
INFORMATION AND CONTROL 70, 32-53 (1986)

Deterministic Coin Tossing with Applications to
Optimal Parallel List Ranking

RICHARD COLE*

New York University, New York, New York 10012

AND

U Z I VISHKIN t

New York University, New York, New York 10012, and
Tel Aviv University, Tel Aviv, Israel

The following problem is considered: given a linked list of length n, compute the
distance from each element of the linked list to the end of the list. The problem has
two standard deterministic algorithms: a linear time serial algorithm, and an
O(log n) time parallel algorithm using n processors. We present new deterministic
parallel algorithms for the problem. Our strongest results are (1) O(logn log* n)
time using n/(log n log* n) processors (this algorithm achieves optimal speed-up);
(2) O(log n) time using n loglk)n/log n processors, for any fixed positive integer k.
The algorithms apply a novel "random-like" deterministic technique. This technique
provides for a fast and efficient breaking of an apparently symmetric situation in
parallel and distributed computation. © 1986 Academic Press, Inc.

1. INTRODUCTION

The model of parallel computation used in this paper is the exclusive-
read exclusive-write (EREW) parallel random access machine (PRAM). A
PRAM employs p synchronous processors all having access to a common
memory. An EREW PRAM does not allow simultaneous access by more
than one processor to the same memory location for read or write pur-
poses. See Vishkin (1983a) for a survey of results concerning PRAMs.

Let Seq(n) be the fastest known worst-case running time of a sequential
algorithm, where n is the length of the input for the problem being con-
sidered. Obviously, the best upper bound on the parallel time achievable

* This research was partially supported by NSF Grant DCR-84-01633 and by an IBM
faculty development award.

t This research was supported by NSF grants NSF-DCR-8318874 and NSF-DCR-8413359,
ONR Grant N00014-85-K-0046 and by the Applied Mathematical Sciences subprogram of the
office of Energy Research, U.S. Department of Energy, under Contract DE-AC02-76ER03077.

32
0019-9958/86 $3.00
Copyright © 1986 by Academic Press, Inc.
All rights of reproduction in any form reserved.

DETERMINISTIC COIN TOSSING 33

using p processors, without improving the sequential result, is of the form
O(Seq(n)/p). A parallel algorithm that achieves this running time is said to
have optimal speed-up or more simply to be optimal

We present a new deterministic coin tossing technique for devising
parallel algorithms. The technique uses the binary representation of names
(numbers) for breaking a symmetric situation in a "random-like" fashion.

Let m be the size of the memory of our computer. Our technique per-
forms well when each variable in the underlying model of computation is
represented by a few bits (say O(log m) bits). Interestingly, the technique
performs badly when each variable is represented by many bits (say f(m)
bits, where f is the inverse of log* and log* n is the least i such that
log ~i~ n ~< 2, where log li) is the ith iterate of the log function). Representing
each variable by O(log m) bits is in line with typical definitions of RAMs
(see Aho (1974). The role of PRAMs is to extend the RAM model to
express parallelism. This extension should have no effect on the number of
values that each variable may assume. A variant of PRAMs (called
PRAM-INFINITY) that allows each variable to assume infinitely many
values has been proposed recently. The PRAM-INFINITY also allows
infinitely large shared memory. This variant (or closely related ones) was
used to prove lower bounds for various interesting problems; the proofs
apply mathematically appealing "Ramsey-like" theorems (see Fieh, Meyer
auf der Heide, Ragde and Wigderson (1985); Israeli and Moran (1985);
Meyer auf der Heide and Wigderson (1985).

It appears that in the transition from PRAM to PRAM-INFINITY we
lose the coin tossing technique. For the technique depends crucially on the
fact that each variable is represented by few bits (say O(log m) bits), while
in the PRAM-INFINITY model this constraint does not exist; in fact,
there is no restriction on the number of bits representing a variable. This is
analogous to the loss of bucket sort when we adopt the decision tree
model. (See Aho, Hopcroft, and Ullman (1974) for both an f2(n log n) time
lower bound for sorting n elements in a decision tree model and an O(n)
time bucket sort algorithm.)

We show how to apply our coin tossing technique to the list-ranking
problem defined below.

Input: A linked list of length n. It is given in an array of length n, not
necessarily in the order of the linked list. Each of the n elements (except the
last element in the linked list) has the array index of its successor in the
linked list.

