on E , there necessarily exists a vertex w ∈ {v, w1, w2, ..., wk} with

bw = 1. Also, by (7), for this vertex w it holds that IIP(E ′(w)) ≥ 1/4. Hence

IIP(∃w such that ((bw = 1) ∧ E ′(w)) | E) ≥ 1/4.

Hence IIP(v becomes inactive) ≥ 1/32. Hence the first assertion holds with ρ = 1/32.

(2) The decision of a vertex q ∈ {u1, u2, ..., uk} whether to become inactive depends only on

bits drawn by vertices from its 2-neighborhood Γ̂2(q). Therefore, the event E(q) that q becomes

inactive is independent from each of the events E(x) for x ∈ {{u1, u2, ..., uk} \ q}, since each of

these vertices x is at distance at least 5 from q in G. (Hence Γ̂2(q) ∩ Γ̂2(x) = ∅.)

(3) A vertex joins the MIS only if it draws 1 and all its neighbors draw 0. Therefore, a pair

of neighbors cannot join the MIS.

(4) By description of Procedure Decide, if a vertex v decides to join the MIS, then all its

neighbors decide not to join.

Next, we show that all connected components in G′ (which is defined in line 10 of Algorithm

24) have weak diameter smaller than
√
log n with high probability. (This does not follow directly

from Lemma 9.12, because Ĝj does not contain all active vertices of G in the beginning of phase

116

j. Rather it contains only those of them that have active degree at least γj/2. Therefore, certain

modifications in the proof are required. However, the general idea of the proof is similar to that

of Lemma 9.12.)

Lemma 9.16. For j = 0, 1, ..., ⌊log∆⌋, and γ = γj = ∆/2j, in phase j of Algorithm 24, consider

the graph G′ induced by the active vertices that have active degree at least γj/2. (See line 10 of

Algorithm 24.) All connected components of G′ have weak diameter smaller than
√
logn, with

high probability.

Proof. Consider the subgraph Ĝj of vertices that are active in the beginning of iteration j

and that have at least γj/2 active neighbors each. The graph G′ which was mentioned in the

statement of this lemma is the graph obtained from Ĝj by running the internal for-loop (lines

3-8) of Algorithm 24 on iteration j of the external for-loop (lines 1-19) of the algorithm. Recall

that Q′ is the set of all well-spread sequences of length ⌊µ/5⌋, µ =
⌊√

logn
⌋
. Recall also that

by (6), it holds that |Q′| = O(n2). By Lemma 9.10, for any pair of vertices u, v ∈ V (Ĝj), such

that distG(u, v) ≥ √
logn ≥ µ, and any path P in Ĝj that connects u and v, there exists a

well-spread sequence Q ∈ Q′ of length ⌊µ/5⌋ with Q ⊆ V (P). Also, by Corollary 9.11, the

events {E(q) | q ∈ Q} are mutually independent. Thus, by union bound, the probability that

after d · µ iterations there remains a well-spread sequence Q ∈ Q′, Q ⊆ V (P), whose all vertices

q ∈ Q are active and have at least γj/2 active neighbors each is at most O(n2) · (1− ρ)d·µ·⌊µ/5⌋.

Let c′ be an arbitrarily large constant. For a sufficiently large constant d it holds that

O(n2)·((1−ρ)logn)d/5 ≤ 1/nc
′
. (Recall that ρ = 1

32 . See the proof of Lemma 9.15 (1).) Therefore,

once the internal for-loop of Algorithm 24 (lines 3-8) is completed, with high probability, no path

P that satisfies all the following properties survives. (a) All vertices of P are active, (b) each

vertex of P has at least γj/2 active neighbors, and (c) the endpoints of P have distance (in G) at

least
√
log n one from another. Therefore, in line 10 of Algorithm 24, all connected components

of G′ have weak diameter smaller than
√
log n with high probability.

Lemma 9.16 implies that, with high probability, a single phase of Algorithm 24 (that is,

a single iteration of the external for-loop, lines 1-19 of Algorithm 24) terminates successfully

within d · µ + µ rounds, for a constant d. Specifically, lines 3-8 require at most d · µ rounds,

and lines 9-18 require at most µ rounds. Next, we analyze the success probability of the entire

algorithm. Let c′ be an arbitrarily large constant. For any ĉ > c′, for a sufficiently large n, it

holds that (1−1/nĉ)log∆ ≥ 1−1/nc
′
. Thus, with probability at least 1−1/nc

′
, for an arbitrarily

large constant c′, all phases complete successfully within overall time ⌊log∆⌋ · (d ·µ+µ)+O(1).

Recall that µ =
⌊√

log n
⌋
. We summarize this discussion in the following theorem.

Theorem 9.17. Procedure Compute-MIS computes, with high probability, an MIS of a graph G

with degree ∆ ≤ 2
√
logn in time O(log∆

√
log n).

117

We remark that when ∆ > 2
√
log n, the running time of the algorithm of Luby [56] is

O(logn) = O(log∆
√
log n). Hence we derive the following corollary.

Corollary 9.18. An MIS on n-vertex graphs wiht maximum degree at most ∆ can be computed,

with high probability, within O(log∆
√
log n) time.

The above result is due to [10]. It is also shown in [10] that if ∆ is at most polylogarithmic

in n, then an MIS can be computed, with high probability, in time 2O(
√
log log n).

9.4 Randomized Maximal Matching

In this section we describe a randomized Maximal Matching algorithm due to [10] with running

time O(
√
log n + log∆), for graphs with maximum degree ∆, for the entire range 1 ≤ ∆ ≤ n.

The general framework of the algorithm is similar to Algorithm 22 (Section 9.3.1). In the first

stage vertices execute a procedure, called Procedure Decide-Match, for O(
√
log n+log∆) rounds.

In each round some edges are matched, and become inactive. Edges incident to the matched

ones become inactive as well. A vertex becomes inactive once all the edges it belongs to become

inactive. Thus, once an edge is matched, its endpoints become inactive.

Like in Section 9.3, here too we refer to the number of active edges incident on a vertex as its

active degree. Procedure Decide-Match guarantees that the active degree of a vertex is reduced by

a multiplicative constant factor in each round, with high probability, for sufficiently large degrees.

Once the first stage completes, with high probability, all connected components of the subgraph

induced by active vertices with sufficiently large degree have weak diameter O(
√
log n+ log∆).

The subgraph induced by remaining active vertices satisfies certain properties. These properties

enable us to compute a Maximal Matching of this subgraph within additional O(
√
log n+log∆)

time. The pseudocode of Procedure Decide-Match is provided below.

118

Algorithm 25 Procedure Decide-Match()

An algorithm for each vertex v ∈ V .

