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Abstract

Distributed graph coloring is a large and popular area of distributed algorithms
research. With many applications in social network analysis [8] and job scheduling
[10][6], it is also a very impactful area of research in industry. This has led to large
research interest and, as a result, plenty of distributed graph coloring algorithms. These
algorithms differ in their purposes, graph classes, or design ideologies, but one common
aspect between most of these algorithms is that they are round-based. This means they
function by coloring some vertices of the graph in each round, over a specified number
of rounds, until a coloring is created. Unsurprisingly, the work done in a round can
differ greatly between different algorithms and is frequently quite complex. This paper
implements and discusses an algorithm designed by Maus [9] that simplifies many of
these more complicated algorithms using a generic, round-based algorithm that can
subsume the results of many other state of the art coloring algorithms through clever
setting of parameters to guarantee a proper coloring when the algorithm terminates,
regardless of how many rounds it runs.

1 Introduction

Graph coloring is a well-known problem in the area of graph theory that asks, “Given
a graph G, how can we color the vertices of G such that no two adjacent vertices share the
same color?” The optimization aspect of the problem is finding a proper coloring for the
graph with the minimal number of colors possible.

Distributed graph coloring is the process of parallelizing graph coloring algorithms,
typically by having processors attempt to color nodes or generate colors to be tested by
a main processor, this allows much faster colorings on large graphs, typically at the cost
of using more colors than are necessary. Thus, the goal of distributed graph coloring is to
create algorithms that find colorings that may not be optimal, but are as fast as possible
and use as few colors as possible.

These colorings can be found in many different ways for different classes of graphs,
but one frequently overlooked aspect in algorithm design is simplicity. In this paper, the
distributed graph coloring algorithm proposed by Maus in [9] will be discussed, compared
with other results, and implemented and tested. This is because of the simplicity and
flexiblity of Maus’s algorithm in comparison to many other state of the art algorithms.
This look will provide insight into how Maus’s algorithm fits within the field of distributed
graph coloring as well as looking at the merits of the algorithm in practice.
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Section 2 will review the history of distributed graph coloring algorithms, discussing
historic results, current state of the art research, and concluding with Maus’s algorithm.
Section 3 will motivate the importance of this algorithm further by highlighting the com-
plexity of other state of the art algorithms in comparison to Maus’s. Section 4 will highlight
the theory behind Maus’s algorithm and how it works to subsume so many critical results.
In section 5, the algorithm implementation will be discussed to lead into section 6, covering
the results from said implementation. Section 7 concludes the paper.

2 Literature Review

2.1 Models and Bounds for Distributed Graph Coloring

Currently, the majority of work in distributed graph coloring focuses on finding a k-
coloring such that ∆ + 1 ≤ k ≤ O(∆2), where ∆ is the maximum degree of a vertex. The
lower bound results from the common fact that any graph where the maximum degree is ∆
can be colored with ∆+1 colors, with simple greedy algorithms able to find such a coloring.
The upper bound is a result of Linial who, in 1992, proposed a model for distributed graph
algorithms called the LOCAL model [7]. This model is round-based, allowing for each
vertex to transmit information to each of its neighbours at the end of each round. Using
this model, Linial shows that an O(∆2) coloring can be generated in 1 round in O(log∗ n)
time, where log∗ n is the iterative logarithm, or how many times the log function must be
applied to n until the result is 1.

This LOCAL model proves to be the simplest to work with, though other common mod-
els are also important in the literature. These include the SET-LOCAL model, sometimes
called the weak LOCAL model, in which vertices do not have IDs, and so cannot distin-
guish between the messages of its neighbours. The main assumption algorithms work off
if within the SET-LOCAL model is that the algorithm begins with a proper coloring [5].
Another common model is the more restrictive CONGEST model, in which the vertices can
only transmit O(log n) data to each neighbour per round. This is particularly restrictive as
vertices are typically identified using bit IDs of size O(log n).