The problem: For each element, compute the number of elements following
it in the linked list.

The list ranking problem is often encountered in the design of parallel

34 COLE AND VISHKIN

nil entries

FIG. 1. The input.

algorithms. For instance, the fundamental "Euler tour technique" for com-
puting various tree functions (see Tarjan and Vishkin (1985); Vishkin
(1985)) has the same efficiency as the new algorithm presented here.

The problem has a trivial linear time serial algorithm and a simple deter-
ministic parallel algorithm (the standard parallel algorithm). The standard
parallel algorithm runs in time O(log n) using n processors. Wyllie (1979)
conjectured that O(n) processors are required in order to get O(log n) time.
If true, this would imply, in particular, that there is no optimal speed-up
parallel algorithm for n/log n processors. Recently, Kruskal, Rudolph, and
Snir (1985) presented an optimal speed-up algorithm for this problem that
runs in O(n ~) time using n 1-~ processors, for fixed e, 1 >~e>0. Vishkin
(1984b) proposed the use of randomized parallel algorithms for this
problem. A randomized parallel algorithm which runs in O(n/p) time using
p<~n/(lognlog* n) processors on an EREW PRAM was given. The
probability that this will indeed be the running time converges rapidly to
one as n grows. In particular, this optimal speed-up algorithm runs in
"about" O(log n) time using "about" n/log n processors.

In this paper we present new deterministic parallel algorithms. Our
strongest results are:

1. O(lognlog*n) time using n/(lognlog* n) processors. This
algorithm achieves optimal speed-up.

2. O(logn) time using n log(~)n/logn processors, for any fixed
positive integer k, thereby showing that Wyllie's conjecture is incorrect. In
the above, log (k) denotes the kth iterate of the log function (e.g. log (3) n =
log log log n).

Recently, the new deterministic coin tossing technique has been applied
to obtain new, efficient parallel algorithms for computing connected and
biconnected components and minimum spanning trees (Cole and Vishkin,
1986).

The next section presents the new deterministic coin tossing technique
for breaking an (apparently) symmetric situation. Among other things, Sec-

DETERMINISTIC COIN TOSSING 35

tion 3 reviews an optimal speed-up deterministic parallel algorithm that
uses balanced trees. The algorithm is used later for two purposes: (1) as a
subroutine, and (2) to explain the new list ranking algorithm. The new
algorithm essentially grafts the new technique onto the framework of the
balanced tree algorithm. In Section 4 we describe the basic version of our
algorithm that runs in time O(log n log log n) using n/(log n log log n)
processors. This algorithm achieves optimal speed-up; it will be quite
adequate for all practical purposes. In Section 5 we describe the faster
optimal algorithms and our other results.

2. THE DETERMINISTIC COIN TOSSING TECHNIQUE

2.1. The Basic Technique

We illustrate the deterministic coin tossing technique by using it to break
the (apparently) symmetric situation that arises in the following problem.

Input: A connected directed graph G(V, E). The in-degree of each vertex is
exactly one. The out-degree of each vertex is exactly one. Such a graph is
called a ring since it forms a directed circuit. Let n = IV[. We define a subset
U of V to be an r-ruling set of G if:

(1) No two vertices of U are adjacent.

(2) For each vertex v in V there is a directed path from v to some
vertex in U whose edge length is at most r.

The r-ruling set problem: Find an r-ruling set of V.

In order to demonstrate our basic technique we give an O(1) time
algorithm using n processors for the [-lognT-ruling set problem. The
algorithm is given for the EREW PRAM. In Section 2.2 we present a recur-
sive application of the technique. It leads to an O(k) time algorithm using n
processors for the I-log (h) nT-ruling set problem. In particular, it provides
an O(log*n) time algorithm using n processors for the 2-ruling set
problem. In Section 2.3 we describe a non-recursive approach that provides
an O(log n) time algorithm using n/log n processors for the 2-ruling set
problem.