1: Initialize the forest F1 and the matching MM by F1 := ∅ and MM := ∅
2: Select uniformly at random an active neighbor u of v, and add the arc 〈v, u〉 to F1

3: /* We say that v selected u. */

4: if v has indegree at least 1 in F1 then

5: /* if v is selected */

6: Select an arbitrary incoming neighbor w, and insert the arc 〈w, v〉 into F2

7: /* F2 is a vertex disjoint set of oriented paths and cycles. */

8: end if

9: Toss a random bit b(v)

10: if b(v) = 0 and there is an edge 〈v, u〉 in F2 such that b(u) = 1 then

11: 〈v, u〉 joins MM

12: 〈v, u〉 and all edges incident on it become inactive

13: end if

Next, we describe Procedure Compute-MM that employs Procedure Decide-Match to com-

pute a Maximal Matching of the input graph G. First, it completes the first stage, in which

Procedure Decide-Match is invoked in each round. Next, it computes a Maximal Matching

of the subgraph G′ of active vertices with active degrees greater than ∆′, for a parameter ∆′

that will be determined later. In the sequel we show that the subgraph G′ has weak diameter

O(
√
logn+log∆), with high probability. This property enables us to compute a Maximal Match-

ing of G′ in O(
√
log n+ log∆) time. After this stage the subgraph induced by the set X of yet

remaining active vertices decomposes as X = Z∪Y , where Z is an independent set of unmatched

vertices which are left after the previous stages, and Y is a set of vertices that induce a subgraph

with maximum active degree at most ∆′. In the sequel we show that a Maximal Matching for X

can be computed in O(∆′+log∗ n) time. The procedure that computes a maximal matching for

such a graph will be called Procedure Complete-MM. Once it is computed, all vertices and edges

become inactive, and the algorithm terminates. The pseudocode of the procedure Compute-MM

is provided below. The notation f(n,∆) stands for max{√log n, log∆}.

119

Algorithm 26 Procedure Compute-MM(∆′)
An algorithm for each vertex v ∈ V . Initially, all vertices and edges are active

1: ℓ := ⌊cℓ · f(n,∆)⌋ /* cℓ is a large constant */

2: for i = 1, 2, ..., ℓ do

3: if v is active then

4: Decide-Match()

5: end if

6: end for

7: if v is active then

8: Denote by G′ the subgraph induced by active vertices u, with actdeg(u) > ∆′

9: /* The parameter ∆′ will be determined in the sequel */

10: if v ∈ G′ then

11: G′
v := collect the topology of the connected component in G′ that contains v

12: Compute a Maximal Matching M of G′
v locally

13: end if

14: if v belongs to an edge e that joins the Maximal Matching (i.e., e ∈M) then

15: The vertex v and all edges that are incident on it become inactive

16: end if

17: end if

18: Compute a Maximal Matching of the remaining active edges (by Procedure Complete-MM

that will be described in the sequel)

In what follows we show that once the first stage (lines 1-6 of algorithm 26) completes, all

connected components in the subgraph G′ (defined in line 8) have weak diameter O(f(n,∆)),

with high probability. The main idea is that the probability that the active degree of a vertex

v remains greater than ∆′ = Θ(f(n,∆)) after ℓ = ⌊cℓ · f(n,∆)⌋ rounds is, roughly speaking,

exp{−ℓ} = exp{− ⌊cℓ · f(n,∆)⌋}. Consequently, the probability that for a path P̂ connecting

the vertices u, v such that distG(u, v) ≥ f(n,∆), all vertices of P̂ have active degrees greater

than ∆′, is at most p = exp{−ℓ · f(n,∆)} = exp
{
−cℓ ·max{√log n, log∆}2

}
. The number of

different paths of length f(n,∆) in G is at most D = n ·∆f(n,∆) = exp{log n+ log∆ · f(n,∆)}.
Hence, by the union bound, the probability that some path P̂ as above survives is at most

p ·D ≤ 1/poly(n).

We will use the following variant of Chernoff’s bound (see, e.g., [2], Chapter A.1).

Theorem 9.19. Let Y be the sum of mutually independent indicator random variables, with

µ = IIE(Y). Let t ≥ µ be a real. Then for all ǫ > 0,

IIP(Y > µ+ ǫ(t+ 1)) < 2 · exp{−cǫ · t},

120

where cǫ > 0 depends only on ǫ.

For a fixed vertex v ∈ V and index i ∈ [ℓ] of an iteration, let deg(i)(v) denote the active

degree of v at the beginning of iteration i. We say that v is in Case 3 in iteration i if during

iteration i the active degree of v becomes smaller than ∆′. We say that v is in Case 1 in iteration

i if it is not in Case 3, and the number of neighbors of v that were selected in iteration i by

some vertex other than v is at least deg(i)(v)/2. (See line 2 of Algorithm 25 for the definition of

”selected”.) If in iteration i the vertex v is not in Case 3 and not in Case 1, we say that v is in

Case 2 in iteration i.

For an active vertex u at the beginning of iteration i, let Ii+1(u) be the indicator random

variable which is equal to 1 if u survives the ith iteration (i.e., does not get matched on this

iteration).

Denote by Γ(i)(v) the set of (immediate) active neighbors of v at the beginning of iteration

i. By definition, |Γ(i)(v)| = deg(i)(v).

Denote by Si(v) (respectively, Ui(v)) the subset of Γ
(i)(v) of neighbors of v that were selected

(resp., were not selected) on iteration i by some vertex other than v. If the vertex v is in Case

1 in iteration i, then |Si(v)| ≥ deg(i)(v)/2.

Next, we analyze the probability that the active degree of a vertex in Case 1 or Case 2 is

reduced by some multiplicative factor.

Case 1

In this section we assume that the vertex v is in Case 1 in iteration i.

Consider a pair of distinct neighbors u, u′ ∈ Si(v), u 6= u′, of v. If u and u′ belong to different

connected components (i.e., paths of cycles) of F2, then Ii+1(u) and Ii+1(u
′) are independent

random variables. Moreover, if u and u′ belong to the same connected component of F2 and the

distance between them in F2 is at least 3, then these random variables are independent as well.

Next, we construct a subset S′
i(v) ⊆ Si(v) of neighbors of v, such that the set {Ii+1(u) |

u ∈ S′
i(v)} of their respective random variables is independent. The set S′

i(v) is initialized as an

empty set. Then we pick an arbitrary neighbor u ∈ Si(v) of v and add it to S′
i(v). Also, all other

neighbors u′ ∈ Si(v) of v that are at distance at most 2 from u in F2 are removed from Si(v).

We iterate this until the set Si(v) becomes empty. (We remark that the set S′
i(v) is constructed

only for the analysis. The algorithm itself does not construct this set.)

It is easy to see that the set {Ii+1(u) | u ∈ S′
i(v)} is a set of independent random variables.

Moreover, since the degree of any vertex in F2 is at most 2, the size s′i(v) of S
′
i(v) is at least a

constant fraction of the size si(v) of Si(v). Specifically, s
′
i(v) ≥ si(v)/5. Since the vertex v is in

Case 1 in iteration i, it follows that si(v) ≥ deg(i)(v)/2, and so s′i(v) ≥ deg(i)(v)/10.

121

The degree of v after iteration i, deg(i+1)(v), satisfies

deg(i+1)(v) ≤
∑

u∈Γ(i)(v)

Ii+1(u) ≤
∑

u∈Γ(i)(v)

I ′i+1(u) , (8)

where

I ′i+1(u) =

{
1, u ∈ Γ(i)(v) \ S′

i(v),

Ii+1(u), u ∈ S′
i(v).

(9)

Observe that when u ∈ S′
i(v), the random variable I ′i+1(u) depends upon the random bit b(u)

and upon at most two additional random bits b(x) and b(y), where x and y are the neighbors of

u in (an unoriented version of) F2. (Since each connected component of F2 is a path or cycle, u

has at most 2 neighbors in F2.)

Denote by

deg′(i+1)(v) =
∑

u∈Γ(i)(v)

I ′i+1(u). (10)

By (8), deg′(i+1)(v) stochastically dominates deg(i+1)(v). Then

deg′(i+1)(v) = (deg(i)(v)− s′i(v)) +
∑

u∈S′
i(v)

I ′i+1(u) .

Hence

IIE(deg′(i+1)(v)) = (deg(i)(v)− s′i(v)) +
∑

u∈S′
i(v)

IIE(I ′i+1(u)) .