2.2 One Round Color Reductions

While the O(∆2) bound proposed above is large, this is acceptable due to the presence of
color-reduction algorithms that can be used to reduce the amount of colors in the coloring.
With Linial’s algorithm acting as a preprocessing step, color reduction algorithms can focus
on reducing the O(∆2) coloring instead. In fact, making this distinction between coloring
algorithms and color reduction algorithms is unnecessary, as any coloring algorithm can
be considered as a color reduction algorithm from an input |V |-coloring, where V is the
set of vertices of the input graph (and so each vertex has its own color). These color
reduction algorithms can make use of the reduced O(∆2) coloring well to create a smaller
coloring in as few rounds as possible, making this output coloring from Linial’s algorithm
still valuable. Alternatively, color reduction algorithms can focus on specific settings in
which a coloring can be reduced greatly in one round. Linial himself once again sets strong
foundations for this area, presenting an algorithm to reduce a k-coloring of a graph to a
O(∆2 logm)-coloring in a single round under his model [7].

With these foundations, much research focuses on one-round color reduction algorithms
that can reduce the colors significantly for certain classes of graphs. For example, one-round
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color reduction algorithms were developed for directed paths that can reduce k-colorings
to 3-colorings in 1

2 log∗ n + O(1) rounds [4]. This was later reduced into a tight bound
of 1

2 log∗ n [11]. This result is important due to its usefulness as a subroutine of other
distributed graph coloring algorithms. Other improvements look towards specific classes
of graphs or reductions from k-colorings under some set of assumptions about k. For
example, Maus proposes a one-round coloring algorithm that reduces an k-coloring to a
m(∆−m+ 2)-coloring, given that k ≥ m(∆−m+ 3), removing m colors from the coloring,
where 1 ≤ m ≤ ∆/2 + 3/2 [9].

2.3 Improving Coloring Algorithms

With strong color reduction algorithms, efficient colorings can be obtained through the
use of a coloring algorithm followed by repeated color reductions to said graph. Considering
our lower bound of ∆+1, its natural to ask how many rounds a coloring algorithm requires to
result in a (∆+1)-coloring. In 1993, Szegedy and Vishwanathan showed that for algorithms
that were locally iterative, a (∆+1)-coloring algorithm requires Ω(∆ log ∆+log∗ n) rounds,
barring the existence of a special type of coloring whose reduction could be done very
efficiently [12]. A locally-iterative algorithm is one where each vertex chooses its next color
based solely on the colors of its local neighbourhood, so this bound applied to a large
class of the algorithms within the field. For over 25 years, no algorithm could make use of
such a special coloring and thus could not beat the proposed SV Barrier lower bound. It
wasn’t until 2021 that this barrier was broken, with a locally iterative algorithm that could
compute a (∆ + 1)-coloring with runtime O(∆ + log∗ n) [2].

2.4 Maus’s Algorithm

The algorithm proposed by Maus in [9] is a round based color reduction algorithm scaling
between the two bounds presented above as follows. For a given integer 1 ≤ k ≤ O(∆), the
algorithm generates an O(∆k)-coloring in O(∆/k) rounds through a trial based reduction
of an input coloring, like one given by Linial’s algorithm. Each vertex of the graph will
compute a sequence of k colors and attempt to color itself with this sequence, stopping on
the first one that is found to be without conflict. If no colors in the first k are without
conflict, then k more are tested in the subsequent round. This process repeats until all
vertices are colored.

Since ∆ is known and k can be chosen before the algorithm is run, k can always be
selected proportionally to ∆ to make the algorithm scale from a O(1)-round reduction
algorithm that generates an O(∆2) coloring, subsuming Linial’s algorithm, or an O(∆)-
round algorithm to compute an O(∆) coloring. The algorithm is also general enough for
other types of graph coloring problems, such as d-defective colorings where vertices are
allowed to have the same color as at most d of their neighbours.

3 Problem Statement

The algorithms mentioned above, as well as the many more discussed by Barenboim
and Elkin in their book [1], are all fast and effective algorithms, but many suffer from
inflexibility and complex implementations. Since they are solving specific problems, the
former is not a major issue, but the complexity of the algorithms can make the research
inaccessible, hard to advance from, or difficult to make use of in practice. For a concrete
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example consider the algorithm by Barenboim, Elkin, and Kuhn from [3], a snippet of the
algorithm’s psuedocode is presented below for the sake of comparison. This procedure is
part of an algorithm used to generate a ∆ + 1 coloring in O(∆) time. While the lack
of context may make the comparison unfair, following through the psuedocode of Maus’s
algorithm presented in section 4 should highlight well how they differ in complexity.

