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Abstract

We consider graph coloring and related problems in the distributed message-passing model. Locally-
iterative algorithms are especially important in this setting. These are algorithms in which each vertex
decides about its next color only as a function of the current colors in its 1 − hop − neighborhood.
In STOC’93 Szegedy and Vishwanathan showed that any locally-iterative (∆ + 1)-coloring algorithm
requires Ω(∆ log∆ + log∗ n) rounds, unless there exists ”a very special type of coloring that can be
very efficiently reduced” [44]. No such special coloring has been found since then. This led researchers
to believe that Szegedy-Vishwanathan barrier is an inherent limitation for locally-iterative algorithms,
and to explore other approaches to the coloring problem [3, 32, 2, 19]. The latter gave rise to faster
algorithms, but their heavy machinery which is of non-locally-iterative nature made them far less
suitable to various settings. In this paper we obtain the aforementioned special type of coloring.
Specifically, we devise a locally-iterative (∆ + 1)-coloring algorithm with running time O(∆ + log∗ n),
i.e., below Szegedy-Vishwanathan barrier. This demonstrates that this barrier is not an inherent
limitation for locally-iterative algorithms. As a result, we also achieve significant improvements for
dynamic, self-stabilizing and bandwidth-restricted settings. This includes the following results.

• We obtain self-stabilizing distributed algorithms for (∆ + 1)-vertex-coloring, (2∆ − 1)-edge-
coloring, maximal independent set and maximal matching with O(∆ + log∗ n) time. This signif-
icantly improves previously-known results that have O(n) or larger running times [23].

• We devise a (2∆− 1)-edge-coloring algorithm in the CONGEST model with O(∆ + log∗ n) time
and O(∆)-edge-coloring in the Bit-Round model with O(∆+logn) time. The factors of log∗ n and
logn are unavoidable in the CONGEST and Bit-Round models, respectively. Previously-known
algorithms had superlinear dependency on ∆ for (2∆− 1)-edge-coloring in these models.

• We obtain an arbdefective coloring algorithm with running time O(
√
∆ + log∗ n). Such a col-

oring is not necessarily proper, but has certain helpful properties. We employ it in order to
compute a proper (1 + ǫ)∆-coloring within O(

√
∆ + log∗ n) time, and (∆ + 1)-coloring within

O(
√
∆ log∆ log∗ ∆+log∗ n) time. This improves the recent state-of-the-art bounds of Barenboim

from PODC’15 [2] and Fraigniaud et al. from FOCS’16 [19] by polylogarithmic factors.

• Our algorithms are applicable to the SET-LOCAL model [25] (also known as the weak LOCAL
model). In this model a relatively strong lower bound of Ω(∆1/3) is known for (∆ + 1)-coloring.
However, most of the coloring algorithms do not work in this model. (In [25] only Linial’s O(∆2)-
time algorithm and Kuhn-Wattenhofer O(∆ log∆)-time algorithms are shown to work in it.) We
obtain the first linear-in-∆ (∆ + 1)-coloring algorithms that work also in this model.
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1 Introduction

1.1 The Classical Model
In the LOCAL model of distributed computing [36] a network is represented by an n-vertex graph G =
(V,E) with maximum degree ∆ whose vertices host processors. The vertices communicate with one
another over the edges of G in synchronous rounds. In each round vertices perform local computations
and exchange messages with their neighbors. The amount of local computations, as well as message size,
is unrestricted. The running time is the number of rounds from the beginning of the execution until
all vertices compute their respective parts in the solution. Another model of interest is the CONGEST
model, which is similar to the LOCAL model, except that message size is restricted to O(log n) bits per
edge per round.

The problem that we are studying is how many rounds are required for computing a proper1 (∆+1)-
coloring of G. This is one of the most fundamental and well-studied distributed symmetry-breaking
problems [12, 21, 36, 44, 33, 4, 5, 6, 7, 9, 2, 19], and it has numerous applications to resource and channel
allocation, scheduling, workload balancing, and to mutual exclusion [32, 23]. The study of distributed
coloring algorithms on paths and cycles was initiated by Cole and Vishkin in 1986 [12], who devised
a 3-coloring algorithm with O(log∗ n) time2. The first distributed algorithm for the (∆ + 1)-coloring
problem on general graphs was devised by Goldberg and Plotkin in 1987 [21]. The running time of their
algorithm is 2O(∆) + O(log∗ n). (log∗ is a very slow-growing function, defined formally in Section 2.)
Goldberg, Plotkin and Shannon [22] improved this bound to O(∆2 + log∗ n). Linial [36] showed a lower
bound of 1

2 log
∗ n − O(1). His lower bound applies to a more relaxed f(∆)-coloring problem, for any,

possibly quickly-growing function f(). Linial also strengthened the upper bound of [22], and showed that
an O(∆2)-coloring can be computed in log∗ n + O(1) time. (Via a standard color reduction, described
e.g., in [6] Chapter 3, given an α-coloring one can compute a (∆ + 1)-coloring in α − (∆ + 1) rounds.
Thus, Linial’s algorithm also gives rise to (∆ + 1)-coloring in O(∆2 + log∗ n) time.)

In STOC’93, Szegedy and Vishwanathan [44] studied locally-iterative coloring algorithms. An al-
gorithm A is an α-to-β locally-iterative, for a pair of parameters α > β, if it maintains a sequence
ϕ1, ϕ2, ..., ϕT of proper α-colorings, where ϕi is the coloring on round i, for every 1 ≤ i ≤ T , the coloring
ϕT is a β-coloring, and T is the running time of the algorithm. On each round i, every vertex v computes
its new color ϕi+1(v) based only on the colors {ϕi(u) | u ∈ Γ̂(v)}, where Γ̂(v) = {v}∪{u ∈ V | (u, v) ∈ E}
is the 1−hop−neighborhood of v. Szegedy and Vishwanathan [44] derived an improved upper bound of
O(∆ log∆+ log∗ n) for locally-iterative (∆+1)-coloring. Specifically, they devised an O(∆2)-to-(∆+1)-
locally-iterative algorithm with running time O(∆ log∆). (This upper bound was later re-derived in
a somewhat more explicit way by Kuhn and Wattenhofer [33].) Szegedy and Vishwanathan [44] also
showed a heuristic lower bound on the number of rounds that a locally-iterative algorithm needs in order
to compute a (∆+1)-coloring from an O(∆2)-coloring. Their lower bound (Theorem 12 in [44], marked as
”heuristic”) is Ω(∆ log∆). By Linial’s lower bound [36], 1

2 log
∗ n−O(1) rounds are required to compute

an O(∆2)-coloring.
All (∆ + 1)-coloring algorithms developed before 2009 were locally iterative. (See Table 1 below for

a summary of known locally-iterative algorithms.) However, since 2009, a variety of algorithms that
employ various complicated non-locally-iterative techniques were obtained. This started with the linear-
in-Delta algorithms of [3, 32, 7], and proceeded with sublinear algorithms of [2, 19]. The algorithms of
[3, 32, 2, 19] are all not locally-iterative, as they all decompose the graph into many subgraphs, compute
colorings for them, and carefully combine them into a single coloring for the original graph. In view of
Szegedy-Vishwanathan’s heuristic lower bound (henceforth, SV barrier), this seemed to be inevitable.
In the current paper we show that this is not the case, and devise the first locally-iterative (∆ + 1)-

1A coloring ϕ : V → [∆ + 1] is called proper, if ϕ(u) 6= ϕ(v), for every edge e = (u, v) ∈ E.
2Unless said otherwise, algorithms that we discuss are deterministic.
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coloring algorithm with running time O(∆ + log∗ n), i.e., below the SV barrier of Ω(∆ log∆ + log∗ n).
Unlike previously locally-iterative algorithms, our algorithm does not necessarily reduce the number of
employed colors in every round. Instead, if the initial number of colors is ∆2, it can keep being Ω(∆2)
for almost the entire execution of the algorithm, and then ”suddenly” reduce to ∆ + 1 in the last few
rounds. The colorings ϕ1, ϕ2, ...., ϕT , T = O(∆), that it computes on rounds 1, 2, ..., T , respectively, are
all proper, but they are not at all arbitrary. Rather they have some special properties that guarantee
that in O(∆) rounds the number of colors reduces to (∆ + 1).

Interestingly, in their seminar paper [44], Szegedy and Vishwanathan mention a possibility of such a
phenomenon. In the preamble to their aforementioned ”heuristic” theorem (Theorem 12) they wrote:

”There is a possibility, however, that after a few steps of iteration we arrive at a very special type of
coloring that can be very efficiently reduced in steps thereafter. Assuming that this does not happen, the
results of the previous section give the following theorem:
Theorem 12 (heuristic): Let 1 ≤ b < a ≤ ∆/2. To decrease the number of colors from a∆ to b∆ it takes
Θ(∆ log(a/b)) steps. In particular, to decrease the number of colors from ∆2/2 to ∆ requires Θ(∆ log∆)
steps.”1

We also use our new locally iterative technique to devise improved not locally-iterative coloring al-
gorithms. Specifically, we obtain (1 + ǫ)∆-coloring within O(

√
∆+ log∗ n) time, for an arbitrarily small

constant ǫ > 0, and a (∆ + 1)-coloring within O(
√
∆ log∆ log∗ ∆+ log∗ n) time. This improves the best

previously-known running time O(
√
∆ log2.5∆+ log∗ n) of Fraigniaud et al. [19], by a polylogarithmic in

∆ factor.

Running time Reference

2O(∆) +O(log∗ n) Goldberg, Plotkin [21]
O(∆2) + log∗ n Linial [36]
O(∆) · log n Goldberg at el. [22]

O(∆2) + log∗ n Goldberg et al. [22]
O(∆ log∆) + 1

2 log
∗ n Szegedy, Vishwanathan [44]

O(∆ log∆) + log∗ n Kuhn, Wattenhofer [33]
O(∆) + log∗ n This paper

Table 1: Known results for locally-iterative (∆ + 1)-coloring.

1.2 Our Locally-Iterative Algorithms
We start with describing our most basic subroutine, which we call Additive Group algorithm, or shortly,
AG algorithm. The subroutine starts with a proper (∆+1)2-vertex-coloring ϕ of the input graph G, and
produces its proper (∆ + 1)-coloring in O(∆) rounds, in a locally-iterative way. Assume (for simplicity
of presentation) that ∆ + 1 = p is a prime number. We represent every initial color ϕ(v) = ϕ0(v) as a
pair 〈av, bv〉, where av, bv are from the field of integers with characteristic p, i.e., av, bv ∈ GF (p). Then
every vertex v ∈ V (in parallel) checks if there exists a neighbor u ∈ Γ(v), with bu = bv. If there is no
such a neighbor, then the vertex v finalizes its color, i.e., sets it to 〈0, bv〉. Otherwise, the vertex v sets
its color to 〈av, bv + av〉, where the addition is performed in GF (p). We show (see Section 3) that when
all vertices run this simple iterative step for 2p + 1 = 2(∆ + 1) + 1 rounds, the ultimate coloring ψ is a
proper (∆ + 1)-coloring. Moreover, at all times the graph is properly colored.

The simplicity and the uniformity of this iterative step makes it very powerful. In dynamic self-
stabilizing environments vertices run this step forever in conjunction with an appropriate ”check-and-fix”
procedure, no matter what changes or faults occur in the network. It turns out that still, once faults

1The argument of [44] applies, in fact, to reducing the number of colors to ∆ + 1, as opposed to ∆.
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stop occurring, within additional O(∆) rounds the coloring converges to a proper (∆ + 1)-coloring. In
the edge-coloring scenario, every edge e = (u, v) has a color ϕ(e) = 〈ae, be〉, known to both endpoints.
The endpoint u checks locally if there is an edge eu incident on u, eu 6= e, with beu = be, and v makes
an analogous test among edges incident on it. Then u and v communicate to one another one single bit
each, which enables both of them to update the color of e. Therefore, this algorithm gives rise to the
first communication- and time-efficient (2∆ − 1)-edge-coloring algorithm.