(The expectation above is taken over the random bits that determine random variables I ′i+1(u),

for u ∈ S′
i(v). In other words, on this stage deg(i)(v) and s′i(v) are already fixed.)

For u ∈ S′
i(v), IIE(I

′
i+1(u)) = IIP(I ′i+1(u) = 1). It is easy to verify that if u has two neighbors in

F2 then this probability is 1/2, and if it has just one neighbor (i.e., if it is an endpoint of a path)

then this probability 3/4. Hence IIE(deg′(i+1)(v)) = deg(i)(v) − s′i(v)(1 − ρ), for 1/2 ≤ ρ ≤ 3/4.

Since v is in Case 1 in iteration i, it follows that s′i(v) ≥ deg(i)(v)/10. Hence

IIE(deg′(i+1)(v)) ≤ deg(i)(v)
9 + ρ

10
≤ 39

40
deg(i)(v) . (11)

This completes the analisys for case 1.

Case 2

Next, we consider a vertex v that is in Case 2 in iteration i.

In this case v has at least deg(i)(v)/2 neighbors that were not selected by any vertex other

than v. If v selects one of them (and it does so with probability at least 1/2), then this selected

neighbor u has no choice but to insert the edge 〈u, v〉 into F2. Hence the vertex v reachs V (F2)

on iteration i with probability at least 1/2. If it does, then with probability at least 1/4 it gets

matched.

122

Denote the event “v selects one of these deg(i)(v)/2 neighbors on iteration i” by αi+1(v), and

the event “v gets matched on iteration i” by Mi+1(v). Denote also by M ′
i+1(v) the event that v

gets matched in the particular way that was described above. Specifically, that v selects one of

its neighbors that were not selected by any vertex other than v, and gets matched by a matching

computed for F2. Observe that M ′
i+1(v) ⊆Mi+1(v), and therefore IIP(M ′

i+1(v)) ≤ IIP(Mi+1(v)).

It follows that IIP(αi+1(v)) ≥ 1/2, and IIP(M ′
i+1(v) | αi+1(v)) ≥ 1/4. Hence

IIP(Mi+1(v)) ≥ IIP(M ′
i+1(v)) ≥ IIP(αi+1(v) and M

′
i+1(v)) (12)

= IIP(M ′
i+1(v) | αi+1(v)) · IIP(αi+1(v)) ≥ 1/8,

i.e., the probability of v to get matched in this case is at least 1/8.

Consider a subset W ⊆ V of vertices that are in Case 2 in iteration i. Assume that for

every pair of vertices u,w ∈ W , distG(u,w) ≥ 3. (The subset W will be later constructed

in a way that satisfies this assumption.) Then the events {M ′
i+1(u) | u ∈ W} are (mutually)

independent. This is because an event M ′
i+1(v) is determined by random bits tossed by the

vertex v and some of its (immediate) neighbors. On the other hand, for a set W as above and

two vertices u,w ∈W , the neighborhoods Γ(u) and Γ(v) are disjoint.

This completes the analisys for case 2.

We now return to the analysis of Algorithm 26. The next lemma shows that after the

first stage of Algorithm 26 (lines 1-6), with high probability, all connected components of the

graph induced by remaining active vertices with sufficiently large degrees have weak diameter

O(
√
logn+ log∆).

Lemma 9.20. After the first stage of Algorithm 26, with probability at least 1− 1/poly(n), for

all pairs u, v ∈ V of vertices such that distG(u, v) ≥ k, for k = Θ(
√
log n+∆), each path between

u and w contains a vertex whose active degree is at most ∆′ = O(
√
log n+ log∆).

Proof. Denote f = f(n,∆) = max{√logn, log∆}, ∆′ = c∆ ·f , k =
⌊
cQ̂ · f

⌋
, ℓ = ⌊cℓ · f⌋, where

c∆, cQ̂, cℓ are positive constants to be determined later. Denote by degi(v) = deg(i)(v) the active

degree of a vertex v ∈ V in the beginning of iteration i of Algorithm 26 (lines 2-5). Denote also

deg′i+1(v) = deg′(i+1)(v) (see (10)).

Fix a pair of vertices u, v with distG(u, v) ≥ k, and a path P between them. Let Q̂ = Q̂(P) ⊆
V (P) be a well-spread sequence of length at least ⌊k/5⌋. Such a sequence exists, by Lemma

9.10.

Denote by Q̂3(i) ⊆ Q̂ the set of vertices q with degi(q) ≤ ∆′ = c∆ · f (i.e., vertices in Case

3 in iteration i). Denote by Q̂1(i) ⊆ Q̂ the set of vertices q not in Case 3 that are in Case 1 in

iteration i (i.e., at least 1
2 degi(q) of q’s neighbors were selected by someone else). Denote by

123

Q̂2(i) ⊆ Q̂ the set of vertices q not in Case 3 that are in Case 2 in iteration i (i.e., less than
1
2 degi(q) of q’s neighbors were selected by someone else).

We say that an iteration i is of type 3 if Q̂3(i) 6= ∅. An iteration i is of type 1 if it is not of

type 3 and |Q̂1(i)| ≥ Q̂
2 . An iteration i is of type 2 if it is not of type 3 and |Q̂2(i)| > Q̂

2 .

Our analysis now splits into a number of cases, depending on the type of iteration i.

(1) For an iteration i of type 1:

By inequality (11), for every vertex q ∈ Q̂1(i), it holds that IIE
(
deg′i+1(q)

)
≤ 39

40 degi(q).

By Chernoff’s bound (applicable because deg′i+1(q) =
∑

u∈Γ(i)(v) I
′
i+1(u) is a sum of independent

indicator random variables),

IIP

(
deg′i+1(q) ≥

79

80
degi(q)

)
≤ exp{−Ω(degi(q))} ≤ exp{−Ω(∆′)} = exp{−Ω(c∆ · f)}.

It follows that

IIP

(
∃q ∈ Q̂1(i) such that deg′i+1(q) >

79

80
degi(q)

)
≤ |Q̂| · exp{−Ω(c∆ · f)} (13)

≤ cQ̂ · f · exp{−Ω(c∆ · f)}
≤ exp{−Ω(c∆ · f)}.

(Because f = f(n,∆) tends to infinity when n tends to infinity. Note that, we can assume

without loss of generality that ∆ = ω(1), because for ∆ = O(1) there is an existing very fast

algorithm by Panconesi and Rizzi [64] for computing a maximal matching. The latter algorithm

requires O(∆ + log∗ n) time.)

An iteration i of type 1 is called bad if the event
{
∃q ∈ Q̂1(i) such that deg′i+1(q) >

79
80 degi(q)

}

occurs. Denote by Bad(i) the event that iteration i is bad, and by T1(i) (respectively, T2(i);

respectively, T3(i)) the event that iteration i is of type 1 (resp., of type 2; resp., of type 3).

Inequality (13) implies that IIP(Bad(i) | T1(i)) ≤ exp{−Ω(c∆ · f)}.

(2) For an iteration of type 2:

We say that a vertex is eliminated if it is matched or all its neighbors are matched. For an

iteration i of type 2, it holds that |Q̂2(i)| ≥ |Q̂|/2. Also, recall that by (12), for a vertex

q ∈ Q̂2(i), IIP(q is not matched) ≤ 7/8. Hence

IIP(∀q ∈ Q̂2(i), q is not eliminated) ≤ IIP(∀q ∈ Q̂2(i), q is not mathced)

≤
(
7

8

)|Q̂2(i)|
≤
(
7

8

)|Q̂|/2

= exp{−Ω(|Q̂|)} = exp{−Ω(cQ̂ · f)}.