While these algorithms are correct, efficient, and effective, the ease of use for an algo-
rithm must also be considered, especially when considering algorithms for use in industry.
When given two algorithms solving the same problem with approximately the same runtime,
any sensible programmer will choose the simpler one. This means that a simpler algorithm
is still of great practical value, especially when it can also provide flexibility.

4 Maus’s Algorithm

Maus’s Algorithm solves this problem by proposing a simple, general round-based algo-
rithm. This algorithm is flexible in the size of the coloring it creates, the number of rounds
achieved by the coloring, and the type of coloring it can generate. It accomplishes all of
this without sacrificing runtime efficiency as well. The simplicity of the algorithm can be
seen from its psuedocode for coloring a single vertex, shown below.
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4.1 Parameters

The algorithm’s flexibility is largely a result of its parameters. The algorithm requires
parameters k, defining the tradeoff between coloring size and number of rounds, and d,
representing how many adjacent nodes can have the same color (so a proper coloring has
d = 0). Both of these parameters are chosen by the user before the algorithm is run, and the
algorithm determines other parameters based off of the size of the graph’s input coloring,
m, and maximum degree, ∆.

With k, d, ∆, and m known before the algorithm begins processing the graph, more
parameters are calculated. X is the other parameter controlling the tradeoff between rounds
and coloring size, as the algorithm will run R = dX/ke rounds to compute a X ∗k coloring,
with X = 4(∆/(d+ 1))dlog∆/(d+1)me. Note that this is calculated independently of k, and
relies only on the input graph’s data, this leaves full flexibility in the tradeoff of coloring
size versus rounds in the user’s hands through careful choice of k.

Two more parameters, f and q, are calculated as follows.

f = dlog∆/(d+1)me and 2f < q < 4f∆/(d+ 1)

where q is selected to be prime. This q always exists due to Bertrand’s postulate, a result
from number theory stating there always exists a prime with n < p < 2n− 2 for any n > 3.
These latter two parameters are used in calculating the color sequence for each vertex to
try.

4.2 Coloring

With all parameters defined, the algorithm achieves its coloring by generating m distinct
polynomials of degree f from the field Fq. The simplest way to do this is to represent a
polynomial of degree f by a tuple of it’s coefficients. Explicitly, we model the polynomial
p(x) = a0 +a1x+ ..+afx

f as (a0, a1, ..., af ). Then, for each color i in our input m-coloring,
we choose pi(x) be the ith tuple in lexicographical order, excluding the zero polynomial.
Each vertex with color i will then sample p(x)%q for x = 0, ..., k− 1 and save the values as
its color sequence.

Once each vertex of the graph has it’s color sequence, it samples the values in its
sequence, checking for conflicts with its neighbours. If the vertex finds a color in it’s sequence
that does not conflict with the color of it’s neighbour (or with d + 1 of its neighbours in
the d > 0 case), it permanently colors itself with that node and is not processed again. If
a vertex goes through it’s entire sequence without being colored, it keeps the color it had
going into the round and tries again next round.

This coloring sequence is guaranteed to result in a valid coloring due to the distinct m
polynomials with which the sequences are calculated. Given two polynomials of degree f
from a finite prime field Fq, f1 and f2 intersect no more than f times. So any two color
sequences will only conflict in at most f locations. A case analysis shows that for two fixed
vertices u and v, there are at most f tuples causing a conflict with u and v, since there are
more unique tuples than this over the course of the algorithm’s runtime due to our choice of
f , there will be a round in which u and v can be colored without conflict. For more details
on this case analysis see [9].
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4.3 Generalizing Other Results

The generality of Maus’s algorithm has been highlighted throughout this paper, and
in this section two specific examples of this generality will be highlighted. First, consider
Linial’s famous algorithm to generate an O(∆2) coloring in one round. Now, consider setting
d = 0 in Maus’s algorithm, this forces X = 16∆. Setting k = X now grants an algorithm
that can generate an X ∗ k = 256∆2-coloring in X/k = 1 round. Thus, Maus’s algorithm
can also generate an O(∆2) coloring in one round.