Some subtleties arise when (∆+1) is not prime, and we overcome them by showing that in some cases
the proof goes through even if the arithmetics is performed in an additive group Z∆+1, rather than in a
Galois field GF (p). Another difficulty stems from the need to combine the AG algorithm with Linial’s
algorithm. The latter algorithm reduces the number of colors to O(∆2), and from there the AG algorithm
takes over. However, in the self-stabilizing setting some vertices may run Linial’s algorithm, while others
have already proceeded to AG algorithm. Careful adaptations to both algorithms are required to handle
such situations.

Finally, we also extend the AG algorithm to computing arbdefective coloring. For a pair of parameters
α and β, a coloring ϕ is said to be α-arbdefective β-coloring if the β color classes of G induce subgraphs
of arboricity at most α each. Arbdefective colorings were introduced by the first- and the second-
named authors in [4], and they were shown to be extremely useful for efficient computation of proper
colorings in [4, 2, 19]. Our extension of AG algorithm from proper to arbdefective colorings (we call the
extended algorithm ArbAG) works very similarly to the AG algorithm. The only difference is that on
each round, each vertex v tests if it has at most a certain number of neighbors u with bu = bv. (Recall
that in AG algorithm, this threshold number is 0.) Other than that ArbAG has the same simple locally-
iterative structure as algorithm AG, but the number of iterations of ArbAG is significantly smaller. (Note,
however, that strictly speaking, a locally iterative algorithm is required to maintain a proper coloring
on each round, while algorithm ArbAG maintains an arbdefective coloring.) This is in sharp contrast to
previous methods [4, 2] of computing arbdefective colorings. The latter are far more involved, far less
communication-efficient, and less time-efficient by polylogarithmic factors. As a result we also obtain
improved (again, by polylogarithmic factors) algorithms for general (not necessarily locally-iterative)
(∆ + 1)-coloring and (1 + ǫ)∆-coloring.
1.3 Applications
In the Conclusions section of the paper [33] by Kuhn and Wattenhofer, the authors explain why locally-
iterative algorithms are particularly important from practical perspective. They mention ”emerging
dynamic and mobile distributed systems such as peer-to-peer, ad-hoc, or sensor networks” as examples of
networks for which such algorithms can be especially suitable. They also point out that locally-iterative
algorithms are typically communication-efficient ones.

In this paper we demonstrate that our novel locally-iterative algorithms indeed provide dramatically
improved bounds for both the dynamic Self-Stabilizing scenarios and for scenarios in which communication-
efficiency is crucial. In the next three subsections we discuss these applications of our locally-iterative
technique one after another.
1.3.1 Self-Stabilizing Symmetry Breaking
The Self-Stabilizing setting was introduced by Dijkstra [13], and is being intensively studied since then.
See, e.g., Dolev’s monograph [14] and surveys by Herman [26], by Guelleti and Kheddouci [23]. The latter
article surveys results on self-stabilizing coloring, independent sets and matchings that were achieved
before 2010. Since then, several additional results were obtained, either for more general or more restricted
scenarios. This includes distance-2 coloring of vertices [11] and of edges [34], and maximal independent
sets in wireless sensor networks [1]. Self-stabilization in dynamic systems was defined in [15].

In the context of (∆ + 1)-coloring, the setting we consider is the following one. The network is
represented by a synchronous message-passing system with a synchronous scheduler and a distributed
demon. Every vertex v of a graph G = (V,E) of maximum degree at most ∆ and at most n vertices has a
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unique ID number. In each round each vertex reads all messages that were received on its edges, produce
new messages, performs local computations, and clears the memory used for storing the messages in the
end of the round. The memory of each vertex consists of two areas. The Read Only Memory (henceforth,
ROM) consists of hard-wired data such as vertex ID, degree bound ∆, vertices bound n, and program
code. The ROM is faultless, but its contents cannot be changed during execution. The other area of the
memory is Random Access Memory (henceforth, RAM). This memory may change during execution, and
it is appropriate for storing variables, such as vertex colors.

The RAM area, however, may change not only as a result of an algorithm instruction, but also as a
result of faults or adversarial activity of the demon. Since the demon is a distributed one, it may change
the memories of numerous processors simultaneously. Such faults may make arbitrary and completely
unpredictable changes in any round in the entire RAM in all vertices. In particular, the memory areas
that store incoming and outgoing messages may be affected, thus messages may be lost or corrupted.
Moreover, in the Fully-Dynamic Self-Stabilizing setting, in each round vertices may crash, new vertices
may appear and communication links between vertices may change arbitrarily, as long as the bounds on
n and ∆ hold1. For example, colors are stored in RAM, and as long as faults occur, vertices may hold
arbitrary colors, possibly the same as those of their neighbors, no matter what operations are performed
by an algorithm. The objective is to devise algorithms in which once faults and dynamic changes stop
occurring, the algorithm self-stabilizes quickly to a proper solution.

The relevant notion of running time in this context is called stabilization time (also known as ”qui-
escence” time), which is the maximum number T of rounds, so that T rounds after the last fault or
dynamic change of the graph we are guaranteed that an algorithm arrives to a proper solution, e.g., the
coloring of the graph is a proper (∆ + 1)-coloring. One can define analogously self-stabilizing variants of
(2∆−1)-edge-coloring (see Section 1.2.2), of Maximal Independent Set (henceforth, MIS) and of Maximal
Matching (henceforth, MM)2.

Self-stabilizing symmetry-breaking problems were extensively studied [27, 28, 30, 43]. See also [23]
for an excellent survey of self-stabilizing symmetry-breaking algorithms. However, all of them have
prohibitively large stabilization time of O(n) or more. A general scheme for transforming T -round
algorithms from the LOCAL model into T -round self-stabilizing algorithms was described in [35]. This,
however, may result in a significant growth in the message size, due to the need of collection information
of T -hop-neighborhoods. In contrast, in this paper we devise the first self-stabilizing algorithms with
stabilization time of O(∆ + log∗ n) and small messages, for all these four fundamental problems. We
note that the fact that our algorithms are deterministic is particularly useful in this setting. Indeed, this
prevents the possibility that adversarial faults will manipulate random bits of the algorithm.
1.3.2 Edge-Coloring
Another classical and extremely well-studied symmetry breaking problem is that of (2∆−1)-edge-coloring
[40, 5, 8, 9, 17, 16, 20, 18, 41]. An edge-coloring ϕ of a graph G = (V,E) is a function ϕ : E → N . It is
said to be proper if for every pair of incident edges e, e′ ∈ E, e 6= e′, we have ϕ(e) 6= ϕ(e′). The classical
theorem of Vizing [45] states that every graph is (∆ + 1)-edge-colorable. However, existing distributed
deterministic solutions [40, 5, 8, 9, 17, 18] with running time of the form f(∆) + O(log∗ n) employ
(2∆− 1) colors or more in general graphs. (There are efficient randomized distributed algorithms [9, 17]
that compute (1+ ǫ)∆-edge-colorings in time close to (log n)/∆1−o(1). This running time is incomparable
to running time of the form f(∆)+O(log∗ n), for some function f(), achieved by deterministic algorithms

1In fact, since the dependence of our algorithms’ running time on n is just log∗ n, the bound for the number of vertices
may be double- or triple-exponential in the real number of vertices, and still the running time will be affected by just an
additive constant term.

2A subset U ⊆ V of vertices is an MIS if there are no edges between pairs of vertices in U , and for every vertex v ∈ V \U ,
there exists a neighbor u ∈ U . A subsetM ⊆ E of edges is an MM if no two edges ofM are incident, and for every e ∈ E \M ,
there exists an edge e′ ∈M incident on it.
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that we discuss here.) The first efficient deterministic algorithm for (2∆ − 1)-edge-coloring was devised
by Panconesi and Rizzi [40]. Its running time is O(∆ + log∗ n).

In the LOCAL model of distributed computing, messages of arbitrary size are allowed. The (2∆−1)-
edge-coloring problem for a graph G reduces to (∆ + 1)-vertex-coloring problem for the line graph L(G)
of G, and in the LOCAL model this reduction can be implemented without any overhead in running
time. Therefore, the novel sublinear-in-∆ time algorithms for (∆+1)-vertex-coloring [2, 19] immediately
give rise to sublinear-in-∆ time algorithms for (2∆ − 1)-edge-coloring. However, all these edge-coloring
algorithms [40, 2, 25] are not locally iterative. Moreover, they do not apply (or require significantly
more time) in the CONGEST model of distributed computing. Implementing Panconesi-Rizzi algorithm
in the CONGEST model requires O(∆2 + log∗ n) time. Simulating vertex-coloring for a line graph also
yields a multiplicative overhead of factor at least ∆ in the running time. Therefore, to the best of our
understanding, the state-of-the-art solution for (2∆− 1)-edge-coloring in the CONGEST model requires
Õ(∆3/2 + log∗ n) time, and it is not locally iterative. The best currently-known locally-iterative solution
is even slower, and requires O(∆2 log ∆ + log∗ n) time. (It is achieved by simulating the locally-iterative
O(∆ log∆)-time algorithm of [33, 44] in the line graph in the CONGEST model.) The problem of devising
communication-efficient algorithms for symmetry-breaking problems was raised in a recent work by Pai
et al. [39].

We adapt our locally-iterative algorithm for (∆+1)-vertex-coloring to work for (2∆−1)-edge-coloring
directly, i.e., without simulation of the line graph. As a result we obtain a locally-iterative (2∆ −
1)-edge-coloring algorithm with running time O(∆ + log∗ n) in the CONGEST model. Moreover, we
show that unlike previous solutions (that require stabilization time of Ω(n)), our algorithm works in the
self-stabilizing setting, still with small messages, with stabilization time O(∆ + log∗ n). Moreover, our
algorithm is also applicable to the more restricted Bit-Round [31] model in which each vertex is only
allowed to send 1 bit in each round over each edge.

As a separate contribution, we devise a (2∆− 1)-edge-coloring algorithm for n-vertex oriented forests
that requires log∗ n + O(1) time, and applies to the CONGEST model. The currently existing solution
to this problem that has this running time, due to Panconesi and Rizzi [40], employs messages of sizeO(∆).

1.3.3 SET-LOCAL Model
An additional application of our algorithms is in the SET-LOCAL model [25] that represents restricted
networks in which vertices do not have IDs (but start from a proper coloring), and are not capable
to distinguish between identical messages received from different neighbors. Since our algorithms are
locally-iterative and compute the next colors based only on sets of current colors of 1-hop-neighborhoods,
our algorithms are directly applicable to the SET-LOCAL model. Thus our algorithms compute proper
(∆ + 1)-coloring (and solve related problems) in O(∆) time in the SET-LOCAL model starting from a
proper O(∆2) coloring. The best previous algorithms in this model required O(∆ log∆) time [44, 33, 25].
A lower bound of Ω(∆1/3) for (∆ + 1)-coloring in this setting was obtained by Hefetz et al. [25].
1.3.4 Summary
We believe that these applications demonstrate the power of locally-iterative coloring. Bypassing Szegedy-
Vishwanathan barrier via a locally-iterative algorithm does not only provide a surprising answer to a
quarter-century-old open problem, but also provides new precious insights into distributed coloring in
general. We are confident that these insights will be instrumental in achieving further breakthroughs in
this important field.
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2 Preliminaries

The function log∗ n is the number of times the log2 function has to be applied iteratively starting from n,
until we arrive at a number smaller than 2. The unique identity number (ID) of a vertex v in a graph G
is denoted id(v). The diameter Diam(G) of a graph G = (V,E) is the maximum (unweighted) distance
between vertices u, v ∈ V . The arboricity a = a(G) of a graph G = (V,E) is the minimum number of
forests into which the edge set E can be partitioned. A d-defective p-coloring is a vertex coloring using
p colors such that each vertex has at most d neighbors colored by its color. A b-arbdefective p-coloring
is a vertex coloring using p colors, such that each subgraph induced by vertices of the same color has
arboricity at most b. We employ the following important fact. For any integer ∆ > 0, there exists a
prime q in [∆, 2∆]. This is due to Bertrand-Chebyshev postulate. See, e.g., Theorem 418 in [24].