Assumptions about the input representation. The vertices are given in an
array of length n. The entries of the array are numbered from 0 to n - 1.
The numbers are represented as binary strings of length [-log nT. We refer
to each binary symbol (bit) of this representation by a number between 0
and [-log n7 - 1. The rightmost (least significant) bit is called bit number 0
and the leftmost bit is called bit number [-log n -] - 1. Each vertex has a

36 COLE AND VISHKIN

pointer to the next vertex in the ring (representing its outgoing edge). For
simplicity we assume that log n is an integer. 1

Here is a verbal description of an algorithm for the log n-ruling set
problem. The algorithm is given later. Processor i, 0 ~< i ~< n - 1, is assigned
to entry i of the input array(for simplicity, entry i is called vertex i). It will
attach the number i to vertex i. So, the present "serial" number of vertex i,
denoted SERIALo(i), is i. Next, we attach to vertex i a new serial number,
denoted SERIALs(i), as follows. Let i 2 be the vertex following i, (That is
(i, i2) is in E.) Let j be "the index of the rightmost bit in which i and i2
differ." Processor i assigns j to SERIALs(i).

EXAMPLE. Let i be ...010101 and i 2 be ...111101. The index of the
rightmost bit in which i and i 2 differ is 3 (recall the rightmost bit has
number 0). Therefore, SERIALs(i) is 3.

Remark (due to B. Schieber). j can be computed by a constant number of
standard operations, as follows. Without loss of generality suppose i>/i 2

(otherwise interchange the two numbers). Set h = i - i2, and k = h - 1. (So
h has a 1 for bit number j, and a 0 for bits of lesser significance, while k has
a 0 for bit number j, and a 1 for bits of lesser significance; also, h and k
agree on the bits of higher significance.) Compute l = h ® k, where G is the
exclusive-or operation. We observe I is the unary representation o f j + 1. So
it just remains to convert this value from unary to binary, and then to sub-
tract one.

Next, we show how to use the information in vector SERIAL~ in order
to find a log n-ruling set.

FACT 1. For all i, SERIALs(i) is a number between 0 and log n - 1 and
needs only [-loglog n-] bits for its representation. For simplicity we will
assume that loglog n is an integer.

Let il and i2 be, respectively, the vertices preceding and following i.
SERIALs(i) is a local minimum if SERIALI(i)~<SERIALI(i~) and
SERIALI(i) ~< SERIAL~(i2). A local maximum is defined similarly.

FACT 2. The number of vertices in the shortest path from any vertex in
G to the next (vertex that provides a) local extremum (maximum or
minimum), with respect to SERIAL1, is at most log n.

Observe that several local minima (or maxima) may form a "chain" of
successive vertices in G. Requirement (1), in the definition of an r-ruling
set, does not allow us to include all these local minima in the set of selected
vertices. Our algorithm exploits the alternation property (defined below) of
vector SERIAL~ to overcome this problem.

The base of all logari thms in the paper is 2.

DETERMINISTIC COIN TOSSING 37

The alternation property. Let i be a vertex and j be its successor. If bit
number SERIAL,(/) of SERIALo(i) is 0 (resp. 1), then this bit is 1 (resp. 0)
in SERIAL0(j). (For SERIAL,(/) is the index of the rightmost bit on
which SERIAL0(i) and SERIALo(j) differ.)

Suppose that i,, i2... is a chain in G such that SERIALI(i) is a local
minimum (resp. maximum) for every i in the chain. Then:

FACT 3. For all vertices in the chain SERIAL, is the same (i.e.,
SERIAL,(il) = SERIAL,(i2) = ...). (By definition of local minimum).

Below, we consider bit number SERIALt(i,) of SERIAL0 for all vertices
in the chain.

FACT 4. The following sequence of bits is an alternating sequence of
zeros and ones.

Bit number SERIAL,(/ ,) of SERIAL0(il), bit number
SERIALI(i2)(= SERIAL,(il)) of SERIALo(i2),..., bit number
SERIALI(ij) (= SERIALI(i,)) of SERIALo(ij),....

(This is readily implied by the alternation property.)

We can now understand why we called our technique deterministic coin
tossing. We associated zeros and ones with the vertices, based on their
original serial numbers; these serial numbers were set deterministieally.
This association allows us to treat (apparently) similar vertices differently.
Finally, note that coin tossing can be used for similar purposes.

We return to the algorithm. We select the following subset of vertices.
We select all vertices i that are local minima and satisfy one of the
following two conditions:

(1) Neither of fs neighbors (the vertices adjacent to i) is a local
minimum.

(2) Bit number SERIAL,(/) is 1.