An iteration of type 2 is called bad if neither of the vertices of Q̂2(i) is eliminated. It follows

that IIP(Bad(i) | T2(i)) ≤ exp{−Ω(cQ̂ · f)}.

124

(3) An iteration of type 3 is never bad.

Hence IIP(Bad(i) | T3(i)) = 0 < exp{−Ω(min{c∆, cQ̂} · f)}.

Thus

IIP(Bad(i)) =
3∑

j=1

IIP(Bad(i) | Tj(i)) · IIP(Tj(i)) (14)

≤ exp{−Ω(min{c∆, cQ̂} · f)} ·
3∑

j=1

IIP(Tj(i)) = exp{−Ω(min{c∆, cQ̂} · f)}.

Lemma 9.21. IIP(∃ ℓ/2 bad iterations) ≤
(

ℓ
ℓ/2

)
· exp{−Ω(ℓ2 ·min{c∆, cQ̂} · f)}.

Proof. For given ℓ/2 iterations i1, i2, ..., iℓ/2, for each ij among them

IIP(Bad(ij) | Bad(i1), Bad(i2), ..., Bad(ij−1)) ≤ exp{−Ω(min{c∆, cQ̂} · f)}.

Indeed, the analysis that results in inequality (14) applies even when the event Bad(i) is con-

ditioned on the event (Bad(i1) ∧ ... ∧ Bad(ij−1)), for i1, ..., ij−1 < i. The meaning of the event

(Bad(i1)∧...∧Bad(ij−1)) is the following one. First, it means that no vertex of Q̂ was eliminated

on iterations i1, i2, ..., ij−1, and that no vertex of Q̂ ended up having active degree below ∆′ on

any of these iterations. In addition, the event (Bad(i1) ∧ ... ∧ Bad(ij−1)) means that in each

iteration h ∈ {i1, i2, ..., ij−1} that was of type 1, there exists a vertex q(h) ∈ Q̂ whose active

degree did not decrease in iteration h by a factor 79
80 or less.

Hence

IIP(Bad(i1), Bad(i2), ..., Bad(iℓ/2))

= IIP(Bad(iℓ/2) | Bad(i1), Bad(i2), ..., Bad(iℓ/2−1)) · IIP(Bad(i1), Bad(i2), ..., Bad(iℓ/2−1))

= exp{−Ω(min{c∆, cq̂} · f)} · IIP(Bad(i1), Bad(i2), ..., Bad(iℓ/2−1))

≤ exp{−Ω(
ℓ

2
·min{c∆, cq̂} · f)} = exp{−Ω(f2 · cℓ ·min{c∆, cq̂})}.

Hence

IIP(∃ ℓ/2 bad iterations) ≤ 2ℓ · exp{−Ω(f2 · cℓ ·min{c∆, cQ̂})}

= exp
{
cℓ · f − Ω(f2 · cℓ ·min{c∆, cQ̂})

}

= exp
{
−Ω(f2 · cℓ ·min{c∆, cQ̂})

}

By Lemma 9.10, each such path P contains a well-spread sequence of length ⌊k/5⌋+ 1. Let

P denote the set of all paths whose endpoints u, v satisfy distG(u, v) > k. Let Q̂ be the set

125

of well-spread sequences of length ⌊k/5⌋ + 1. Then for each path P ∈ P there is a well-spread

sequence Q̂ ∈ Q̂, Q̂ ⊆ V (P). Since the size of Q̂ is at most n ·∆5k+5 ≤ n ·∆O(cQ̂·f). Hence, by

the union bound,

IIP(∃ path P between some pair of vertices u, v such that distG(u, v) > k, such that

∃ ℓ/2 bad iterations for Q̂ = Q̂(P)) ≤ n ·∆O(cQ̂·f) · exp
{
−Ω(f2 · cℓ ·min{c∆, cQ̂})

}
. (15)

The right-hand side of (15) is at most

exp
{
log n+O(log∆ · cQ̂ · f)− Ω(f2 · cℓ ·min{c∆, cQ̂})

}

≤ exp
{
log n+O(cQ̂ · f2)− Ω(f2 · cℓ ·min{c∆, cQ̂})

}

= exp
{
−Ω(f2 · cℓ ·min{c∆, cQ̂})

}
≤ 1/poly(n),

for a large constant cℓ and c∆ ≥ cQ̂. (Because f = max{log∆,√logn}.)

Hence with probability at least 1− 1/poly(n), for all well-spread sequences Q̂ of length at least

⌊k/5⌋+ 1 there at least ℓ/2 good iterations.

Consider again a fixed pair of vertices u, v with distG(u, v) ≥ k, a path P between them,

and the well-spread sequence Q̂ = Q̂(P) of this path. If there is at least one good iteration of

type 3 for Q̂, then we are done (one of the vertices of Q̂ gets degree at most ∆′). If there is at

least one good iteration of type 2, then one of the vertices of Q̂ gets matched, and we are again

done. So we are left with the case that there are at least ℓ/2 good iterations of type 1.

Denote by i1, i2, ..., iℓ/2 the indices of the first ℓ/2 such iterations. For each index j ∈ [ℓ/2],

denote Q̂(j) = Q̂1(ij). Denote ℓ′ = ℓ/2, k = |Q̂|. We know that for all j ∈ [ℓ′],

|Q̂(j)| = |Q̂1(ij)| ≥
|Q̂|
2

= k/2.

Also for every q ∈ Q̂(j) = Q̂1(ij), deg
′
ij+1(q) ≤ 79

80 · degij (q). (Because ij is a good iteration of

type 1, and all vertices of Q̂1(ij) are vertices of type 1 in iteration ij .) The overall number D

of distinct pairs (q, j) such that q ∈ Q̂(j) is at least ℓ′ · |Q̂|
2 . For a given q ∈ Q̂ denote by D(q)

the number of pairs (q, j) as above that involve the particular vertex q. Note that D(q) is the

number of sets Q̂(j) to which q belongs. Hence

D =
∑

q∈Q̂

D(q) ≥ ℓ′ · |Q̂|
2
.

By the pigeonhole principle, there exists a vertex q ∈ Q̂ with D(q) ≥ ℓ′

2 . In other words, there

exists a vertex q ∈ Q̂ that belongs to at least ℓ′/2 = ℓ/4 sets Q̂(j).

126

Fix a specific vertex q ∈ Q̂ with D(q) ≥ ℓ/4. Let p1, p2, ..., pℓ/4 denote the indices of distinct

iterations such that q ∈ Q̂(p1), q ∈ Q̂(p2), ..., q ∈ Q̂(pℓ/4). For each pj , j ∈ [ℓ/4], it holds that

deg′pj+1(q) ≤ 79
80 · degpj (q). Denote by d̂eg(q) the active degree of q after all these iterations.

Then d̂eg(q) ≤ (7980)
ℓ/4 · deg(q). Set ℓ so that (7980)

ℓ/4 < 1
∆ . (We set ℓ = ⌊cℓ · f⌋, for a sufficiently

large constant cℓ. Specifically, cℓ >
4

log(80/79) .)

It follows that d̂eg(q) < 1
∆ · deg0(q) ≤ 1. Hence d̂eg(q) = 0. Hence with probability at

least 1− exp{−Ω(f2)}, for all well-spread sequences Q̂, at least one of the vertices of Q̂ is either

eliminated (due to all its neighbors being matched, or because it itself got matched), or its degree

becomes at most ∆′. (The latter happens if there is a good iteration of type 3.) Hence with

probability at least 1 − 1/poly(n), for all pairs u, v ∈ V of vertices such that distG(u, v) ≥ k,

k = Θ(|Q̂|) = Θ(cQ̂ · f), each path between u and w contains a vertex whose active degree is at

most ∆′. This completes the proof of Lemma 9.20.