3 Additive-Group Coloring

3.1 The Main Algorithm

In this section we present our main algorithm that computes a proper O(
√
k)-coloring from a proper

k-coloring, where k = Ω(∆2). Consider a graph G = (V,E) with a proper k-coloring ψ. For all vertices
v ∈ V , we represent a color ψ(v) = i by a pair 〈av, bv〉. We do it by finding a prime number q,

√
k ≤ q ≤

2
√
k. The color ψ(v) = i is represented by the following pair ψ(v) = 〈⌊i/q⌋ , i mod q〉. Our final goal is

to eliminate the first coordinate, i.e., to change all nodes colors such that for every vertex v ∈ V , it will
hold that ψ(v) = 〈0, bv〉, 0 ≤ bv < q, and ψ is a proper q-coloring. Our algorithm proceeds in iterations,
starting from the initial coloring ψ. In each iteration colors may change, but the coloring remains proper.
We employ the following definition.

Definition 3.1. Two neighbors u, v in G conflict with one another if and only if ψ(v) = 〈a, b〉 and
ψ(u) = 〈a′, b〉, where 0 ≤ a, b, a′ < q.

Denote ψ(v) = 〈a, b〉. We will refer to a as the first coordinate and to b as the second coordinate.
Denote by ψi(v) the color of v ∈ V in round i. Our algorithm starts from a proper k = Ω(∆2) coloring
of the input graph G = (V,E). In each round the algorithm performs the following step, for q rounds.
For all v ∈ V in parallel, if a node v conflicts with a neighboring node u, then the new color of v in the
end of this round is ψi+1(v) = 〈a, (b + a) mod q〉. Otherwise (this means v does not conflict with any
neighbor), we set ψi+1(v) = 〈0, b〉, and the color of v becomes final and will not change anymore.1 This
completes the description of the algorithm. Note that a node does not have to send its new color to all
of its neighbors. Rather it is enough to send only one bit indicating whether its color became final or
that it changed according to the rule specified above. We will use this property later. The pseudocode
of the algorithm is provided below. (The pseudocode is for a specific vertex v that runs this algorithm.
All vertices run it in parallel.) Next, we prove correctness.

1Note, however, that a finalized vertex v, i.e., a vertex with ψi(v) = 〈0, b〉, can keep running the same iterative step, and
still its colors will stay unchanged.
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Algorithm 1 Additive-Group Coloring

1: /* Initially, each vertex is aware of its own color and the colors of its neighbors */
2: for round i = 0, 1, , ...q do
3: let ψi(v) = 〈av , bv〉 be the color of v in iteration i
4: if not exists (v, u) ∈ E where ψi(u) = 〈au, bu〉 with bu = bv then
5: ψi+1(v) = 〈0, bv〉
6: Send 0 to all neighbors
7: else
8: ψi+1(v) = 〈av, (bv + av) mod q〉
9: Send 1 to all neighbors

10: end if
11: Receive the bits sent by neighbors of v and deduce the colors ψi+1 of these neighbors
12: end for

Lemma 3.2. For each iteration i, the coloring ψi(G) is proper.

Proof. The proof is by induction on i.
Base: (i = 0): holds trivially, since the initial coloring is proper.
Step: Assuming that in iteration i the coloring is proper, we prove that in iteration i + 1 it is proper
as well. If a color of a node v ∈ V is ψi(v) = 〈a, b〉, then for the next iteration the color is either
ψi+1(v) = 〈0, b〉 or ψi+1(v) = 〈a, (b + a) mod q〉. Consider an adjacent node u, i.e., (u, v) ∈ E. If
ψi(u) = 〈c, b〉, where 0 ≤ c < q, then c 6= a, by the induction hypothesis. In this case, the new colors of
the nodes will be ψi+1(v) = 〈a, (b+a) mod q〉 and ψi+1(u) = 〈c, (b+c) mod q〉 and since c 6= a this means
that the new colors of u and v are distinct. Otherwise, ψi(u) = 〈c, d〉, where d 6= b. If in iteration i+1 it
holds that ψi+1(v) = 〈0, b〉 and ψi+1(u) = 〈0, d〉, we are done since b 6= d. Otherwise, u or v had conflicts
in iteration i. If exactly one of them had a conflict, then their colors in iteration i+ 1 are distinct. (One
of them has 0 in the first coordinate, while the other has not, in iteration i + 1.) It is left to consider
the case that both had conflicts. Thus, ψi+1(v) = 〈a, (b + a) mod q〉 and ψi+1(u) = 〈c, (d + c) mod q〉. If
a 6= c, we are done. Otherwise, a = c and b 6= d, because ψi is proper. Thus, b+ a 6≡ d+ c (mod q), and
ψi+1(v) 6= ψi+1(u).

We say that a vertex is in a working stage as long as its color 〈a, b〉 satisfies a 6= 0. Once a becomes
0, the vertex is in the final stage. In order to analyze the running time of the algorithm we observe in
Lemmas 3.3, 3.4 and Corollary 3.5, assuming that q is sufficiently large, that a pair of neighbors can
conflict at most twice in q rounds. (Once in a working stage, and once in a final stage of one of the
vertices.) Therefore, a vertex with less than q/2 neighbors will have a round out of q in which it conflicts
with no neighbor. In this round it will select a final color. Since q > 2 ·∆, all vertices in the graph will
select a color within q rounds. This is formalized in the following analysis.

Lemma 3.3. For t ≤ q, suppose that our algorithm is executed for t rounds, and consider two neighboring
nodes u, v in G that are in their respective working stages during these entire t rounds. Then u, v have
the same second coordinate in their colors in the same round i, 0 ≤ i < t (that is, ψi(u) = 〈a, b〉 and
ψi(v) = 〈c, b〉, for some 0 ≤ a, b, c < q) at most once during these t consequent rounds.

Proof. Assume that in some iteration i it holds that ψi(u) = 〈a, b〉 and ψi(v) = 〈c, b〉. For each of the
following iterations j = i+1, i+2, ..., the difference between the second coordinates is (c−a)·(j−i) mod q.
Note that since q is a prime and a 6= c (since, by Lemma 3.2, the coloring is proper in all iterations,
and in particular, ψi is a proper coloring), the equality (c − a)(j − i) mod q = 0 can only hold when
(j − i) mod q = 0, i.e., only after additional q iterations.
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In the following lemma we complement Lemma 3.3.

Lemma 3.4. For t ≤ q, suppose that our algorithm is executed for t rounds, and consider two neighboring
nodes u, v in G, such that u is in working stage and v is in final stage during these entire t rounds. Then
u, v have the same second coordinate in their colors in the same round i, 0 ≤ i < t (that is, ψi(u) = 〈a, b〉
and ψi(v) = (0, b), for some 0 ≤ a, b < q) at most once during these t consequent rounds.

Proof. Since v is in final stage, its color does not change during these t rounds. Indeed, it holds that
〈0, b〉 = 〈0, (b + 0) mod q〉. On the other hand, u is in the working stage. If initially the color of v is
〈c, d〉, for some 0 ≤ c, d < q, then in the following t rounds it changes as follows: 〈c, (d + c) mod q〉,
〈c, (d + 2c) mod q〉, . . . , 〈c, (d + tc) mod q〉. Since q is prime, all these values of the second coordinate
are distinct in the field of integers modulo q. In other words, the equality d + xc ≡ b (mod q) holds
for exactly one element x of this field. Thus v conflicts with u at most once, in the round i where
d+ ic ≡ b (mod q).

Corollary 3.5. Given a graph G = (V,E) with a proper k-coloring, where k = Θ(∆2), our Additive-
Group Coloring algorithm produces a proper O(

√
k) coloring within O(∆) rounds, each of which can be

implemented via one-bit messages.

Proof. By Lemma 3.3, for q > 2∆, two adjacent nodes in the working stage (whose colors are not final)
cannot conflict with one other more than once during the first q rounds of the algorithm. However, two
adjacent nodes can also conflict if exactly one of them has selected a final color. Once this happens, it
will conflict with its neighbor that is still in the working stage at most once during these q rounds. (See
Lemma 3.4.) Since any node starts from a working state, and once the state transits to final its color
does not change anymore, a node cannot conflict with each of its neighbors more than twice. Therefore,
for each node, within q > 2 · ∆ rounds, there must be a round in which it does not conflict with any
of its neighbors. Hence, all nodes will reach a final stage within q rounds. Since q ≤ 2

√
k = O(∆), the

statement about the running time of the corollary follows. Recall also that on every round, each vertex v
can update its neighbors regarding its new color via one-bit messages. These messages indicate whether
v finalized its color or not.

A final color is of the form 〈0, b〉, 0 ≤ b < q. Thus the number of employed colors is at most
q = O(

√
k).

Corollary 3.6. Any graph G = (V,E) can be colored with ∆+ 1 colors within O(∆) + log∗ n rounds, by
a locally-iterative algorithm.

Proof. Running Linial’s algorithm [36] on the input graph G = (V,E) will produce a coloring ϕ(G) using
O(∆2) colors within log∗ n+O(1) rounds. (Recall that Linial’s algorithm is locally-iterative.)
At the second stage we run our Additive-Group algorithm on ϕ(G). This results in a new proper coloring
ψ(G) that employs O(∆) colors. Computing the coloring ψ from ϕ requires O(∆) rounds, by Corollary
3.5. At the last stage we reduce the number of colors to ∆ + 1 using the standard color reduction. This
also requires O(∆) time. Note that the standard color reduction is a locally-iterative algorithm as well.
Therefore, the overall running time is log∗ n+O(1) +O(∆) +O(∆) = O(∆ + log∗ n).

3.2 Halving the Number of Colors using 1-Bit-Messages per Round

In this section we devise a more bit-efficient algorithm than the algorithm presented in the previous
section. Specifically, while the Additive-Group coloring stage requires just 1 bit per edge per round, the
standard color reduction performed in the last stage may require O(log∆) bits for color updates for each
round. We devise an improved method that requires messages of just 1 bit. Specifically, we devise an
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algorithm reducing the number of colors from O(∆2) to ∆ + 1 within O(∆) rounds using messages of
1 bit per edge per round. Consequently, the overall bit complexity of the (∆ + 1) coloring algorithm is
O(log n+∆) in the one bit model.

In this algorithm there is no need for a prime parameter, but rather any integer greater than ∆ will
do. Given a graph with a proper k-coloring, k ≥ 2∆ + 2, we set q = ⌈k2⌉, where q ≥ ∆+ 1, and produce
a proper q-coloring. Initially, each color c, 0 ≤ c < k, is represented as an ordered pair: 〈⌊c/q⌋, c mod q〉.
Note that ⌊c/q⌋ ∈ {0, 1}. The pseudocode is provided below.