We say an unselected vertex is available if neither of its neighbors was
selected and it is a local maximum. We select all available vertices i that
satisfy one of the following two properties.

(1) Neither of Fs neighbors is available.

(2) Bit number SERIALI(i) is 1.

The selected vertices form a log n-ruling set. Requirement (1) is satisfied
since we never select two adjacent vertices. Requirement (2) is satisfied by

38 COLE AND VISHKIN

Fact 2 and since every local extremum either is selected or is a neighbor of
a vertex that was selected.

Less informally we write the algorithm as follows. (Later, we will refer to
this as the basic step.)

for Processor i, 0 ~< i ~< n - 1, pardo (perform in parallel)

SERIALo(i) := i
SERIALI(i) :=" the minimal bit in which SERIALo(i) differs from

SERIAL0 of the following vertex"
if SERIALs(i) is a local minimum with respect to the two neighbors of i
then if either of the following is satisfied:

(1) neither of the vertices adjacent to i is a local minimum
(2) bit number SERIALI(i) of SERIALo(i) is 1

then select i
if neither i nor any of its neighbors were selected and if SERIALI(i) is

a local maximum with respect to the two neighbors of i
then (** i is available, and **) if either of the following is satisfied:

(1) neither of the vertices adjacent to i is available
(2) bit number SERIALI(i) of SERIAL0(i) is 1

then select i

We have shown:

THEOREM 2.1. A log n-ruling set can be obtained in O(1) time using n
processors.

Below, we show how to apply the basic step repeatedly in order to find a
2-ruling set.

2.2. The kth Application of the Basic Step

In order to prepare the input for the kth application of the basic step, we
"delete" from G the vertices that where selected in the previous k - 1
applications, their neighbors, and the edges incident to any vertex being
deleted.

The input for the kth application of the basic step is the remaining graph
and vector SERIALk_I. SERIALk 1 will play the role played above by
SERIAL0 and a new vector SERIALk will play the role of SERIAL1. The
degree of each vertex in the input graph is at most 2 (if the directions of the
edges are ignored). It is very simple to extend the basic step to handle ver-
tices whose degree is ~< 1. Vertices whose degree is 2 are treated as in the
basic step (unless they have a neighbor whose degree is 1). The k-th
application of the basic step will be as follows. (For an explanation see
Fact 5 below.)

DETERMINISTIC COIN TOSSING 39

for processor i, 0 ~< i ~< n - 1, pardo

if vertex i or one of its neighbors have been selected
in a previous application of the basic step

then "delete" vertex i and the edges incident to it
for processor i, 0 ~< i ~< n - 1, such that i is in the remaining graph pardo

ease 1 deg(i)= 2
then compute SERIALk(i)

if the degree of each of ?s two neighbors is 2
then apply the basic step to i

case 2 deg(i)= 0
then select i

case 3 deg(i)= 1
then if either of the following is satisfied

(1) the degree of Fs neighbor is 2
(2) ?s neighbor is its successor

then select i

The following fact helps to clarify the operation of the kth application of
the basic step.

FACT 5. Let i, j be adjacent in the input graph for the kth application.
Then, SERIALk_ 1(i) ~ SERIALs_ l(j). (For k = 1 this inequality clearly
holds. We show that it also holds if k > 1. If they were equal each of them
had to be a local maximum or local minimum at the (k - 1)st application.
The selection of the ruling set implies that each local maximum or local
minimum v is either selected or has a neighbor that is selected. Therefore, v
must have been deleted and cannot be included in this input graph.)

FACT 6. It is easy to deduce that the output graph consists of simple
paths each comprising at most loglog. . . log n vertices where the sequence
includes k "log"s. (Again, we assume for simplicity that each application of
a sequence of logs to n produces only integers.)

We finish this description with three obvious conclusions.

(1) After a total of log*n applications we delete all vertices in the
graph.

(2) The vertices that were selected form a 2-ruling set.
(3) The cardinality of a 2-ruling set (in a ring) is at least n/3.

If our original input is a directed path of n vertices, rather than a ring, we
obtain a 2-ruling set by applying the basic step log*n times, as above. To
obtain a log(k)n-ruling set we apply the basic step k times.

We have shown:

40 COLE AND VISHKIN

THEOREM 2.2. A log(k)n-ruling set can be obtained in O(k) time using n
processors.