By Lemma 9.20, once the first stage of Algorithm 26 terminates, all connected components

induced by vertices with active degree greater than ∆′ have weak diameter O(
√
log n+ log∆),

with high probability. In the next stage, the algorithm computes a Maximal Matching in these

connected components. This is done in the same way as in the algorithm for computing an

MIS. Specifically, each vertex v collects the topology of its O(
√
log n + log∆)-neighborhood.

Consider the graph G′ induced by vertices that have active degree at least ∆′ at this stage. The

vertex v computes locally the topology of the connected component G′
v of G′ to which v belongs.

Then v computes locally a Maximal Matching for G′
v. This matching is computed by the same

centralized procedure by all vertices u in G′
v. Therefore, the resulting matching is computed

consistently by all vertices. Consequently, with high probability, for each edge e that remains

after this stage (henceforth, active edge) at least one of the endpoints of e has active degree

at most ∆′. Let X denote the set of remaining active vertices once lines 1-16 of Algorithm 26

complete. Let Y be the subset of X containing all vertices with active degree at most ∆′. Let

Z = X \Y . Since for each remaining active edge, at least one of its endpoints belongs to Y , the

set Z is an independent set.

To successfuly complete Algorithm 26, we need to compute a Maximal Matching of G(X)

in line 17. Next, we describe Procedure Complete-MM that performs this task. This procedure

starts with invoking the algorithm of Panconesi and Rizzi [64] on G(Y), and removing all

matched edges, and the edges incident on them. This invocation requires O(∆′ + log∗ n) time.

Consequently all edges whose both endpoints belong to Y become inactive. Therefore, the yet

remaining edges have one endpoint in Y and one endpoint in Z. In other words, the subgraph

induced by the remaining active vertices is a bipartite graph, where all vertices in Y have active

degree at most ∆′. A Maximal Matching in such graph can be computed in O(∆′) rounds in the

following way. In each round, a vertex from Y selects an arbitrary neighbor from Z. Next, each

127

selected neighbor from Z selects an arbitrary neighbor from Y that has selected it. All edges

selected by vertices from Z become matched, and, therefore, these edges and the edges incident

to them become inactive. Consequently, the active degree of each vertex v in Y decreases, either

because v is matched and becomes inactive, or because the neighbor selected by v becomes

matched. Hence, after O(∆′) rounds, the active degree of all vertices in Y become zero, and no

active edges remain in the graph. We summarize this discussion in the following theorem.

Theorem 9.22. Algorithm 26 (Procedure Compute-MM) invoked with the input parameter ∆′ =

O(
√
logn + log∆), computes a Maximal Matching of the input graph, with high probability, in

time O(
√
logn+ log∆).

It is instructive to compare this result with the lower bound of Kuhn et al. [46, 48]. The latter

lower bound shows that there are (infinitely many) n-vertex graphs with maximum degree ∆ =

2Θ(
√
logn), on which any algorithm for Maximal Matching requires Ω(

√
log n) = Ω(log∆) time.

This result implies that Maximal Matching requires Ω(min{√logn, log∆}) time. Therefore, the

upper bound in Theorem 9.22 is tight up to constant factors, for ∆ = 2Θ(
√
logn).

Finally, we remark that the current state-of-the-art randomized algorithm for the MM prob-

lem requires O(log∆ + log4 log n) time [10].

128

10 Conclusion and Open Questions

In this monograph we made an effort to reflect and make accessible to the reader the significant

progress that was achieved in the area of distributed symmetry breaking in recent years. On the

other hand, many central problems in this field are open, and some of these problems are wide

open. In this chapter we will overview the main open questions in this area.

Perhaps the most fundamental open problem in this field is to understand the power and

limitations of randomization. For centralized algorithms there is a powerful methodology for

derandomizing randomized algorithms, i.e., converting them into deterministic ones while in-

curring only a bounded overhead. (See, e.g., [2], Chapter 16, and the references therein.) The

situation is similar for many distributed shared-memory models, such as PRAM. However, in

the distributed message-passing model there is currently no generic derandomization technique

known. Developing such a technique, even for a limited spectrum of algorithms, would be a very

interesting advance. This leads us to our first open problem.

Open Problem 10.1. Develop a general derandomization technique for the distributed message-

passing model.

The most notable specific problem that has to do with derandomization is whether the

symmetry breaking problems, specifically the MIS and the (∆ + 1)-coloring problems, can be

solved in deterministic polylogarithmic time. Solving an MIS appears to be more dificult (or at

least no easier) than solving a (∆+1)-coloring, as demonstrated by Luby’s reduction (see Section

3.9). Hence it is natural to approach the (∆+ 1)-coloring problem first. For both problems the

state-of-the-art upper bound is the deterministic algorithm by Panconesi and Srinivasan [65].

This algorithm requires 2O(
√
logn) time. It is based on the network decomposition approach.

In the lower bound front, the state-of-the-art is Ω(
√
log n), due to Kuhn et al. [46, 48].

Narrowing this gap is probably the most outstanding problem in this area. We state this open

problem below.

Open Problem 10.2. Devise a deterministic polylogarithmic time algorithm for the MIS prob-

lem, or rule it out. As an intermediate state, narrow the gap between the upper bound of

2O(
√
logn) due to [65] and the lower bound of Ω(

√
logn) due to [46, 48]. The same question for

the (∆ + 1)-coloring is as interesting, and is even more widely open than this one. (See below.)

In fact, for the (∆ + 1)-coloring problem the gap is even larger than for the MIS problem.

The lower bound of [46, 48] is not known to apply to the (∆ + 1)-coloring problem, and thus,

one can hope to come up with a log∗ n-time deterministic algorithm for (∆ + 1)-coloring.

The (∆ + 1)-coloring problem can be naturally relaxed, and one can ask whether f(∆)-

coloring can be computed in deterministic polylogarithmic time, for some mildly growing super-

linear function f(·). Linial [51] initiated the study of this relaxed question, and showed that

129

O(∆2)-coloring can be computed in log∗ n + O(1) time. He also asked if one can compute a

coloring within significantly less than ∆2 colors in deterministic polylogarithmic time. The

authors of the current monograph answered this question in the affirmative in [8], and showed

that ∆1+O(1)-coloring can be computed in deterministic polylogarithmic time. Specifically, in

[8] we presented a ∆ · 2O(log∆/ log log∆)-coloring in log n · log1+ǫ time, for an arbitrarily small

constant ǫ > 0. Improving the number of colors in this result would be very interesting.

Open Problem 10.3. Devise a ∆ · polylog(∆)-coloring in deterministic polylogarithmic time.

As an intermediate step, improve upon the result of [8].

Another related variant of the (∆+1)-coloring problem is the (2∆−1)-edge-coloring problem.

As we saw in Chapter 8 any algorithm for the former problem translates into an algorithm with

roughly the same running time for the latter. The best currently known deterministic algorithm

for the (2∆−1)-edge-coloring problem is still the network-decomposition algorithm of [65], which

requires 2O(
√
logn) time. The situation with lower bounds is as appalling as for the (∆+1)-vertex-

coloring problem.