Algorithm 2 One-bit AG halving reduction

1: /* Initially, each vertex is aware of its own color and the colors of its neighbors */
2: for round i = 0, 1, ...,∆ + 1 do
3: let ψi(v) = 〈av , bv〉 be the color of v in iteration i // av ∈ {0, 1}
4: ∀v ∈ V such that ψi(v) = 〈1, bv〉 in parallel do:
5: if not exists (v, u) ∈ E where ψi(u) = 〈0, bv〉 then
6: ψi+1(v) = 〈0, bv〉
7: Send 0 to all neighbors
8: else
9: ψi+1(v) = 〈1, bv + 1 mod q〉

10: Send 1 to all neighbors
11: end if
12: Receive the bits sent by neighbors of v and deduce the colors ψi+1 of these neighbors
13: end for

We analyze the algorithm using the following lemmas.

Lemma 3.7. Given an arbitrary graph G = (V,E) with a proper k ≥ 2∆+2 coloring, one-bit AG halving
reduction preserves a proper coloring of the input graph in every round.

Proof. Assume that in iteration i the coloring is proper. Therefore, for every edge (u, v) ∈ E, we have
〈au, bu〉 = ψi(u) 6= ψi(v) = 〈av , bv〉. In iteration i+ 1 there are 2 possibilities.

Case 1: ψi+1(v) = 〈0, bv〉, and this means that ψi(u) 6= 〈0, bv〉, since in this case ψi(v) is either
〈0, bv〉 or 〈1, bv〉. Moreover, this means that ψi+1(u) cannot become 〈0, bv〉 during this iteration. Thus,
ψi+1(u) 6= ψi+1(v).

Case 2: ψi+1(v) = 〈1, bv + 1 mod q〉. From the proper coloring assumption we know that if ψi(u) =
〈1, bu〉 then ψi(v) is 〈1, bv〉 with bv 6= bu. Therefore, either ψi+1(u) = 〈1, bu + 1 mod q〉 6= ψi+1(v) or
ψi+1(u) = 〈0, bu〉 6= ψi+1(v). On the other hand, if ψi(u) = 〈0, bu〉, then ψi+1(u) = 〈0, bu〉 as well, and
again ψi+1(u) 6= ψi+1(v).

Next we show that Algorithm 2 actually halves the palette within (∆ + 1) rounds.

Lemma 3.8. Given any graph G = (V,E) with a proper k ≥ 2∆ + 2 coloring, One-bit AG halving
reduction will cause every node to have a final color in the range {0, 1, ..., q − 1}, q = ⌈k/2⌉, after ∆+ 1
rounds.

Proof. Note that a node u can conflict with another node v in One-bit AG halving reduction if ψ(u) =
〈0, bv〉 and ψ(v) = 〈1, bv〉. After that these nodes may conflict again only once q additional rounds have
passed. Therefore, within q rounds, a node can have a conflict at most once with every adjacent node.
Thus, if q ≥ ∆ + 1, from the pigeonhole principle there will always be a round where v finalizes its
color.
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Now we discuss the scenario when (∆ + 1)-coloring is computed from scratch. To this end, Linial’s
algorithm is executed first. In each of its O(log∗ n) rounds, vertices exchange their colors in that round
with their neighbors. The ranges of colors in round 1, 2, 3, ... are O(n), O(∆ log n)2, O(∆ log log n)2,...,
respectively. Consequently, the bit complexity per edge is O(log n+log∆+log log n+log∆+log log log n+
....) = O(log n + log∆ · log∗ n). Note that log∆ log∗ n ≤ O(log n + ∆). We summarize this in the next
corollary.

Corollary 3.9. Coloring any input graph properly with ∆+1 colors can be computed within O(∆+log n)
rounds in the one-bit model. Moreover, obtaining a (∆ + 1)-coloring from O(∆2)-coloring in this model
requires O(∆) rounds.

The last assertion of Corollary 3.9 follows from Corollary 3.5 and Lemma 3.8.

3.3 Computing O(∆ · k) Coloring within O(∆/k) Rounds

In this section we describe a minor change in AG algorithm that applies to the CONGEST, LOCAL
and SET-LOCAL models. (It will not apply to the one-bit model). This way, a faster computation is
performed, in the expense of increasing the number of colors. Specifically, for an integer k, such that
1 ≤ k < ∆, we compute O(∆ · k)-coloring within O(∆/k) rounds, starting from an O(∆2)-coloring. The
change we suggest is to use triplets instead of ordered pairs for representing colors.

We provide the pseudocode of the algorithm below. (See Algorithm 3.) Next, we analyze the algo-
rithm. The algorithm starts with a proper O(∆2) coloring, where each color is represented by a triplet
〈av, bv , cv〉, such that av, bv ∈ {0, 1, ...., q − 1}, q = O(∆), cv = 0, where q is a prime. During an execution
the colors change, but it always holds that 0 ≤ av, bv < q and 0 ≤ cv < k < ∆ < q. The pseudocode
describes the steps performed in a single round. The same steps are executed in every round i = 0, 1, 2, ....

Algorithm 3 Refine-AG

1: Let ψi(v) = 〈av, bv , cv〉 be the current color // 0 ≤ cv < k, initially cv = 0
// Invariant: av = 0 or cv = 0

2: if av 6= 0 then
3: if exists an index j, 0 ≤ j < k, such that the following two conditions hold:
4: 1. for all neighbors u of v with au 6= 0:
5: (bv + j · av) mod q 6= (bu + j · au) mod q
6: and
7: 2. for all neighbors u of v with au = 0:
8: 〈(bv + j · av) mod q, j〉 6= 〈bu, cu〉

then
9: ψi+1(v) = 〈0, (bv + j · av) mod q, j〉

10: else
11: ψi+1(v) = 〈av, (bv + k · av) mod q, 0〉
12: end if
13: end if
14: if av = 0 then
15: ψi+1(v) = ψi(v)
16: end if
17: send ψi+1(v) to all neighbors of v
18: receive the colors ψi+1 of all neighbors of v

Next we argue that the algorithm maintains a proper coloring throughout its execution.
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Lemma 3.10. Given an arbitrary graph G = (V,E) with a proper O(∆2) coloring, Refine-AG produces
a proper coloring after every round.

Proof. The proof is by induction on the number of rounds/iterations.
Base: The initial coloring is proper.
Step: We assume that in iteration i the coloring is proper. Next, we show that it is also proper in
iteration i + 1. Fix a vertex v. For a positive integer x, we denote the values of av, bv, cv in iteration
x by avx , bvx , cvx , respectively, i.e., ψx(v) = 〈avx , bvx , cvx〉. If line 9 of the algorithm was executed then
ψi+1(v) = 〈0, (bvi + j · avi) mod q, j〉, for some index j, 0 ≤ j < k. Since avi+1

= 0, ψi+1(v) cannot be
equal to the chosen colors in iteration i+1 of any of v’s neighbors u that executed line 11, simply because
aui+1

6= 0. Thus, assume that another neighbor u executed line 9 and caused a conflict. This means that
both nodes have the same index j, and (bvi + j ·avi) mod q = (bui

+ j ·aui
) mod q. But this is impossible,

since the if statement in lines 3-5 prevents it.
It is left to analyze the case that both neighbors execute line 11. This means that avi+1

6= 0 and
aui+1

6= 0. Thus u and v have not executed line 9 before. The values of cu and cv can become non-zero
only in line 9. Therefore, cui

= cvi = 0. Hence, if 〈avi , (bvi+k·avi) mod q, 0〉 = 〈aui
, (bui

+k·aui
) mod q, 0〉,

then 〈avi , bvi , cvi〉 = 〈avi , bvi , cvi〉. This is a contradiction to the correctness of the coloring in round i.

The next lemma helps us to show that only a bounded number of conflicts can occur throughout the
execution of Algorithm 3.

Lemma 3.11. For (u, v) ∈ E with au 6= 0, av 6= 0, in each round there can be at most one index j, such
that (bv + j · av) mod q = (bu + j · au) mod q.

Proof. Assume for contradiction that there are two indices j1 > j2, such that
(1) (bv + j1 · av) mod q = (bu + j1 · au) mod q
and
(2) (bv + j2 · av) mod q = (bu + j2 · au) mod q.
By subtracting (2) from (1) we get (j1 − j2)(av − au) ≡ 0( mod q). Since 0 < j1 − j2 < k < q, it follows
that j1 − j2 6≡ 0 ( mod q), and thus au ≡ av ( mod q).
Then, from (1) it follows that bu ≡ bv ( mod q). But this means that 〈au, bu, cu〉 = 〈av, bv , cv〉, since
au 6= 0, av 6= 0 implies cu = cv = 0. However, this is a contradiction to the correctness of the coloring in
each round.

We say that a node u conflicts with its neighbor v, if av 6= 0, and there exist an index j, 0 ≤ j ≤ k, such
that either (au 6= 0 and bv + j · av ≡ bu+ j · au(modq)) , or (au = 0 and 〈bu+ j · av(modq), j〉 = 〈bu, cu〉).
Next, we analyze how many times a node u can conflict with a neighbor v during an execution of O(∆/k)
rounds of Refine-AG.

Lemma 3.12. A node u ∈ V can conflict with a neighbor v of u at most twice during ⌊q/k⌋ − 1 rounds
of Refine-AG.

Proof. If au = av 6= 0, then bu 6= bv. Then for any index j, 0 ≤ j ≤ k, we have bv + j · av 6≡
bu + j · au(mod q), and no conflict occurs. Consider now the case that av 6= 0 and au 6= 0, and av 6= au.
As long as both v and u keep being in non-final states (having their first coordinates different from 0), we
argue that once a conflict between them occurs, the next conflict between them can happen only after at
least q/k − 1 rounds. Indeed, if v and u as above conflict at a certain round, it means that there exists
an index j, 0 ≤ j < k, such that bv + j · av ≡ bu + j · au(mod q). On each of the subsequent rounds (as
long as both v and u did not finalize their colors), we will have their respective second coordinate bv and
bu increase by k ·av and by k ·au, respectively. As a result, if a conflict occurs again after some h rounds,
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for an integer h ≥ 1, then we have: (bv + k · h · av) + j′ · av ≡ (bu + k · h · au) + j′ · au)(mod q), for some
j′, 0 ≤ j′ < k. Denote z ≡ bv + j · av ≡ bu + j · au(mod q). we have

z + (k · h+ j′ − j) · av ≡ z + (k · h+ j′ − j) · au(mod q). (1)

As 0 ≤ j, j′ ≤ q, for h < q/k − 1, we have k · h+ (j′ − j) < k(h+ 1) < q. Thus, equality in equation (1)
can only happen if av ≡ au(mod q). This is, however, a contradiction. Thus, during rounds indexed h
with 0 ≤ h ≤ q/k − 1, at most one conflict can occur between non-finalized vertices v and u.

A conflict can also occur if u is in non-final state and v is in a final state. i,e, 〈bu+ j ·av , j〉 = 〈bv , cv〉,
with au 6= 0 and av = 0. Observe that from that point on, the vertex v will not change its color, and
thus a conflict can occur only with the same index j. On every round (as long as u does not finalize),
k · au is added to bu. Hence for both bu + j · au and bu + k · h · au + j · au to be equal to the same value
bv (in Zq), we must have k · h ≥ q. Hence within q/k − 1 rounds, at most one conflict of this kind can
occur. Thus, overall v and u may be in conflict at most twice, during q/k − 1 rounds.

We now ready to summarize the properties of Algorithm 3 (Procedure Refine-AG).