Similarly, consider the psuedocode outlined in section 3 to calculate a ∆ + 1 coloring
in O(∆) time. This algorithm involves the calculation of defective colorings for every node
which can then be used to find the desired ∆ + 1 coloring. We instead could set d = 0 once
more, giving the same X = 16∆. Now, for any value of k we obtain a 16∆k-coloring in
16∆/k rounds, giving the same O(∆) coloring in O(∆) rounds.

More results regarding algorithms that can be generalized in the case of d > 0 are
discussed by Maus in [9].

5 Implementation

Maus’s Algorithm was implemented using C++ and MPI using a main/worker archi-
tecture for processing the sequences. The main processor read in the graph, its parameters,
and the initial coloring and distributes this info to the other processors. Each worker pro-
cessor p handled the vertices in its mod class, i.e. processor 3 handled vertex 3, 3+p, 3+2p,
etc. Since processor 0 was chosen to be the main processor, the vertices in its mod class
were split between the worker processors.

Once each processor had the graph and coloring, the m polynomials were generated
so that every worker processor had access to them. With all needed information, each
processor goes over all of the vertices it was assigned. For each vertex v with input color
i, the processor would choose the polynomial pi, generate a sequence of k colors to test as
described above, and send the sequence back to the main processor.

The main processor waits to receive the sequence for each vertex, and then iterates over
every vertex in the graph and attempts to color it with a value from its color sequence. If
there is a conflict, it moves on to the next value in the sequence and repeats until either a
valid color is found or all values in the vertex’s sequence have been tried. If a valid color is
found, the vertex is given that color and marked as inactive so it is not processed again, if
the end of the sequence is reached, the node retains its old color and is tested again in the
next round.

This process is repeated for dX/ke rounds, and once done the final round concludes the
main processor outputs the resulting coloring from the graph.

6 Experimental Evaluation

6.1 Input and Output Processing

The algorithm was tested on graphs of numerous sizes. These graphs were generated
using a custom Python script that, given integers V and E, generates a connected graph
with V vertices and at least E edges. This script then calculates the maximum degree,
∆, of the graph and outputs the graph information so that it can be read in by the main
algorithm.
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Once the algorithm is run and the coloring is outputted, a separate Python script loads
the information outputted by Maus’s algorithm and verifies that the resulting coloring is
valid. For graphs under a specific size, a picture of the graph with its reduced coloring is
also produced.

6.2 Results

The table below displays the results of the algorithm on graphs of various sizes. All
tests below were run on 6 processors, meaning for a graph with V vertices, each processor
handled V/5 of the vertices in the graph, with the other processor being the main processor
doing the conflict checking. For each test case below, k is chosen to be the minimum value
between 5 and X/2.

Number of
Vertices

Max Degree
(∆)

Number of
Rounds

Input Col-
oring Size

Output
Coloring
Size

Time
elapsed (s)

10 6 4 10 8 0.115

100 13 10 100 26 0.692

250 10 16 250 55 1.553

500 12 19 500 76 1.859

1000 13 20 1000 91 53.562

Results from the graph visualizer on a small graph can be seen in fig.4 as well. This
figure displays a 46 vertex graph with an input 46-coloring and maximum degree 8. Maus’s
algorithm was run on this graph for 6 rounds to reduce it to a valid 16-coloring in 0.63
seconds.

Figure 1: A 46-vertex graph (left) and its reduced 16-coloring (right) after running Maus’s
Algorithm.

6.3 Runtime Considerations

This shows strong reductions from the input colorings for graphs of various size. For
the smaller test cases the algorithm ran very quickly, but the larger test cases show that

7



this runtime quickly increases with the size of the graph. This is mainly due to the specific
implementation. The program models the graph as an adjacency matrix, meaning conflict
checking is much slower as the algorithm must look through the adjacency matrix instead of
an adjacency list. This could be offset by using an adjacency list representation and careful
memory management so this graph representation can be sent over MPI without memory
related issue.

