PRESENTATION OUTLINE: Distributed Graph Coloring

David Worley
School of Computer Science
University of Ottawa
Ottawa, Canada
dworley@uottawa.ca

December 7, 2021

1 What is Graph coloring

- Explaining the problem statement for graph coloring
- What is the goal of graph coloring algorithms
- The definition of k-coloring

2 An Example

- A diagram showing a proper graph coloring of the peterson graph
- An explanation of what this coloring is (3-coloring of specific graph)

3 Distributed Graph coloring

- Brief explanation of distributed graph coloring
- Pose question: What is the ideal trade-off between minimal colors and minimal runtime?
- Ask why these colorings are useful (set up for next slide)

4 Applications

- Applications in job scheduling
- Application in network analysis (social networks, lte networks, etc)

5 What Makes a Good coloring?

- Motivate wanting bounds on the size of the colorings for graph coloring algorithms
- introduce the concept of reducing the number of colors in a larger coloring

6 A Lower Bound for Graph coloring

- Mention the greedy sequential algorithm that generates an $O(\Delta + 1)$ coloring.
- Introduce this coloring as a suitable lower bound for distributed graph coloring.

7 An Upper Bound by Linial

- Introduce Linials paper presenting the $O(\Delta^2)$ coloring algorithm in $O(\log^* n)$
- Discuss how color reduction algorithms can use Linials algorithm to generate a coloring to reduce
- Motivate where this can lead regarding future improvements

8 Linial's Algorithm

• Short explanation of how Linials algorithm works

9 Algorithm Optimality

- Discuss Linial's result that $O(\log^* n)$ is optimal for distributed graph coloring algorithm
- Talk about how this has shifted research towards color reduction algorithms

10 color Reduction

Detail color reduction, the typical round based approach to it, and its goal

11 Improving color Reduction

• Discuss the SV barrier and the algorithm that breaks it

12 A round-based scaleable algorithm for color reduction

• Introduce Maus's algorithm that scales between the two bounds

13 Maus's Algorithm

• Discuss how the algorithm works

14 Explanation of Algorithm

• Walkthrough of how Maus's algorithm reduces a coloring for a given small Δ and k

15 Implementation

• Short description of how the algorithm was implemented

16 Example of Algorithm

Multiple slides showing a color reduction using Maus's algorithm on a simple example
 This will stretch over multiple slides

17 Experimental Results

• Detail the execution time of the algorithm and reduction amount on large colorings in practice.

18 Questions For Audience

- Why is research focusing on color reduction algorithms instead of coloring algorithms?
- Why do we have a lower bound of $O(\Delta + 1)$ for our colorings?
- Could an O(1) coloring algorithm (not color reduction) be possible?

19 Thanks

• Thank the audience and prompt for questions

20 References

• Slide showing references used throughout the presentation