Corollary 3.13. Refine-AG produces a proper coloring using O(∆ · k) colors within O(∆/k) rounds,
starting from an O(∆2)-coloring.

Proof. Consider the total number of pairs (u,R), where u is a neighbor of v that conflicts with v on
round R. Denote this number by N . We have N ≤ 2 ·∆, but also N ≥ k · h. The former inequality is
because every neighbor can belong to at most two such pairs, as long as the number of rounds on which
the color of v did not finalize satisfies h ≤ q/k − 1. The latter inequality assumes that in each of the
h rounds, the vertex v had at least k conflicts, and thus did not finalize. Thus h ≤ 2 · ∆/k. In fact,
we run the algorithm for one more round, i.e, for ⌈2 · ∆/k⌉ + 1 rounds, to ensure that there will be a
round in which there exists an index j ∈ [0, k − 1] for which v has no conflict. We select q to satisfy
⌈2 ·∆/k⌉+1 ≤ q/k− 1, i.e., 2 ·∆/k+3 ≤ q/k. Hence we set q ≥ 2 ·∆+3 · k. This guarantees that every
vertex finalizes within ⌈2 ·∆/k⌉+ 1 rounds.

To implement this algorithm using bit-messages we can send on every round a single bit indicating if
the vertex v (that runs the algorithm) finalizes or not, and if it does finalize, we append the value of j with
which v finalizes to the message. Overall, the algorithm requires every vertex to send O(∆/k) bit-messages
and one single message of size O(log k). Thus, the algorithm can be implemented in O(∆/k · log k) bit
rounds.

4 Fully-Dynamic Self-Stabilizing algorithms with O(∆+ log∗ n) rounds

4.1 Fully-Dynamic Self-Stabilizing (∆ + 1)-Coloring
In this section we employ a variant of Linial’s algorithm for O(∆2)-coloring that allows a vertex v to avoid
being colored by colors from a given set R(v) of size at most O(∆) [2]. (This is useful when selecting a
new color, to avoid collisions with some neighbors that have already obtained final colors.) We refer to
this algorithm as Algorithm Excl-Linial.

Algorithm Excl-Linial is identical to Linial’s original algorithm, except for the final stage that trans-
forms a proper O(∆3)-coloring into a proper O(∆2)-coloring. In this stage each vertex v computes a
polynomial Pv(x) of degree 2 in a field of size O(∆), and selects a color 〈x, Pv(x)〉, such that 〈x, Pv(x)〉 6=
〈y, Pu(y)〉, for any neighbor u of v and any y in that field. Since the degree of the polynomials in this
stage is 2, each polynomial intersects with a neighboring node’s polynomial in at most two points. Hence,
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there are at most 2∆ points on Pv that may intersect with some neighbor. If the field is of size at least
2∆ + 1, there must be a point such that 〈x, Pv(x)〉 6= 〈y, Pu(y)〉 for all neighbors u of v and all elements
y in the field. Such a pair is selected by the original algorithm of Linial. In the modified variant, on the
other hand, the field is of size greater than 3∆. Consequently, if a set R(v) of at most ∆ forbidden colors
is provided, there still exists an element x in that field, such that 〈x, Pv(x)〉 is not equal to any of the
colors in the set R(v), and neither to any 〈y, Pu(y)〉, for a neighbor u and an element y. Such a color is
selected as a final color. Thus, we obtain an O(∆2)-coloring, where all colors belong to sets that exclude
O(∆) colors each, within log∗ n + O(1) time. More generally, if a forbidden set of colors is of size c ·∆,
for some constant c > 0, then Algorithm Excl-Linial works in the same way, but uses a field of size at
least (c+ 2) ·∆. This completes the description of algorithm Excl-Linial.

Before describing our self-stabilizing algorithm, we define some notation, and describe yet another
useful variant of Linial’s algorithm, which we call Algorithm Mod-Linial. Let r = log∗ n + O(1) de-
note the number of iterations in Linial’s algorithm. Let tr = O((∆ log n)2), tr−1 = O((∆(log∆ +
log log n)2), ..., t1 = O(∆2) denote upper bounds on the number of colors in the different iterations of
Linial’s algorithm. Define the intervals I0, I1, I2, ... as follows. I0 = [0, t1−1], I1 = [t1, t1+t2−1], ..., Ir−1 =
[
∑r−1

i=1 ti,
∑r

i=1 ti − 1], Ir = [
∑r

i=1 ti,
∑r

i=1 ti + n − 1]. Since each such interval contains a sufficient
number of colors, we can map each color palette of each iteration of Linial’s algorithm to one of the
intervals defined above. Specifically, the palette of the first iteration is mapped to Ir−1 (which is of size
tr), the palette of the second iteration is mapped to Ir−2 (which is of size tr−1), and so on, up to the
last palette that is mapped to I0. This way Linial’s algorithm is modified, so that in each iteration
i = 1, 2, ..., r a coloring using a palette Ir−i+1 is transformed into a coloring using the palette Ir−i. (The
actual number of colors used from this palette is O((∆ log(i) n)2).) The modified algorithm will be re-
ferred to as Mod-Linial. It accepts as input a color of a vertex v, a (sub)set of its neighbors colors, and
a set of O(∆) forbidden colors, and returns a new color for v. The range Ir = [

∑r
i=1 ti,

∑r
i=1 ti + n− 1]

will be used for an initial n-coloring obtained from IDs.
Observe that the idea described above in algorithm Excel-Linial, can be easily incorporated into

algorithm Mod-Linial as well. Specifically, on each iteration i = 1, 2, ..., r of algorithm Mod-Linial, every
vertex v evaluates a polynomial Pv. Consequently, two polynomials Pv and Pu of neighboring vertices v
and u may agree in at most a certain pre-determined number of values. The polynomials are over the
field GF (q), for q = O(∆) being a prime (characteristic of GF (q)). By increasing this characteristic by
an additive c ·∆ term, for a constant c > 0, one can ensure that the chosen color for v will exclude a list
Qv of at most c ·∆ forbidden colors.

Our fully-dynamic self-stabilizing algorithm works as follows. The RAM of each vertex consists of
a variable that holds a color in a range {0, 1, ..., t1 + t2 + ... + tr + n − 1}. The ROM of each vertex
holds the algorithm, the number of vertices n and the maximum degree ∆. In each round each vertex
v checks whether it is in a proper state, i.e., its color is different from colors of all its neighbors. (See
the pseudocode of Procedure Check-Error below.) If v is not in a proper state, the vertex returns to its
initial state. (See lines 4- 5 of Procedure Self-Stabilizing-Coloring.) We define the initial state of a vertex
with ID j ∈ 0, 1, ..., n − 1 by the color t1 + t2 + ... + tr + j. Otherwise (i.e., if Procedure Check-Error
returned that its color is different from colors of all its neighbors), the vertex is in a proper state. Then,
the vertex v computes its next color or finalizes the current one. (See lines 7 - 23 of Procedure Self-
Stabilizing-Coloring.) Specifically, as long as the vertex color belongs to an interval Ij for j ≥ 2, i.e., the
color is significantly larger than ∆2, the vertex computes the next color from a smaller range using the
algorithm Mod-Linial (lines 9-10 of Procedure Self-Stabilizing-Coloring). Once a color is in the interval
I1, the vertex must select a new color in the interval I0 that is distinct from any neighboring color that is
also in I0. This is done in lines 12 - 14 of the procedure. The set S′, computed in line 13 and provided as
the third parameter of Procedure Mod-Linial in line 14, contains all possible colors that neighbors u of
v that run already lines 15 - 21 (i.e., their colors are small enough) may obtain in the current iteration.
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Note that for each such u ∈ Γ(v) there are at most 2 such colors. Finally, a color that is in the range
I0 either becomes final or changes to another color in I0 according to Algorithm AG. See lines 15 - 21.
This completes the description of the algorithm. Its pseudocode is provided below. Next, we analyze the
algorithm.

Algorithm 4 Check-Error (my color, [neighbors colors])

1: if my color ∈ neighbors colors then
2: return error
3: end if
4: return valid

Algorithm 5 Self-Stabilizing-Coloring (run by every vertex v in parallel)

1: clear buffers of incoming and outgoing messages
2: send my color, my ID to all neighbors
3: receive the colors and IDs of all neighbors, and store colors in [neighbors colors], such that any color

of a neighbor u that is greater than t1 + t2 + ...+ tr is replaced with t1 + t2 + ...+ tr + IDu

4: if Check-Error(my color, [neighbors colors]) = error or my color > t1 + t2 + ...+ tr then
5: my color = t1 + t2 + ...+ tr +my ID /* initial state */
6: else
7: Let Ij denote the range that my color belongs to
8: Let Q denote the subset of [neighbors colors] of all colors that belong to Ij
9: if j ≥ 2 then

10: my color = Mod-Linial(my color,Q, ∅)
11: else if j = 1 then
12: Let S denote the subset of [neighbors colors] of all colors that belong to I0, represented as

ordered pairs
13: Let S′ = {〈a, (b + a) mod q〉 | 〈a, b〉 ∈ S} ∪ {〈0, b〉 | 〈a, b〉 ∈ S}
14: my color = Mod-Linial(my color,Q, S′) /* avoid collisions with S′ */
15: else if j = 0 then
16: represent my color as an ordered pair 〈a, b〉
17: if 〈a, b〉 conflicts with a color in Q then
18: my color = 〈a, (a+ b) mod q〉
19: else
20: my color = 〈0, b〉 /* final color */
21: end if
22: end if
23: end if
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We start with the observation that the submodules invoked by the algorithm are self-stabilizing.

Lemma 4.1. The procedures Check-Error and Mod-Linial are self-stabilizing.

Proof. Procedure Check-Error is applied solely with RAM variables, without message exchange. Con-
sequently, in the period when faults no longer occur, the procedure returns ’valid’ iff the value of the
variable my color does not appear in any entry of the collection [neighbors colors]. In other words, this
procedure performs the desired operation, regardless of the actions of the adversary during the period of
faults.

Procedure Mod-Linial is applied solely with RAM variables as well. Specifically, it is invoked with
the variable my color and two collections Q,S′ of variables. There are two possibilities: either the
preconditions of the procedure apply, and then it returns a proper solution, or they do not apply, and
it returns some value, which may be wrong. However, once faults no longer occur, the execution of
procedure Check-Error before procedure Mod-Linial guarantees that my color does not belong to Q.
This, in turn, guarantees that Ij is computed properly in line 7. This results in a correct construction of
the sets Q, S and S′ in lines 8,12,13. Therefore, the preconditions of Procedure Mod-Linial hold, and as
will be shown in the sequel, it returns a proper value.

Observe that the set S′, computed in line 13, is the set of all possible colors that neighbors of the
vertex v (that runs the algorithm) that already executed algorithm AG (in lines 15 -21) may obtain on
the next round. The set S is the set of the current colors of these neighbors.

We start with arguing that the algorithm maintains a proper coloring.

Lemma 4.2. Given an arbitrary graph G = (V,E), our self-stabilizing algorithm produces a proper
coloring ψ(G) in each round, once faults no longer occur.

Proof. Consider a round i. If a node v ∈ V has a color that is equal to that of a neighbor u, i.e.,
ψi(u) = ψi(v), then (by line 5 of Algorithm 5), ψi+1(v) = tr + tr−1 + ... + t1 + id(v) 6= ψi+1(u) = tr +
tr−1+...+t1+id(u). In this case ψi+1(v) must be different from the colors ψi+1 of all neighbors u of v, since
their colors either become at most tr+tr−1+...+t1 or become equal to tr+tr−1+...+t1+id(u) 6= ψi+1(v).