One can try to use slightly more colors, and get deterministic polylogarithmic time. There

are two results along these lines known. The first one is a deterministic O(∆·log n)-edge-coloring
algorithm by Czygrinow et al. [19] which requires O(log4 n) time. The second one is an algorithm

from [9] which provides a ∆ · 2O(log∆/ log log∆)-edge-coloring within O(log1+ǫ∆+ log∗ n log∆
log log∆)

time, for an arbitrarily small constant ǫ > 0. We summarize this problem below.

Open Problem 10.4. Devise or rule out a deterministic (2∆− 1)-edge-coloring algorithm that

runs in polylogarithmic time. As an intermediate step, improve upon the aforementioned results

of [19, 9]. Specifically, devise a ∆ · polylog(∆)-edge-coloring in deterministic polylogarithmic

time.

Another closely related problem is the MM problem. Unlike its sister symmetry breaking

problems (the MIS, the (∆+1)-vertex-coloring, and the (2∆−1)-edge-coloring), there is a poly-

logarithmic deterministic algorithm for the MM problem. The algorithm is due to Hanckowiak

et al. [33], and it requires O(log4 n) time. As we saw in chapter 8 the MM problem reduces to

the MIS problem in graphs with neighborhood independence bounded by 2. However, for the

latter problem there is no known deterministic polylogarithmic algorithm. Solving it would be

a good stepping stone towards the MIS problem in general graphs.

Open Problem 10.5. Devise or rule out a deterministic polylogarithmic algorithm for the MIS

problem in graphs with neighborhood independence bounded by 2.

Another related open question is to improve the upper bound of [33] fo the MM problem.

(It is O(log4 n).)

The complexity of all these problems was studied also in terms of the maximum degree

130

parameter ∆. Specifically, Panconesi and Rizzi [64] showed that the MM and the (2∆ − 1)-

edge-coloring problems can be solved in O(∆) + log∗ n time. (See Section 8.1.) The authors

of the current monograph [6] and Kuhn [44] showed that this is also the case for the MIS and

the (∆+ 1)-vertex-coloring problems. (See Chapter 6.) In the lower bounds front the Ω(log∗ n)

lower bound is due to Linial [51], and for the MIS and the MM problems there is also a lower

bound of Ω(log∆) due to Kuhn et al. [46, 48].

Open Problem 10.6. Devise or rule out an algorithm with running time o(∆)+ log∗ n for one

of these problems.

Interestingly, in contrast to the previous problems, for Open Problem 10.6 there is no known

randomized algorithm that achieves the desired bound (of o(∆) + log∗ n).

The (∆ + 1)-coloring algorithms of [7, 44] are based on defective coloring (see Section 2.4

and Chapter 6). Lovasz showed that in a graph with maximum degree ∆, for any parameter p,

1 ≤ p ≤ ∆, there exists a (∆/p)-defective p-coloring [54]. The known distributed counterparts

of this result are substantially weaker. Specifically, Kuhn [44] showed that a (∆/p)-defective

O(p2)-coloring can be computed in O(log∗ n) deterministic time. (See also [7] for a weaker result

obtained by a different technique.)

Open Problem 10.7. Devise an efficient distributed algorithm for computing a (∆/p)-defective

O(p)-coloring.

We remark that for graphs with bounded neighborhood independence such a result is known [9].

It was used in [9] to devise a ∆1+ǫ-edge-coloring algorithm that requires O(log∆)+ log∗ n time.

Answering Open Problem 10.7 in the affirmative would lead to a similar result for vertex-coloring.

This, in turn, would be a significant improvement over the best currently-known vertex-coloring

algorithms [8, 10].

Instead of graphs of bounded degree it is often instructive to consider graphs of bounded

arboricity. In [6] the authors of this monograph showed that for graphs with arboricity a ≤
polylog(n), all these problems are solvable in deterministic polylogarithmic time.

Open Problem 10.8. Devise or rule out a deterministic polylogarithmic algorithm for one of

these problems, for graphs with a ≫ polylog(n). For example, for a = exp{logǫ n}, for some

fixed constant ǫ > 0.

In the context of graphs with bounded arboricity it is also natural to look on the logarithmic

barrier. In [6] we showed that the MIS and the (∆ + 1)-coloring problems can be solved in

deterministic time O(logn
log log n), as long as a ≤ log1/2−ǫ n, and the MM and the (2∆ − 1)-edge-

coloring problems can be solved within the same time for a ≤ log1−ǫ n. (In both cases ǫ > 0 is

a fixed arbitrarily small constant.)

Open Problem 10.9. Devise a sublogarithmic deterministic algorithm for the MIS and the

131

(∆+1)-coloring problems for graphs with a < t(n), for some t(n) = Ω(
√
log n), and for the MM

and the (2∆− 1)-edge-coloring problems for graphs with a ≤ s(n), for some s(n) = Ω(log n).

Closely related to Open Problem 10.9 are numerous questions regarding f(a)-coloring of

graphs with arboricity at most a, for various functions f(·). Those questions, in turn, are

closely related to the problem of computing forest decompositions. Recall that for a graph of

arboricity a one can compute a decomposition into (2 + ǫ) · a forests in O(log n) time. One

can also compute a 2a-forest-decomposition in O(a logn) time [6]. However, by Nash-Williams’s

theorem, there exists a forest decomposition into a forests. This leads to the following open

question.

Open Problem 10.10. Devise or rule out an efficient distributed algorithm for computing a

decomposition of a graph with arboricity a into less than 2a forests.

A progress in this question will probably lead to a progress for Open Problem 10.8, and for

the f(a)-coloring problems. One notable problem from the latter category is the following one.

Open Problem 10.11. There exists a deterministic O(a2)-coloring algorithm that requires

O(logn) time [6]. Can one use significantly less than a2 colors, and still stay within deterministic

O(logn) time?

This question is open even for randomized algorithms, though a significant progress in this

direction was recently achieved by Kothapalli and Pemmaraju [42]. On the other hand, it is

known that O(a2)-coloring requires Ω(log n) time, and more generally, for a positive parameter

q < n1/4/a, computing O(a·q)-coloring requires Ω(logn
log a+log q) time [6, 51]. Therefore, the running

time of O(logn) cannot be improved if one wishes to employ O(a2) colors, but it may be possible

to improve the palette size, while spending only O(log n) time.

Randomized complexity of symmetry breaking problems also poses major challenges. For

the MIS problem Luby [56] and Alon et al. [1] devised O(logn)-time randomized algorithms.

Barenboim et al. [10] have recently devised an O(
√
logn log∆)-time algorithm for this problem.

(See Section 9.3.) For ∆ ≤ polylog(n) the algorithm of [10] performs even better. Specifically,

its running time in this case is 2O(
√
log logn). Kuhn et al. [46, 48] proved a lower bound of

Ω(min{√log n, log∆} time for this problem.

Open Problem 10.12. Devise or rule out a randomized algorithm for the MIS problem in gen-

eral graphs with running time O(
√
logn). More generally, pin down the randomized complexity

of this fundamental problem.

The randomized complexity of the MIS problem was also studied for graphs with bounded

arboricity a. Barenboim et al. [10] devised an algorithm with running time O(log a
√
log n +

log3/4 n) for this problem. Moreover, for a ≤ log1/3 n their algorithm requires just O(log2/3 n)

time. For a = 1 (the case of unoriented trees) Lenzen and Wattenhofer [50] devised an MIS algo-

132

rithm with running timeO(
√
log n log log n). This was marginally improved toO(

√
log n log logn)

in [10].

Open Problem 10.13. Improve the results of [10, 50] for the MIS problem in graphs with

bounded arboricity.

