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1 Introduction

Graph coloring, the problem of assigning a color to each vertex of a graph such that no
two neighbouring vertices share the same color, is one of the most important problems
in graph theory. From the proposal of the Four color Theorem in the mid-1850s until
today, graph coloring has been a fundamental problem in graph theory, and the focus of an
incredible amount of research. The optimization aspect of this problem is identifying what
the minimum amount of colors is needed to create such a proper coloring on a graph, and
of course implementing fast algorithms to find such colorings.

Furthermore, graph coloring sees many applications in scheduling and identifying groups
in social graphs. Unfortunately, the problem of deciding if a graph has a k-coloring (can be
colored with k colors) is NP-complete, and thus no sequential, polynomial algorithms for
finding graph colorings exist for general cases. This makes finding ways to improve current
state-of-the-art algorithms incredibly important, as these algorithms need to run efficiently
on graphs with massive scale.

Distributed Graph coloring is an area looking to solve this problem by parallelizing
algorithms for graph coloring. While this introduces additional considerations regarding
the parallel model under consideration, the speed-ups obtained as a result are strongly
beneficial. Thus, the development of simple, efficient distributed graph coloring algorithms
is a large research area, with entire books dedicated solely to the topic [1].

2 Literature Review

2.1 Models and Bounds for Distributed Graph Coloring

Currently, the majority of work in distributed graph coloring focuses on finding a k-coloring
such that ∆ + 1 ≤ k ≤ O(∆2), where ∆ is the maximum degree of a vertex. The lower
bound results from the common fact that any graph where the maximum degree is ∆ can
be colored with ∆ + 1 colors, with simple greedy algorithms able to find such a coloring.
The upper bound is a result of Linial who, in 1992, proposed a model for distributed graph
algorithms called the LOCAL model [5]. This model is round-based, allowing for each
vertex to transmit information to each of its neighbours at the end of each round. Using
this model, Linial shows that an O(∆2) coloring can be generated in 1 round in O(log∗ n)
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time, where log∗ n is the iterative logarithm, or how many times the log function must be
applied to n until the result is 1.

This LOCAL model proves to be the simplest to work with, though other common mod-
els are also important in the literature. These include the SET-LOCAL model, sometimes
called the weak LOCAL model, in which vertices do not have IDs, and so cannot distin-
guish between the messages of its neighbours. The main assumption algorithms work off
if within the SET-LOCAL model is that the algorithm begins with a proper coloring [4].
Another common model is the more restrictive CONGEST model, in which the vertices can
only transmit O(log n) data to each neighbour per round. This is particularly restrictive as
vertices are typically identified using bit IDs of size O(log n).

2.2 One Round Color Reductions

While the O(∆2) bound proposed above is large, this is acceptable due to the presence of
color-reduction algorithms that can be used to reduce the amount of colors in the coloring.
With Linial’s algorithm acting as a preprocessing step, color reduction algorithms can focus
on reducing the O(∆2) coloring instead. In fact, making this distinction between coloring
algorithms and color reduction algorithms is unnecessary, as any coloring algorithm can
be considered as a color reduction algorithm from an input |V |-coloring, where V is the
set of vertices of the input graph (and so each vertex has its own color). These color
reduction algorithms can make use of the reduced O(∆2) coloring well to create a smaller
coloring in as few rounds as possible, making this output coloring from Linial’s algorithm
still valuable. Alternatively, color reduction algorithms can focus on specific settings in
which a coloring can be reduced greatly in one round. Linial himself once again sets strong
foundations for this area, presenting an algorithm to reduce a k-coloring of a graph to a
O(∆2 logm)-coloring in a single round under his model [5].

With these foundations, much research focuses on one-round color reduction algorithms
that can reduce the colors significantly for certain classes of graphs. For example, one-round
color reduction algorithms were developed for directed paths that can reduce k-colorings
to 3-colorings in 1

2 log∗ n + O(1) rounds [3]. This was later reduced into a tight bound
of 1

2 log∗ n [7]. This result is important due to its usefulness as a subroutine of other
distributed graph coloring algorithms. Other improvements look towards specific classes
of graphs or reductions from k-colorings under some set of assumptions about k. For
example, Maus proposes a one-round coloring algorithm that reduces an k-coloring to a
m(∆−m+ 2)-coloring, given that k ≥ m(∆−m+ 3), removing m colors from the coloring,
where 1 ≤ m ≤ ∆/2 + 3/2 [6].

2.3 Improving Coloring Algorithms

With strong color reduction algorithms, efficient colorings can be obtained through the use
of a coloring algorithm followed by repeated color reductions to said graph. Considering our
lower bound of ∆ + 1, its natural to ask how many rounds a coloring algorithm requires to
result in a (∆+1)-coloring. In 1993, Szegedy and Vishwanathan showed that for algorithms
that were locally iterative, a (∆+1)-coloring algorithm requires Ω(∆ log ∆+log∗ n) rounds,
barring the existence of a special type of coloring whose reduction could be done very
efficiently [8]. A locally-iterative algorithm is one where each vertex chooses its next color
based solely on the colors of its local neighbourhood, so this bound applied to a large
class of the algorithms within the field. For over 25 years, no algorithm could make use of
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such a special coloring and thus could not beat the proposed SV Barrier lower bound. It
wasn’t until 2021 that this barrier was broken, with a locally iterative algorithm that could
compute a (∆ + 1)-coloring with runtime O(∆ + log∗ n) [2].

2.4 Maus’s Algorithm

The algorithm proposed by Maus in [6] is a round based color reduction algorithm scaling
between the two bounds presented above as follows. For a given integer 1 ≤ k ≤ O(∆), the
algorithm generates an O(∆k)-coloring in O(∆/k) rounds through a trial based reduction
of an input coloring, like one given by Linial’s algorithm. Each vertex of the graph will
compute a sequence of k colors and attempt to color itself with this sequence, stopping on
the first one that is found to be without conflict. If no colors in the first k are without
conflict, then k more are tested in the subsequent round. This process repeats until all
vertices are colored.

Since ∆ is known and k can be chosen before the algorithm is run, k can always be
selected proportionally to ∆ to make the algorithm scale from a O(1)-round reduction
algorithm that generates an O(∆2) coloring, subsuming Linial’s algorithm, or an O(∆)-
round algorithm to compute an O(∆) coloring. The algorithm is also general enough for
other types of graph coloring problems, such as d-defective colorings where vertices are
allowed to have the same color as at most d of their neighbours.
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