Otherwise, lines 6 - 23 are executed. Since it is assumed that no more faults will occur, we prove
that lines 6-23 provide a proper coloring. If j ≥ 2 (line 10) then ψi+1(v) will be in the range Ij−1. (Any
element in Ij is greater than any element in Ij−1, and thus numerical values of colors decrease as the
algorithm proceeds. Also, note that all intervals are disjoint.) Therefore, all neighbors u with ψi(u) 6∈ Ij
will not select a new color ψi+1(u) from Ij−1. For a neighbor u with ψi(u) ∈ Ij , its color belongs to Q,
and Mod-Linial algorithm will produce a proper coloring.
If j = 1 then Procedure Mod-Linial works in the following way. It computes a new color from t0, such
that it is distinct from all neighbors’ colors that transit from I1 to I0 in round i, and from all colors of
the set S′. The latter set contains all possible colors that can be used in round i + 1 by neighbors of
v with colors in the range I0 in round i. Consequently, the new color of ψi+1(v) of v is distinct from
the new colors of such neighbors. Moreover, the new color is also distinct from new colors of the rest of
the neighbors, since they were either in I1 in round i, and do not collide with v in round i + 1 due to
correctness of Mod-Linial, or in a higher range, and thus are not in I0 in round i+ 1.
If j = 0, then lines 15 - 22 execute our Additive-Group algorithm (see Lemma 3.2 and Corollary 3.5),
and produce a proper coloring for neighbors with j = 0. For neighbors with j > 0, the coloring is proper
as well, by analysis of previous cases in this proof.

Next we analyze the quiescence (i.e., stabilization) time of our algorithm.

Lemma 4.3. Given an arbitrary graph G = (V,E), our fully-dynamic self-stabilizing algorithm produces
a proper O(∆)-coloring with O(∆ + log∗ n) stabilization time.
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Proof. By induction on i, it is easy to see that in the end of each round i = 1, 2, ..., counting from the
moment that faults stop occurring, all colors are in the range I0 ∪ I1 ∪ ... ∪ Ir+1−i. Therefore, within
r+1 = log∗ n+O(1) rounds, all colors are in the range I0, and the coloring is proper. From this moment
and on, the procedure executes our Additive-Group algorithm in all vertices. Therefore, by Corollary
3.5, within O(∆) additional rounds the number of colors becomes O(∆).

We also obtain a self-stabilizing algorithm that employs exactly (∆ + 1) colors. To this end, in each
round each vertex v with a color of the from 〈0, bv〉, bv > ∆, whose all neighbors also have 0 in the first
coordinate of their colors performs the following. If 〈0, bv〉 is greater then the colors of all v’s neighbors,
then v selects a new color 〈0, b′v〉 such that 0 ≤ b′v ≤ ∆, and 〈0, b′v〉 is distinct from all colors of v’s
neighbors. Consequently, once all colors in the graph are of the form 〈0, b〉, b = O(∆), at most O(∆)
additional rounds are required to arrive to a (∆ + 1)-coloring, because at least one color is eliminated in
each round. (This is the greatest color, as long as there are colors greater than ∆.) Moreover, starting
from any configuration of the RAM values, in any round the produced coloring is proper, and the color
ranges decrease as in theO(∆)-coloring algorithm. Thus, withinO(∆+log∗ n) rounds all vertices enter the
range of colors of O(∆), and within additional O(∆) rounds we obtain a (∆+ 1)-coloring. Alternatively,
the same effect can be achieved via our 1-bit halving reduction, described in Section 3.2. We summarize
this below.

Theorem 4.4. Given an arbitrary graph G = (V,E), our fully-dynamic self-stabilizing algorithm produces
a proper (∆ + 1)-coloring with O(∆ + log∗ n) stabilization time.

Note that the proof above applies in a fully dynamic setting. Specifically, the edges may appear and
fall, vertices can connect and disconnect, but as long as upper bounds on n and ∆ are hard-wired in the
ROM and are not violated, the algorithm will stabilize to a (∆ + 1)-coloring. (Though, admittedly, this
∆ will be just an upper bound on the current maximum degree of the graph, which can obviously be
much smaller.)
4.2 Fully-Dynamic Self-Stabilizing MIS, MM, and (2∆− 1)-Edge-Coloring
We employ our self-stabilizing coloring algorithm from the previous section in order to compute MIS as
follows. We add a bit µv to the RAM of each vertex v ∈ V . This bit represents whether v is in the
MIS (if µv = 1) or not in the MIS (if µv = 0). We add the following instruction in the end of Procedure
Self-Stabilizing-Coloring. If all neighbors u of v with smaller colors than that of v have µu = 0, then we
set µv = 1. Otherwise, we set µv = 0. This completes the description of the changes required to compute
an MIS. Denote by U the vertex set computed by this algorithm.

The next theorem shows that within i rounds, for i > 0, after the stabilization of coloring, all vertices
with colors 1, 2, ..., i induce a subgraph with a properly computed MIS. Consequently, within O(∆)
additional rounds an MIS of the entire input graph is constructed.

Theorem 4.5. Given an arbitrary graph G = (V,E), our self-stabilizing algorithm produces a proper
MIS within O(∆ + log∗ n) rounds after the last fault.

Proof. Let tcd = O(∆ + log∗ n) be the stabilization time of the coloring algorithm. (See Theorem 4.4.)
Denote by Ui, i = 1, 2, ...,∆ + 1, the set of vertices v that belong to MIS (i.e., have µv = 1) at round
tcd+ i after faults stop occurring. Let ψ be the (∆+1)-coloring maintained by the algorithm. (We know
that tcd rounds after the last fault occurred, ψ is indeed a proper (∆ + 1)-coloring.)

We prove by induction on i that at time tcd + i after faults stop occurring, for i = 1, 2, ....,∆ + 1, Ui

is an MIS for the set V̂i = {v | 1 ≤ ψi(v) ≤ i}, where ψi is the coloring ψ maintained by the algorithm at
that time.
Base (i = 1): All vertices of V̂1 form an independent set (because ϕ1 is a proper (∆ + 1)-coloring,
because it is the coloring ψ more than tcd rounds after the last fault occurred, and each of them joins

16



MIS because they have no neighbors of smaller color).
Step: For some i ≤ ∆ we assume that Ui is an MIS for V̂i. Consider a vertex v ∈ Ui+1, i.e., ψi+1(v) = i+1.
This vertex had the same color i+ 1 for all the rounds tcd + 1, tcd + 2, ...., tcd + i+ 1, counting from the
moment T when faults stopped occurring. By end of round T + tcd + i or earlier, all its neighbors of
smaller color (they also did not change their colors during the time interval [T + tcd, T + tcd + i]) have
set their values µu. So in round T + tcd + i+ 1, if v has no neighbor with a smaller color in the MIS, it
joins MIS. (It might have joined earlier, but it will anyway check again whether it has to join in round
T + tcd + i+ 1.) Since vertices of Vi+1 = {v | ψi+1(v) = i+ 1} form an independent set, the resulting set
Ui+1 is a maximal independent set for V̂i ∪ Vi+1 = V̂i+1.

In the ordinary (non-stabilizing) setting it is possible to compute a maximal matching and an edge
coloring by simulating the line-graph of the input graph, and computing an MIS and vertex-coloring of
it. These solutions on the line graph directly provide solutions for maximal matching and edge coloring
of the input graph within the same running time. This technique is applicable also to the self-stabilizing
setting. Specifically, each vertex v simulates virtual vertices, one virtual vertex per edge adjacent on v.
In the beginning of each round each vertex verifies whether the state of each of its virtual vertices that
correspond to some edge equals to the state in the other endpoint of that edge. If this is not the case, the
endpoint with a greater ID copies the state of the other endpoint for that virtual vertex. Consequently
all edges have consistent representations, i.e., the same state in both their endpoints, in the entire graph.
Now, a self-stabilizing MIS or vertex-coloring algorithm can be simulated correctly on the line graph in
order to produce self-stabilizing maximal matching and edge-coloring of the input graph. In conjunction
with Theorems 4.4, 4.5 this leads to the following result.

Theorem 4.6. Given an arbitrary graph G = (V,E), our self-stabilizing algorithms produce a maximal
matching and a proper (2∆ − 1)-edge-coloring within O(∆ + log∗ n) stabilization time.

We remark, however, that while our self-stabilizing vertex-coloring and MIS algorithms require small
messages, this is not the case for the edge-coloring and maximal matching algorithms.

5 Edge-Coloring

5.1 Edge Coloring within O(∆+ log∗ n) Rounds in the CONGEST Model and O(∆+
log n) Rounds in the Bit-Round Model

Next, we employ our techniques in order to compute edge colorings using small messages. The algorithm
consists of two stages. The first stage constructs an O(∆2)-edge-coloring from scratch, and the second
stage computes an O(∆)-coloring from this O(∆2)-coloring. We remark that we cannot use the algorithm
of Linial for the first stage, since its message complexity in the case of edge-coloring is quite large. Instead,
we do the following. We invoke Kuhn’s algorithm [32] for 2-defective ∆2-edge coloring. This algorithm
orients all edges towards endpoints with greater IDs. Then, each vertex assigns its outgoing edges distinct
colors from the set {1, 2, ...,∆}. It also assigns its incoming edges distinct colors from the same range.
Consequently, each edge obtains a pair of colors, one color from each of its endpoints. This is done
within a single round by sending a message of size O(log n) per edge (in both directions). These messages
contain vertex IDs.

Each color of an edge e ∈ E can be represented as an ordered pair ψ(e) = 〈i, j〉, where i, j ∈
{1, 2, ...,∆}. Note that a set of edges with the same ψ-color consists of paths and cycles, since each
vertex on such an edge has at most one another edge adjacent on it in this set. This is because the defect
of ψ is 2. To remove the defect we run Cole and Vishkin coloring algorithm [12] on edges of each color
class in parallel and assign a new color to each e ∈ E in the form ψ(e) = (i, j, k). The first two indices
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i, j are the result of the first stage, and the rightmost index k ∈ {1, 2, 3} is the result of Cole-Vishkin’s
algorithm invocation.

Next, we compute an O(∆)-edge-coloring from the O(∆2)-edge-coloring as follows. In each round
both endpoints of an edge hold its color, that will be from now on represented as an ordered pair 〈a, b〉,
a, b ∈ O(∆), rather than a triple. Consequently, each endpoint can check for conflicts of edges adjacent
on it. For each edge with a conflict at an endpoint, the endpoint that detects the conflict sends a message
over this edge (consisting of a single bit) to notify the other endpoint about the conflict. Then, for each
edge, both of its endpoints know whether it has a conflict with some adjacent edge or not. If the current
edge color is 〈a, b〉, and there is a conflict, the new color becomes 〈a, (a+b) mod q〉. Otherwise, it becomes
〈0, b〉. Both endpoints update the new color of their edge. This is done within a single round and by
exchanging just a single bit on each edge. Then all vertices of the graph are ready to proceed to the next
round and perform it in a similar way. The algorithm stops once all edges have colors of the from 〈0, b〉,
0 ≤ b < q = O(∆). (Here q is a prime number that satisfies that the original number of colors is at most
q2 and q ≥ 2∆ − 1.)

Lemma 5.1. A proper O(∆)-edge coloring is obtained in O(∆+log∗ n) rounds in the CONGEST model.