COROLLARY 2.1. A 2-ruling set can be obtained in O(log* n) time using n
processors.

General Remarks. (1) Readers familiar with randomized algorithms
may be tempted to solve these problems using randomization. We already
mentioned that Vishkin (1984b) did so for the (related) list ranking
problem. Our deterministic technique was inspired by such a randomized
approach.

(2) The [-log nT-ruling set algorithm is valid even for models of dis-
tributed computation that allow only local communication and do not
have a shared memory like a PRAM. We do not elaborate on this.

2.3. An Optimal 2-Ruling Set Algorithm

First, we find a log n-ruling set using the basic step, above. Below, we
describe how to add more vertices to the log n-ruling set to produce a
2-ruling set. These additional vertices are selected using the numbers
SERIAL1 associated with each vertex, as follows.

f o r i = 0 t o l o g n - 1 do
for each vertex v for which SERIALI(V) = i pardo

if v is not in the ruling set and neither of the neighbors of v is in
the ruling set

then add v to the ruling set

Note that if SERIALI(V) = i, and if neither v nor its neighbors are in the
ruling set, then neither of the neighbors w of v has SERIALI(w) = i. Thus
this procedure selects a set of non-adjacent vertices. When the procedure is
finished, any vertex that was not selected must have a selected vertex as a
neighbor. Thus this procedure selects a 2-ruling set.

Clearly, the procedure can run in O(log n) time. At first sight, it appears
to require O(n) processors to achieve this running time (simply assign a
processor to each vertex v). We show that, in fact, this time can be
achieved using only n/log n processors. To do this we perform two instruc-
tions:

INSTRUCTION 1. We sort the vertices by their SERIAL 1 number. The
outcome of this sort is that each vertex v will be given a number RANK(v),
1 ~< RANK(v) ~< n. No two vertices will have the same RANK.

INSTRUCTION 2. For each v, RANK(v) := RANK(v) +in/log n, where
i = SERIALI(v).

DETERMINISTIC COIN TOSSING 41

We then process the vertices in 21ogn rounds. In round j
(1 ~<j ~< 2 log n), we process all vertices v such that
(j - 1) n/log n < RANK(v) <~jn/log n.

Instruction 2 guarantees that we never simultaneously process two ver-
tices whose SERIAL1 number is different.

Instruction 1 simply needs a bucket sort of n numbers in the range
[0, log n - 1]. The rest of this section shows how to perform such a sort in
O(log n) time using n/log n processors. We remark that the bucket sort,
while not performed in place, nonetheless will require only O(n) space. It
may be helpful to read Section 3 at this point; it reviews the prefix sum
parallel algorithm, used below.

The sort proceeds in three stages. First, we count, for each number i, the
number of vertices v for which SERIALI(v) = i. Second, using a prefix sum
sequential algorithm, we count the number of vertices v for which
SERIALI(v) < i, in O(log n) time. Third, for each vertex v, we determine a
unique value RANK(v). No two vertices get the same RANK.

The first stage proceeds in two substages. First, we divide the vertices
into groups of size log n. For each group, in O(log n) time, using one
processor per group, we count the number of vertices v for which
SERIALI(v)=i , 0~<i<logn. (We also determine, on the fly, for each
vertex v, how many vertices w, preceding v in the group, satisfy
SERIALI(w)=SERIAL~(v).) We obtain n/logn sets of log n counts, one
set per group. Second, using a prefix sum parallel algorithm (or rather,
log n of them), for each number i, we sum the n/log n associated counts (for
each i, one count per group). Clearly, this stage, implemented with n/log n
processors, uses O(log n) time.

The second stage is straightforward. In the third stage, for each vertex v,
we compute RANK(v) using a single processor and O(1) time, where
several processors may read from the same memory location. (It is easy to
simulate this computation in O(log n) time using n/log n processors on an
EREW PRAM.) RANK(v) will be: one, plus the number of vertices u such
that SERIALa(u)< SERIALI(V) (computed in the second stage), plus the
number of vertices w such that SERIALI(W)= SERIAL~(v) and w appears
before v in the input array. The last number is obtained by adding the
number of such vertices w that appear in groups prior to the group of v
and the number of such vertices w that appear prior to v in its own group.
Both numbers were computed in the first stage.