For the closely related MM problem the classical O(log n)-time randomized algorithm of

Israeli and Itai [36] was recently improved to O(log∆ + log4 log n) by [10].

Open Problem 10.14. Devise or rule out an O(
√
logn)-time randomized algorithm for the

MM problem.

In graphs of arboricity a the MM problem can be solved in O(log a +
√
log n) time [10].

The problem is also known to require Ω(
√
log n) time even for unoriented trees [10, 46, 48].

Therefore, this is tight for a = 2O(
√
logn). Remarkably, this lower bound is not known to apply

to the MIS problem in unoriented trees.

Open Problem 10.15. Pin down the randomized complexity of the MIS problem in unoriented

trees. We conjecture that it is Θ(
√
log n). For an upper bound of Õ(

√
logn) see [10, 50].

The randomized complexity of the (∆ + 1)-coloring problem was also subject of intensive

research. The algorithms of Luby [56] and of Alon et al. [1], in conjunction with the reduction

from coloring to MIS (see Section 3.9), provide an O(logn)-time randomized algorithm for the

(∆+1) coloring problem. An explicit (∆+1)-coloring algorithm is given in [57]. This result was

recently improved by Schneider and Wattenhofer [73] to O(
√
log n + log∆), and consequently

improved by Barenboim et al. [10] to O(log∆) + 2O(
√
log logn). Remarkably, the lower bounds

of [46, 48] do not apply to the (∆ + 1)-coloring problem, and therefore, the current state of

knowledge does not preclude (∆ + 1)-coloring in 1
2 log

∗ n time!

Open Problem 10.16. Determine the randomized complexity of the (∆+1)-coloring problem.

Specifically, either improve the O(log∆) + 2O(
√
log log n) upper bound from [10], or prove a lower

bound stronger than 1
2 log

∗ n (due to [51]).

The related variant of the randomized (∆ + 1)-coloring problem in which we allow O(∆)

colors is also of great interest. Kothapalli et al. [43] devised an O(
√
logn) time algorithm for

this problem. Schneider and Wattenhofer [73] showed that if ∆ > log1+ǫ n, for an arbitrarily

small constant ǫ > 0, then O(∆)-coloring can be computed in randomized O(log∗ n) time.

Barenboim et al. [10] devised an O(∆)-coloring algorithm with running time 2O(
√
log log n).

Open Problem 10.17. Can the randomized O(∆)-coloring algorithm of [73] that runs in

O(log∗ n) time be extended to sublogarithmic values of ∆?

Obviously, this list of open problems is by any means not exhaustive. Many other very good

open problems are left out. We however hope that it illustrates how much work is still left to

be done in this area. We invite the reader to roll up his sleeves, and indulge in solving them!

133

References

[1] N. Alon, L. Babai, and A. Itai. A fast and simple randomized parallel algorithm for the

maximal independent set problem. Journal of Algorithms, 7(4):567–583, 1986.

[2] N. Alon, and J. Spencer. The probabilistic method. Wiley, 3rd ed., 2008.

[3] K. Appel, and W. Haken. The solution of the four color map problem. Scientific American,

237(4): 108-121, 1977.

[4] H. Attiya, and J. Welch. Distributed Computing: Fundamentals, Simulations, and Advanced

Topics. Wiley, 2nd ed., 2004.

[5] B. Awerbuch, A. V. Goldberg, M. Luby, and S. Plotkin. Network decomposition and locality

in distributed computation. In Proc. of the 30th Annual Symposium on Foundations of

Computer Science, pages 364–369, 1989.

[6] L. Barenboim, and M. Elkin. Sublogarithmic distributed MIS algorithm for sparse graphs

using Nash-Williams decomposition. In Proc. of the 27th ACM Symp. on Principles of

Distributed Computing, pages 25–34, 2008.

[7] L. Barenboim, and M. Elkin. Distributed (∆ + 1)-coloring in linear (in ∆) time. In Proc.

of the 41th ACM Symp. on Theory of Computing, pages 111-120, 2009.

[8] L. Barenboim, and M. Elkin. Deterministic distributed vertex coloring in polylogarithmic

time. In Proc. 29th ACM Symp. on Principles of Distributed Computing, pages 410-419,

2010.

[9] L. Barenboim, and M. Elkin. Distributed deterministic edge coloring using bounded neigh-

borhood independence. In Proc. of the 30th ACM Symp. on Principles of Distributed

Computing, pages 129 - 138, 2011.

[10] L. Barenboim, M. Elkin, S. Pettie, and J. Schneider. The locality of distributed symmetry

breaking. In Proc. of the 53rd Annual Symposium on Foundations of Computer Science,

pages 321-330, 2012.

[11] M. Bellare, O. Goldreich, and M. Sudan. Free bits, PCPs, and nonapproximability - towards

tight results. SIAM Journal on Computing, 27(3):804–915, 1998.

[12] B. Bollobas. Modern Graph Theory. Springer, corrected edition, 1998.

[13] B. Bollobas. Random Graphs. Cambridge University Press, 2nd ed., 2001.

134

[14] B. Chen, M. Matsumoto, J. Wang, Z. Zhang, and J. Zhang. A short proof of Nash-Williams’

theorem for the arboricity of a graph. Graphs and Combinatorics, 10(1): 27-28, 1994.

[15] R. Cole, and L. Kowalik. New linear-time algorithms for edge-coloring planar graphs.

Algorithmica, 50(3): 351-368, 2008.

[16] R. Cole, and U. Vishkin. Deterministic coin tossing with applications to optimal parallel

list ranking. Information and Control, 70(1):32–53, 1986.

[17] L. Cowen, R. Cowen, and D. Woodall. Defective colorings of graphs in surfaces: partitions

into subgraphs of bounded valence. Journal of Graph Theory, 10:187–195, 1986.

[18] L. Cowen, W. Goddard, and C. Jesurum. Coloring with defect In Proc. of the 8th ACM-

SIAM Symp. on Discrete Algorithms, pages 548–557, 1997.

[19] A. Czygrinow, M. Hanckowiak, and M. Karonski. Distributed O(Delta logn)-edge-coloring

algorithm. In Proc. of the 9th Annual European Symposium on Algorithms, pages 345–355,

2001.

[20] B. Descartes. Solution to advanced problem No. 4526. American Mathematical Monthly,

61, page 532, 1954.

[21] R. Diestel. Graph Theory. Springer, 4th ed., 2010.

[22] D. Dubhashi, D. Grable, and A. Panconesi. Nearly-optimal distributed edge-colouring via

the nibble method. Theoretical Computer Science, a special issue for the best papers of

ESA95, 203(2):225–251, 1998.

[23] D. Dubhashi and A. Panconesi. Concentration of Measure for the Analysis of Randomized

Algorithms. Cambridge University Press, 2009.

[24] P. Erdős. Graph theory and probability. Canadian Journal of Mathematics, 11: 34-38,

1959.

[25] P. Erdős, P. Frankl, and Z. Füredi. Families of finite sets in which no set is covered by the

union of r others. Israel Journal of Mathematics, 51:79–89, 1985.

[26] T. Gallai. On directed graphs and circuits. Theory of Graphs (Proceedings of the Colloquium

Tihany 1966), New York: Academic Press, pages 115-118, 1968.

[27] M. Garey, and D. Johnson. The complexity of near-optimal graph coloring. Journal of

ACM, 23(1): 43-49, 1976.

135

[28] B. Gfeller, and E. Vicari. A randomized distributed algorithm for the maximal independent

set problem in growth-bounded graphs. In Proc. of the 26th ACM Symp. on Principles of

Distributed Computing, pages 53-60, 2007.