Proof. The algorithm starts with the invocation of Kuhn’s algorithm that results in a 2-defective ∆2-
edge-coloring within O(1) time. Then it is turned into a proper coloring using Cole-Vishkin algorithm
within O(log∗ n) time. Indeed, if prior to the execution of the latter algorithm a pair of adjacent edges
had the same color 〈i, j〉, they now have distinct colors 〈i, j, k〉 and 〈i, j, k′〉, since Cole-Vishkin algorithm
produces a proper 3-coloring of the edges in the set of color class 〈i, j〉. Next, in each round each color
of an edge of the form 〈a, b〉 is transformed either into 〈a, (a+ b) mod q〉 or into 〈0, b〉. In both cases the
new coloring is proper. See Lemma 3.5. Within O(∆) rounds all colors obtain the form 〈0, b〉.

In the next lemma we argue that the bit-complexity of our algorithm is small. The variant of CON-
GEST model in which vertices initially know the IDs of their neighbors is called KT1 model. The variant
in which they only know their own IDs is called KT0 model [29].

Lemma 5.2. The bit complexity of our edge-coloring algorithm is O(∆ + log n) per edge (in the KT0
model). In addition, if initially vertices know the IDs of their neighbors (i.e., in the KT1 model), then
the bit complexity is O(∆ + log log n) per edge.

Proof. Exchanging initial IDs between neighbors requires O(log n) bits. Exchanging the colors during
the 2-defective ∆2-edge-coloring requires O(log∆) bits. The first round of Cole-Vishkin algorithm is
performed based on IDs of O(log n) bits. The second round of Cole-Vishkin algorithm requires O(log log n)
bits, the third one requires O(log log log n) bits, and so on. The last round of Cole-Vishkin algorithm
requires a constant number of bits. The exchange between neighbors of the resulting proper O(∆2)-edge
coloring of the input graph requires O(log∆) bits. Each of the following O(∆) rounds requires 1 bit per
message.

We can also produce edge-coloring with exactly (2∆ − 1)-colors as follows. Once the stage of O(∆)-
edge-coloring terminates, we apply a procedure similar to One-bit AG halving reduction. (See Section
3.2.) Specifically, let k be the current number of colors, and q = ⌈k/2⌉. (Recall that in this algorithm
q does not have to be prime.) We represent each color of an edge as an ordered pair 〈ae, be〉, where
ae ∈ {0, 1}, be ∈ {0, 1, ..., q − 1}. Then we execute 2∆ rounds to halve the number of colors. In each
round, for each edge e = (u, v) ∈ E, its endpoints u, v check whether be is distinct from all be′ of edges
e′ adjacent on these endpoints. Then v notifies u whether this is the case for all edges adjacent on v. In
parallel, u notifies v whether this is the case for all edges adjacent on u. If both u and v pass the check,
they update the color of e to 〈0, be〉. Otherwise, they update it to 〈1, be + 1 mod q〉. Since each edge has
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at most 2∆ − 2 edges adjacent on it, within 2∆ − 1 rounds all edges e ∈ E select a color with ae = 0.
(See Lemma 3.8.) Hence the number of colors is halved. Repeating this for a constant number of phases
converts the O(∆)-edge-coloring into a (2∆ − 1)-edge-coloring. We summarize this below.

Theorem 5.3. We compute (2∆−1)-edge-coloring within O(∆+log∗ n) rounds in the CONGEST model,
within O(∆ + log log n) rounds in the Bit-Round model with knowledge of neighbors’ IDs (KT1 model),
and within O(∆+ log n) time in the Bit-Round model without knowledge of neighbors’ IDs (KT0 model).

5.2 (2∆− 1)-Edge Coloring of Oriented Forests in the CONGEST Model

In this section we devise a (2∆−1)-edge-coloring algorithm for oriented forests that requires log∗ n+O(1)
rounds using only small messages, i.e., it can be executed in the CONGEST model. We note that the
currently existing algorithm for this problem, due to [40], requires messages of size O(∆). Our algorithm
colors an input tree T as follows. (The same algorithm applies to oriented forests as well.)

The algorithm starts with computing a 3-vertex-coloring of T , via Cole-Vishkin algorithm, in log∗ n+O(1)
rounds. Denote the resulting coloring by ϕ. Then we perform a shift-down (for just one round), to ensure
that all siblings have the same color. (In the shift-down operation, all vertices v ∈ V , except the root
r, adopt the color of their parent π(v). The root r selects a color from the set {1, 2}, different from its
current color.) Then for all vertices v ∈ V , such that ϕ(v) = 1, run in parallel: color their descending
edges by colors 1, 2, ..,∆− 1, except for the root r, that might have ∆ descending edges. The root colors
these edges with colors 1, 2, ..,∆ − 1, and 2∆ − 1 (if indeed deg(r) = ∆ and ϕ(r) = 1).
Next, for all vertices v ∈ V , such that ϕ(v) = 2, run in parallel: color their descending edges by colors
∆,∆+ 1,∆+ 2, ..., 2(∆ − 1). (The root may need an additional color, which is 2∆− 1.)
Finally, for all vertices v ∈ V such that ϕ(v) = 3, color their descending edges as follows (after all de-
scending edges of vertices with ϕ(v) = 1 and ϕ(v) = 2 have been already colored).
As ϕ(r) ∈ {1, 2}, we have v 6= r. It means that v’s parent π(v)) (of ϕ-color 1 or 2) already assigned the
edge (π(v), v) a color. (Generally, when a vertex v colors its descending edges, it informs the opposite
endpoint of the color that the edge between them received.) The vertex v also knows the ϕ-color of all
its children. So, it knows that edges descending from its children are all colored by colors either from the
set {1, 2, ...,∆−1}, or from the set {∆,∆+1, ..., 2(∆−1)}. In either case, there are at most ∆ forbidden
colors from edges descending from v. In other words, there are at least ∆ − 1 permitted colors. Also,
there are at most ∆− 1 edges descending from v. So, v edge-colors them by these colors.

Theorem 5.4. Our algorithm computes (2∆−1)-edge-coloring of oriented n-vertex forests in log∗ n+O(1)
time, in the CONGEST model.

6 Arbdefective O(∆
p
)-coloring with defect O(p)

Lovasz [37] showed that in a graph with maximum degree ∆, there exists a p-defective ∆
p -coloring,

where 1 ≤ p ≤ ∆. In this section we devise an algorithm for O(
√
∆)-arbdefective O(

√
∆)-coloring

within O(
√
∆ + log∗ n) rounds. More generally, our algorithm computes an O(p)-arbdefective O(∆/p)-

coloring within time O(∆/p + log∗ n). (Definitions of defective- and arbdefective-colorings can be found
in Section 2.) Our algorithm starts with computing an O(

√
∆)-defective O(∆)-coloring. This is done

using the algorithm of [7] within O(log∗ n) rounds. (More generally, the algorithm of [7] computes a
p-defective O((∆/p)2)-coloring, for any positive parameter p, in log∗ n + O(1) time.) Then we perform
O(∆/p) = O(

√
∆) rounds of color updates, rather than O(∆) as in our Additive-Group algorithm. The

update rule for arbdefective coloring is different from the rule for proper coloring. Specifically, we tolerate
up to p conflicts. In other words, instead of setting ψi+1(v) = 〈0, b〉 only if there are no neighbors with the
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same value b in the second coordinate, we set this if there are at most p = Θ(
√
∆) neighbors of different

ψi-color with the same second coordinate b. We will show in the sequel that after O(∆/p) = O(
√
∆)

rounds all colors are of the form 〈0, b〉, and each color class induces a subgraph of arboricity O(p). Thus,
as a result we have an O(

√
∆)-arbdefective O(

√
∆)-coloring, and, more generally, an O(p)-arbdefective

O(∆/p)-coloring. The operations are performed in a field of a prime characteristic q, q ≥ 2⌈∆/p⌉ + 1.
The pseudocode of the algorithm is provided below. The next lemmas analyze its running time and show
its correctness.

Algorithm 6 Arbdefective-Color(G, v, p =
√
∆)

1: ψ = compute an O(p)-defective O((∆/p)2)-coloring of G using [7] /* O(
√
∆)-defective O(∆)-coloring

*/
2: represent ψ0(v) as an ordered pair 〈a, b〉, such that a, b ∈ O(∆/p). /* a, b ∈ O(

√
∆) */

3: let q = Θ(∆/p) be the smallest prime such that q is greater than 2 ⌈∆/p⌉+ 1
4: for i = 0, 1, ..., 2 ⌈∆/p⌉ do
5: if v has at most p neighbors u of a different ψi-color, such that the second coordinate of ψi(u)

equals the second coordinate of ψi(v) then
6: ψi+1(v) = 〈0, b〉
7: else
8: ψi+1(v) = 〈a, (a + b) mod q〉
9: end if

10: send ψi+1(v) to all neighbors of v
11: receive from all neighbors of v their colors ψi+1

12: end for

Lemma 6.1. The produced coloring ψ2⌈∆/p⌉+1 is of the form 〈0, b〉, 0 ≤ b < q = Θ(∆/p), for all v ∈ V .

Proof. Consider a vertex v ∈ V . The vertex v can conflict at most twice with each neighbor u of different
ψ-color within q rounds, i.e., at most once before u finalizes its color, and at most once after that. If v
conflicts with more than p neighbors in each round, it means it has more than 1

2 · p · (2 ⌈∆/p⌉+ 1) > ∆
neighbors. This is a contradiction. Therefore, there is a round i ∈ {0, 1, ..., 2 ⌈∆/p⌉} in which v conflicts
with at most p neighbors. In this round its color finalizes, i.e., becomes of the form 〈0, b〉.

In the next lemma we bound the arbdefect of the resulting coloring.

Lemma 6.2. The resulting coloring ψ2⌈∆/p⌉+1 has arbdefect at most O(p) = O(
√
∆).

Proof. For the purpose of analysis, orient each edge (u, v) ∈ E towards the endpoint that first set ψi+1

to 〈0, b〉. If both endpoints u, v did it in the same round, orient (u, v) towards the endpoint with greater
ID. Let i denote the round in which v selects a color of the form 〈0, b〉 for the first time. Observe that
once a vertex v finalizes its color to 〈0, b〉, its outgoing neighbors have already colors of the form 〈0, b′〉.
Thus, they will never change their colors from this moment on. Moreover, the number of such neighbors
of v of different original ψ-color and the same second coordinate of ψi is at most p =

√
∆. In addition, v

may have at most O(p) neighbors with the same original ψ-color, since the coloring ψ computed in line
1 is O(p)-defective. Thus, upon termination all vertices of the same ψ2⌈∆/p⌉+1-color induce a subgraph
with arboricity O(p). This is because each vertex in such a subgraph has O(p) outgoing edges, each of
which can be assigned a distinct label from a range of size O(p). Then, all edges of the same label form
a forest, and the number of forests is O(p). In other words, the resulting coloring has arbdefect at most
O(p).
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In the next lemma we analyze the running time of the algorithm.

Lemma 6.3. The running time of the algorithm is O(∆/p + log∗ n) = O(
√
∆+ log∗ n).

Proof. Computing a defective coloring in line 1 requires O(log∗ n) time. Each iteration of the for-loop
requires a single round. There are O(∆/p) = O(

√
∆) such iterations.

The latter result gives rise to improved (1 + ǫ)∆-coloring and (∆ + 1)-coloring algorithms. This is
summarized in the next theorem.

Theorem 6.4. We compute (1+ǫ)∆-coloring within O(
√
∆+log∗ n) deterministic time, for an arbitrarily

small constant ǫ > 0, and (∆ + 1)-coloring within O(
√
∆ log∆ log∗ ∆+ log∗ n) deterministic time.