It now follows that the algorithm for bucket sort, with log n buckets,
uses n/log n processors and O(log n) time. We conclude

THEOREM 2.3. A 2-ruling set can be obtained in O(logn) time using
n/log n processors.

42 COLE AND VISHKIN

Remark. It is easy to modify the bucket sort algorithm to sort n num-
bers in the range [0, m - 1], m ~> log n. The algorithm will use n/log n
processors and O(lognlogm/loglogn) time. (Each number should be
represented using digits that can take on log n values; proceed as in the
standard bucket sort for multi-digit numbers.) Also, for m ~> t/> log n, using
n/t processors, we achieve a time of O(t log m/log t) (replace log n by t in
the above algorithm).

3. BALANCED TREE ALGORITHMS

3.1. Preliminaries

THEOREM (Brent). Any synchronous parallel algorithm taking time t that
consists of a total of x elementary operations can be implemented by p
processors within a time of L x/p l + t.

Proof of Brent's Theorem. Let xi denote the number of operations per-
formed by the algorithm in time i(Z] xi=x). We use the p processors to
"simulate" the algorithm. Since all the operations at time i can be executed
simultaneously, they can be computed by the p processors in [-xi/p] units
of time. Thus, the whole algorithm can be implemented by p processors in
time

, ±
F Fxi/pl (Lx,/pJ+l/ Lx/pJ+t. |
1 1

Remark. Brent's theorem is stated for models of computation where not
all computational overheads are taken into account. Specifically, the proof
of Brent's theorem poses two implementation problems. The first is to
evaluate x~ at the beginning of time i in the algorithm. The second is to
assign the processors to their jobs.

Recall the following standard deterministic parallel algorithm for the list-
ranking problem (defined in the Introduction). Say that we have n
processors. Assign a processor to each of the n elements. Denote the poin-
ter of element i of the input array by D(i) and initialize R(i) := 1, 1 ~< i~< n.
We set D(t) := "end of list" (where t is the last element in the linked list), D
("end of list") :-- "end of list" and R ("end of list") := 0.

Iterate [-log n] times:
for processor i, 1 ~< i ~< n, pardo

R(i) := R(i) + R(O(i)); D(i) :=O(O(i)) (To be called the short-cut
operation, performed by i at D(i)). (See Fig. 2.)

Note that f2(n log n) short-cuts are made by this algorithm. It runs in time
O((n log n)/p +log n) using p processors on an EREW PRAM and solves
the list ranking problem, by placing the results in the vector R.

DETERMINISTIC COIN TOSSING 43

o

FIG. 2. The standard deterministic parallel algorithm.

Implementation Remark 1. In order to derive this running time from
Brent's theorem n has to be broadcast to all p processors. This takes an
additional O(log p) time.

Implementation Remark 2. As presented the algorithm is not EREW
since there are concurrent reads at "end of list". This can be avoided by
instructing every processor i to quit when D(i) = "end of list".

3.2. Balanced Binary Tree Parallel Algorithms.

One simple pattern of optimal speed-up deterministic parallel algorithms
uses the balanced binary tree. This pattern was used, among many others,
by Wyllie (1979); Chin, Lam, and Chen (1981); Vishkin (1984a).
(Apparently, Fisher, and Ladner (1980) were the first to suggest using this
pattern.) Let us first demonstrate this pattern on the problems of com-
puting sums and prefix sums.

Input: An array of n numbers A(1), A(2),..., A(n). Assume, without loss
of generality, that log2n is an integer.

Problem: Compute their sum.

Algorithm: "Plant" a balanced binary tree with n leaves on the array.
The nodes of the tree at level h are denoted [h,j], 1 ~<j~<2 l°gn h. See
Fig. 3. Leaf [0 , j] corresponds to A(j). Associate a number B[h,j] with
node [h,j] of the tree.

Initialization: for all 1 ~<j ~< n pardo B [0, j] := A (j) .

for h := 1 to log n do
for all 1 ~ < j ~ 2 l °gn-h pardo B[h,j] := B [h - 1, 2 j - 1] +B[h- 1, 2j].

B[log n, 1] holds the desired sum.

Think first about an n processor implementation of this summation
algorithm. It runs in O(log n) time. Then apply the proof of Brent's

44 COLE AND VISHKIN

5,1]

FIG. 3. The balanced binary tree.

theorem to get an alternate implementation that uses only n/logn
processors and runs in O(log n) time. This summation algorithm can be
extended to solve the following prefix sum problem.