This would not be a perfect solution to this issue however, as the graph continues to scale
in size the conflict checking done by the main processor would still be the bottleneck of the
algorithm. If this process could be distributed as well, so that each processor can process
nodes and check for color conflicts, then the runtime of the algorithm would dramatically
increase. This seems difficult to accomplish in practice though, as whenever a vertex is
colored, the other processors would need to be notified so that they are working with the
most up to date coloring.

7 Conclusions

7.1 Conclusion

The algorithm proposed by Maus in [9] was introduced to simplify current algorithms
within the field by providing a general and flexible distributed graph coloring algorithm.
The implementation of this algorithm, discussed above, does this with strong results and
small colorings are obtained from this algorithm, even when given large input colorings.
Even with a non-optimal implementation, the runtime of the algorithm is sufficiently short
for small and medium size graphs.

7.2 Summary of Contributions

This paper sought to implement the algorithm designed proposed by Maus in [9], test it
to verify the correctness of its result, and thoroughly understand and explain the value of its
contributions to the field of distributed graph coloring. The strengths and effectiveness of
this algorithm are also displayed through results of the implementation, as well as comparing
it to others within the field of distributed graph coloring.

7.3 Future Research

Future research and improvements could take on of two forms. First, theoretical research
could be done to improve Maus’s base algorithm further, either generalizing to subsume even
more results or finding different ways to resolve color checking to achieve faster runtime.
The other area of improvement would be to resolve issues in the current implementation.
Adapting the algorithm to use a more space and time efficient graph representation would
provide a speedup on larger graphs. Further improvements could be done by identifying
ways to change the communication rounds and offload work from the main processor by
having every processor be involved in calculating color sequences and testing for color
conflicts with those sequences. This would allow the algorithm to scale much better as the
number of processors increases due to removing the concept of a main node as well as the
bottleneck that comes with it.

8



References

[1] L. Barenboim and M. Elkin. Distributed graph coloring: Fundamentals and recent
developments. Synthesis Lectures on Distributed Computing Theory, 4, 07 2013.

[2] L. Barenboim, M. Elkin, and U. Goldenberg. Locally-iterative distributed (δ + 1)-
colouring below szegedy-vishwanathan barrier, and applications to self-stabilization
and to restricted-bandwith models. Proceedings of the ACM Symposium on Principles
of Distributed Computing (PODC), pages 437–446, 2018.

[3] L. Barenboim, M. Elkin, and F. Kuhn. Distributed (δ + 1)-coloring in linear (in δ)
time. SIAM Journal on Computing, 43:72–95, 01 2014.

[4] R. Cole and U. Vishkin. Deterministic coin tossing with applications to optimal parallel
list ranking. Information and Control, 70(1):32–53, 1986.

[5] D. Hefetz, F. Kuhn, Y. Maus, and A. Steger. Polynomial lower bound for distributed
graph colouring in a weak local model. Proc. of the 30th International Symp. on
Distributed Computing, pages 99–113, 2016.

[6] R. Lewis and J. Thompson. On the application of graph colouring techniques in round-
robin sports scheduling. Computers and Operations Research, 38(1):190–204, 2011.
Project Management and Scheduling.

[7] N. Linial. Locality in distributed graph algorithms. Society for Industrial and Applied
Mathematics, 21(1):193–201, 1992.

[8] M. Marei M. Mosa, A. Hamouda. Graph coloring and aco based summarization for
social networks. Expert Systems with Applications, 74:115–126, 2017.

[9] Y. Maus. Distributed graph colouring made easy. SPAA ’21, pages 362–372, 2021.

[10] P. Giaccari N. Zufferey, P. Amstutz. Graph colouring approaches for a satellite range
scheduling problem. Journal of Scheduling, 11(4):263–277, Aug 2008.

[11] J. Rybicki and J. Suomela. Exact bounds for distributed graph colouring. SIROCCO
2015, 9439:46–60, 2015.

[12] M. Szegedy and S. Vishwanathan. Locality based graph coloring. In Proceedings of
the Twenty-Fifth Annual ACM Symposium on Theory of Computing, STOC ’93, page
201–207, New York, NY, USA, 1993. Association for Computing Machinery.

9