[29] A. Goldberg, S. Plotkin, and G. Shannon. Parallel symmetry-breaking in sparse graphs.

SIAM Journal on Discrete Mathematics, 1(4):434–446, 1988.

[30] D. Grable, and A. Panconesi. Nearly optimal distributed edge colouring in O(log log n)

rounds. Random Structures and Algorithms, 10(3): 385-405, 1997.

[31] D. Grable, and A. Panconesi. Fast distributed algorithms for Brooks-Vizing colourings. In

Proc. of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 473-480,

1998.

[32] H. Grotzsch. Zur Theorie der diskreten Gebilde, VII: Ein Dreifarbensatz fur dreikreisfreie

Netze auf der Kugel. Wiss. Z. Martin-Luther-U., Halle-Wittenberg, Math.-Nat. Reihe 8:

109-120, 1959.

[33] M. Hanckowiak, M. Karonski, and A. Panconesi. On the distributed complexity of com-

puting maximal matchings. SIAM Journal on Discrete Mathematics, 15(1):41–57, 2001.

[34] F. Harary, and K. Jones. Conditional colorability II: Bipartite variations. Congressus

Numer, 50:205-218, 1985.

[35] J .Hastad. Clique is Hard to Approximate Within n1−ǫ. In Proc. of the 37th Annual

Symposium on Foundations of Computer Science, pages 627-636, 1996.

[36] A. Israeli, and A. Itai. A fast and simple randomized parallel algorithm for maximal

matching. Information Processing Letters, 22(2):77-80, 1986.

[37] A. Israeli, and Y. Shiloach. An Improved Parallel Algorithm for Maximal Matching. Infor-

mation Processing Letters, 22(2):57-60, 1986.

[38] S. Janson, T. Luczak, and A. Rucinski. Random Graphs. Wiley-Interscience, 2000.

[39] Ö. Johansson. Simple distributed (∆+1)-coloring of graphs. Information Processing Letters,

70(5):229–232, 1999.

[40] R. Karp Reducibility among combinatorial problems. Complexity of Computer Computa-

tions, New York: Plenum Press, pages 85-103, 1972.

[41] A. Korman, J. Sereni, and L. Viennot. Toward more localized local algorithms: removing

assumptions concerning global knowledge. In Proc. of the 30th ACM Symp. on Principles

of Distributed Computing, pages 49-58, 2011.

136

[42] K. Kothapalli, and S. Pemmaraju. Distributed graph coloring in a few rounds. In Proc. of

the 30th ACM Symp. on Principles of Distributed Computing, pages 31-40, 2011.

[43] K. Kothapalli, C. Scheideler, M. Onus, and C. Schindelhauer. Distributed coloring in

O(
√
log n) bit rounds. In Proc. of the 20th International Parallel and Distributed Processing

Symposium, 2006.

[44] F. Kuhn. Weak graph colorings: distributed algorithms and applications. In Proc. of the

21st ACM Symposium on Parallel Algorithms and Architectures, pages 138–144, 2009.

[45] F. Kuhn, T. Moscibroda, T. Nieberg, and R. Wattenhofer. Fast deterministic distributed

maximal independent set computation on growth-bounded graphs. In Proc. of the 19th

International Symposium on Distributed Computing, pages 273-287, 2005.

[46] F. Kuhn, T. Moscibroda, and R. Wattenhofer. What cannot be computed locally! In Proc.

of the 23rd ACM Symp. on Principles of Distributed Computing, pages 300-309, 2004.

[47] F. Kuhn, T. Moscibroda, and R. Wattenhofer. On the locality of bounded growth. In Proc.

of the 24th ACM Symp. on Principles of Distributed Computing, pages 60 -68, 2005.

[48] F. Kuhn, T. Moscibroda, and R. Wattenhofer. Local Computation: Lower and Upper

Bounds. http://arXiv.org/abs/1011.5470, 2010.

[49] F. Kuhn, and R. Wattenhofer. On the complexity of distributed graph coloring. In Proc.

of the 25th ACM Symp. on Principles of Distributed Computing, pages 7–15, 2006.

[50] C. Lenzen and R. Wattenhofer. MIS on trees. In Proc. of the 30th ACM Symp. on Principles

of Distributed Computing, pages 41-48, 2011.

[51] N. Linial. Distributive graph algorithms: Global solutions from local data In Proc. of the

28th Annual Symp. on Foundation of Computer Science, pages 331–335, 1987.

[52] N. Linial. Locality in distributed graph algorithms. SIAM Journal on Computing,

21(1):193–201, 1992.

[53] N. Linial and M. Saks. Low diameter graph decomposition. Combinatorica 13: 441 - 454,

1993.

[54] L. Lovász. On decompositions of graphs. Studia Sci. Math. Hungar., 1:237–238, 1966.

[55] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica, 8(3): 261–277,

1988.

[56] M. Luby. A simple parallel algorithm for the maximal independent set problem. SIAM

Journal on Computing, 15:1036-1053, 1986.

137

[57] M. Luby. Removing randomness in parallel computation without a processor penalty. In

Proc. of the 29th Annual Symposium on Foundations of Computer Science, pages 162-173,

1988.

[58] N. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[59] B. Mohar and C. Thomassen. Graphs on Surfaces. Johns Hopkins University Press, 2001.

[60] J. Mycielski. Sur le coloriage des graphes. Colloq. Math. 3: 161-162, 1955.

[61] M. Naor. A lower bound on probabilistic algorithms for distributive ring coloring. SIAM

Journal on Discrete Mathematics, 4(3):409-412, 1991.

[62] C. Nash-Williams. Decompositions of finite graphs into forests. J. London Math, 39:12,

1964.

[63] D. Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM, 2000.

[64] A. Panconesi, and R. Rizzi. Some simple distributed algorithms for sparse networks. Dis-

tributed Computing, 14(2):97–100, 2001.

[65] A. Panconesi, and A. Srinivasan. On the complexity of distributed network decomposition.

Journal of Algorithms, 20(2):581-592, 1995.

[66] A. Panconesi, and A. Srinivasan. Randomized Distributed Edge Coloring via an Extension

of the Chernoff-Hoeffding Bounds. SIAM Journal on Computing, 26(2):350-368, 1997.

[67] D. Sanders, and Y. Zhao. Planar Graphs of Maximum Degree Seven are Class I. Journal

of Combinatorial Theory, Series B, 83(2):201-212, 2001.

[68] N. Santoro. Design and Analysis of Distributed Algorithms. Wiley, 2006.

[69] M. Szegedy, and S. Vishwanathan. Locality based graph coloring. In Proc. of the 25th ACM

Symp. on Theory of Computing, pages 201-207, 1993.

[70] V. Vizing. On an estimate of the chromatic class of a p-graph. Metody Diskret. Analiz, 3:

25-30, 1964.

[71] V. Vizing. Critical graphs with given chromatic index. Metody Diskret. Analiz, 5: 9-17,

1965.

[72] J. Schneider, and R. Wattenhofer. A log-star distributed Maximal Independent Set algo-

rithm for Growth Bounded Graphs. In Proc. of the 27th ACM Symp. on Principles of

Distributed Computing, pages 35–44, 2008.

138

[73] J. Schneider, and R. Wattenhofer. A new technique for distributed symmetry breaking. In

Proc. of the 29th ACM Symp. on Principles of Distributed Computing, pages 257-266, 2010.

[74] D. Zuckerman. Linear Degree Extractors and the Inapproximability of Max Clique and

Chromatic Number. Theory of Computing, 3(1):103–128. 2007.

139