Proof. In [2] it was shown that given an O(
√
∆)-arbdefective O(

√
∆)-coloring one can compute a proper

(1+ ǫ)∆-vertex-coloring within O(
√
∆+log∗ n) deterministic time. (For more details, we refer the reader

to the discussion in Section 3.4 of [2]. However, such an arbdefective coloring is computed in [2] only
within time (

√
∆ log3 ∆+ log∗ n). See Lemma 3.5, Corollary 3.12, and the discussion preceding it in [2].

Consequently, the overall running time of the algorithm of [2] for (1+ǫ)∆-coloring is (
√
∆ log3 ∆+log∗ n)

as well.) Our improved running time of arbdefective coloring (cf. Lemma 6.3) in conjunction with the
procedure of [2] (i.e., by replacing the invocation of line 1 of Algorithm 1 of [2] by an invocation of our
new algorithm Arbdefective-Color), gives rise to a deterministic (1+ ǫ)∆-coloring within O(

√
∆+log∗ n)

time.
It is shown in [19] that a deterministic (∆ + 1)-coloring is obtained in O(

√
∆ log2.5∆ + log∗ n) time

using arbdefective colorings. Specifically, the proof of Lemma 4.2 of [19] shows that given an algorithm
that starting from a proper O(∆2)-coloring computes a β-arbdefective k-coloring in O(k) time, then a
proper (∆ + 1)-coloring is computed within time O(log∗ n + TA), where TA is given by the recursive
formula TA(∆) = O(k log∗∆) + TA(O(β2 log∆)). By setting β =

√

∆/(c log ∆) and k =
√
c∆ log∆,

for a sufficiently large constant c, this recursive formula evaluates to O(
√
∆ log∆ log∗ ∆). Moreover, we

compute such β-arbdefective k-coloring within O(
√
∆ log∆ + log∗ n) time. (See Lemma 6.3.) Thus by

using our Arbdefective-Color algorithm in conjunction with the procedure of [19], we obtain (∆ + 1)-
coloring in O(

√
∆ log∆ log∗∆+ log∗ n) time.

Hence this algorithm improves the state-of-the-art running time of (∆ + 1)-coloring by a factor of
O(log2∆/ log∗ ∆).

7 3-Dimensional Additive Group Algorithm

In Section 3 we described our Additive Group (shortly AG) algorithm that starts from a proper O(p2)-
coloring, for some prime p ≥ 2 ·∆+1, and computes a proper p-coloring in O(p) rounds. This algorithm
can be used, of course, also for decreasing the number of colors more than quadratically. Specifically, if we
have an O(p3)-coloring, for some prime p ≥ 2 ·∆+1, we can decrease the number of colors to O(p) in the
following way. Partition the palette [p3] into p disjoint sub-palettes [p2], [p2 + 1, 2p2], ..., [p3 − p2 + 1, p3],
and run AG(p) algorithm in each sub-palette in parallel. Within O(p) rounds the number of colors reduces
to O(p2), and by an additional application of AG(p), we obtain a p-coloring in overall 2 · O(p) = O(p)
rounds.

In some faulty network setting it is, however, desirable to employ algorithms that do not consist of
several distinct phases, like the algorithm above. These distinct phases may pose a problem when faults
are introduced, and some vertices are in one phase of the algorithm, while others are in another. We,
therefore, next devise a variant of our AG algorithm that reduces the number of colors from O(p3) to
O(p) within O(p) rounds, but it is more “uniform” than the above algorithm, i.e., at all times all vertices

21



perform precisely the same step. We call this algorithm 3-dimensional AG with a parameter p, or shortly,
3AG(p). The algorithm starts by representing colors ψ(v) = 〈cv, bv , av〉 as triples, av, bv, cv ∈ Zp. It then
runs the following iterative step for 2 · p rounds. We will assume p ≥ 3 ·∆+ 1. All additions are in Zp.

Algorithm 7 3AG(p)

1: for v ∈ V in parallel do
2: if cv 6= 0 then
3: if ∀u ∈ Γ(v) it holds that bv 6= bu then
4: ψ(v) = 〈0, bv , av〉
5: else
6: ψ(v) = 〈cv , bv + cv, av〉
7: end if
8: else
9: if ∀u ∈ Γ(v) it holds that av 6= au then

10: ψ(v) = 〈0, 0, av〉
11: else
12: ψ(v) = 〈0, bv , av + bv〉
13: end if
14: end if
15: end for

Next, we analyze the algorithm.

Lemma 7.1. Suppose we have a proper coloring ϕ. Then the coloring ψ obtained after one round of
3AG(p) is proper as well.

Proof. Denote ϕ(v) = 〈cv , bv, av〉 and consider an edge (u, v). We split the analysis into two cases,
depending on whether cv is non-zero.
Case 1: (cv 6= 0). In this case our analysis splits again into two cases, depending on whether all neighbors
u′ of v have bu 6= bv, or not.
Case 1.1: (∀u′ ∈ Γ(v), bu′ 6= bv). Then the algorithm sets: ψ(v) = 〈0, bv , av〉.
The vertex u ∈ Γ(v) (recall that we have fixed an edge (u, v)) with ϕ(u) = 〈cu, bu, au〉 could have been in
one of the following cases.
Case 1.1.1: (cu 6= 0). Then, if for every z ∈ Γ(u), we have bz 6= bu, then ψ(u) = 〈0, bu, au〉. But recall
that bu 6= bv, and thus ψ(u) 6= ψ(v) as required. Otherwise, there exists a neighbor z ∈ Γ(u) with bz = bu.
Then the algorithm sets ψ(u) = 〈cu, bu + cu, au〉 and cu 6= 0. But ψ(v) = 〈0, bv , av〉, i.e., ψ(v) 6= ψ(u).
Case 1.1.2: (cu = 0). In this case ϕ(u) = 〈0, bu, au〉. The analysis here splits again to a number of
sub-cases.
Case 1.1.2.a (bu = 0). Then ϕ(u) = 〈0, 0, au〉, and so ψ(u) = 〈0, 0, au〉 as well. But we have for every
u′ ∈ Γ(v), bu′ 6= bv, and so bv 6= 0. Hence ψ(v) 6= ψ(u).
Case 1.1.2.b: bu 6= 0, but bu stayed as is, i.e., ψ(u) = 〈0, bu, au + bu〉 (this means that there exists a
neighbor z ∈ Γ(u) with az = au). But then again bv 6= bu, because for every u′ ∈ Γ(v), bu′ 6= bv. Hence
ψ(v) 6= ψ(u).
Case 1.1.2.c: ϕ(u) = 〈0, bu, au〉 and bu 6= 0 and ∀z ∈ Γ(u), az 6= au. Then ψ(u) = 〈0, 0, au〉. But then,
in particular, av 6= au, and so ψ(v) = 〈0, bv , av〉 6= 〈0, 0, au〉 = ψ(u), as required.
Case 1.2: (cv 6= 0, and there exists u′ ∈ Γ(v) with bu′ = bv). Then ψ(v) = 〈cv, bv + cv, av〉. Then if
cu = 0 (i.e., ϕ(u) = 〈0, bu, au〉), then in ψ(u) the first coordinate is also 0 (by the rules of the algorithm),
and so ψ(v) 6= ψ(u).
Else we have cu 6= 0. So both v and u have non-zero first coordinate, and so they do not change their
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third coordinate. So if av 6= au then ψ(v) 6= ψ(u). Otherwise (av = au), and so 〈cv, bv〉 6= 〈cu, bu〉. So if u
sets ψ(u) = 〈0, bu, au〉, then ψ(v) 6= ψ(u), because cv 6= 0.
Else, u sets ψ(u) = 〈cu, bu + cu, au〉, but 〈cv , bv + cv〉 6= 〈cu, bu + cu〉 because 〈cv, bv〉 6= 〈cu, bu〉. In either
case ψ(v) 6= ψ(u).
Case 2: (cv = 0). If ϕ(u) = 〈cu, bu, au〉 and cu 6= 0, then by symmetric argument, ψ(v) 6= ψ(u). Finally,
if ϕ(v) = 〈0, bv , av〉, ϕ(u) = 〈0, bu, au〉 and ϕ(v) 6= ϕ(u), then by our analysis of the two-dimensional AG
(see Lemma 3.2), we have ψ(v) 6= ψ(u).

Within the first 3 · ∆ + 1 rounds, each vertex v will have cv = 0. This is because each neighbor u
of v may have a conflicting bu to the b-value bv at most three times: once with a non-finalized b-value,
once with a finalized b-value (on line 4 of the algorithm), and once with a b-value 0 (set on line 10 of the
algorithm). So among 3 · ∆ + 1 first rounds, there will be a round on which for all u ∈ Γ(v), bv 6= bu,
and on that round v finalizes its b-value (in line 4). (In fact, 2 ·∆+2 rounds suffice, as bv can be zero at
most once during all these rounds, assuming p ≥ 2 ·∆+ 2.)
After all vertices have their cv = 0, in 2 ·∆+1 additional rounds, by the same argument, all av’s will be
finalized.

Corollary 7.2. The algorithm 3AG(p), starting with a proper p3-coloring, where p ≥ 2∆ + 2, computes
a proper p-coloring in O(p) rounds.

We next argue that one can decrease the palette’s size (in both ordinary and 3-dimensional variants
of the algorithm AG), at the expense of slightly increasing the running time. Consider first the ordinary
(two dimensional) variant of algorithm AG, and suppose that instead of running it for p ≥ 2 · ∆ + 1
rounds, we run it for p ≥ (1 + ǫ) · ∆ rounds, for an arbitrary small constant ǫ > 0. We will run it for
1 + ⌈1ǫ ⌉ phases, each lasting for p rounds. (Observe, however, that vertices that run the algorithm are
oblivious to the phases. They always run the same AG-iteration, on which a vertex v with ϕ(v) = 〈bv, av〉
checks if it has a neighbor u with av = au. If it does not, it finalizes its color to ψ(v) = 〈0, av〉. Otherwise
it sets it to ψ(v) = 〈bv, av + bv〉.) Consider a fixed vertex v. Note that if it does not finalize its color
on phase 1, it means that at least ǫ ·∆ of its neighbors u have finalized their colors (and had a conflict
with the color of v at least twice during the phase). Observe also that these neighbors u will be able to
conflict at most once with v on each subsequent phase. Hence if v does not finalize its color for i phases,
i = 1, 2, ..., i < 1/ǫ, it means that at least i · ǫ∆ among its neighbors did. Hence after ⌈1ǫ ⌉ phases, all
neighbors of v have finalized their colors, and on the next phase v will necessarily finalize its color. The
same reasoning is applicable to the 3-dimensional variant of the AG algorithm, but the number of phases
grows by a factor of 2.

Corollary 7.3. Given a proper O(p3)-coloring, for some p ≥ (1+ ǫ) ·∆, for some ǫ > 0, running 3AG(p)
for O(1ǫ · p) rounds produces a proper p-coloring.

8 Conclusion

In this paper we showed that (∆+1)-coloring can be computed using a locally-iterative algorithm below
the Θ(∆ log∆) time barrier of Szegedy and Vishwanathan. In contrast to previous methods, our algorithm
does not reduce the number of colors by a multiplicative factor in every single round. Instead, it guarantees
that all colors enter the required range of (∆+1) within O(∆+log∗ n) rounds, by performing appropriate
simple operations in each round. Now, a natural question arises: is it possible to compute such a coloring
using a locally-iterative algorithm with o(∆) + log∗ n running time? While, according to previous lower
bounds, this is not feasible using an algorithm that reduces the number of colors in every single iteration,
a more delicate reduction with more sophisticated local rules may result in sublinear-in-∆ running time.
This is a fascinating direction for future research.
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