Input: Same as for the summation problem.

Problem: Compute Z~ A(j) for all 1 ~< i ~< n.

Algorithm: Perform the summation algorithm given above, thereby
obtaining all the B values. An additional "down-sweep" of the tree (from
the root to the leaves), which roughly amounts to reversing the operation
of the summation a!gorithm, will complete the job.

Associate another number C[h,j] with each node [h,j].

Initialization: C[-log n, 1] := 0.

for h := log n - 1 downto 0 do
for all 1 ~<j~< 2 l°gn-h pardo

if j is odd
then C[h,j] := C[h + 1, (j + 1)/2]
else C[h,j] := C[h + 1,j/2] +B[h , j - 1].

for all 1 <~j<~n pardo CE0,j] := C[0,j] +Br0 , j] .

C[0,j], 1 <~j<~n, hold the desired prefix sums. This algorithm can also
be implemented to run in O(n/p +log n) time using p processors on an
EREW PRAM. (Apply Brent's theorem and Implementation Remark 1.)

A wishful thought. We want to find an algorithm for the list ranking
problem that performs a total of O(n) short-cuts. If we could "plant" a
balanced binary tree in our linked list (in the order of the linked list) it
would solve our problem: enter a one at each leaf and apply the prefix sum
algorithm. A closer look at the summation part of such a prefix sum com-
putation reveals the following:

The operation of the for statement (of the summation algorithm) for

DETERMINISTIC COIN TOSSING 45

h = 1 corresponds to short-cuts at every odd location in the linked list. This
results in a new linked list that connects only the even locations of the
original list, thereby halving its length. Then, the for statement for h = 2
corresponds to short-cuts at odd locations of the new linked list, and so on.
See Fig. 4. Observe that the for statement of the summation algorithm
never performs a short-cut at two successive elements of the linked list at
hand; and, therefore, the "input" to any operation of this for statement is a
single linked list.

Remark. The problem, of course, is that we do not know how to plant
a balanced binary tree with respect to the linked list without actually first
solving the list ranking problem itself, since this "planting" needs the
ranking rood 2, mod 4, mod 8 as explained above.

Each operation of the for statement has the following two features.

(1) The output is a single list whose length is half the length of the
input.

(2) It takes O(1) parallel time to execute.

We will use an algorithm which approximates these two features. In our
new algorithm we plant an "approximately balanced tree" (it will be a 2 3
tree). Each leaf of the tree corresponds to an element of the list, and each
level of the tree corresponds to an iteration of the for statement. For a
given level of the tree, the nodes at this level correspond to those elements
of the list over which shortcuts have not yet been made (by iterations of
the for statement corresponding to lower levels of the tree). For each level
of the tree we divide the elements of the list (corresponding to nodes at this
level) into two sets: those that are shortcut (by the corresponding iteration
of the for statement), called victims, and those that are not shortcut (called
survivors). In order to approximately achieve properties (1) and (2) above,
we require these two sets to meet the following two constraints:

(a) If an element is a survivor then its successor (if any) is a victim.

(b) One, at least, of every three adjacent elements is a survivor.

o o

FIG. 4. A "short-cut analogy" to the balanced binary tree algorithm.

46 COLE AND VISHKIN

By (a) at most one half of the elements are survivors. By (b) each survivor
need perform at most two shortcut operations to remove all the victims
from the list. Hence in O(1) parallel time (using n processors) we obtain a
single linked list containing at most half as many elements (assuming we
can separate the elements into survivors and victims).

But a 2-ruling set provides an appropriate set of survivors!

4. THE BASIC LIST RANKING ALGORITHM

Initialization: m := n. As in the standard deterministic algorithm, denote
the pointer of element i by D(i) and initialize R(i) := 1, 0 ~< i~< n - 1.

The algorithm which is given later should be read together with the com-
mentary below. The purpose of the while loop of the algorithm is to "thin
out" the input linked list into a list of length ~< n/log n. The input to each
iteration of the while loop is a linked list of length m stored in an array of
length m. Vector D contains, for each element, the next element in this
linked list.

The purpose of Step 2 is to enter either the value 1 or the value 0 into
R U L I N G (j) , for each j, O<~j<~m-1, so that those elements with
R U L I N G (j) = 1, 1 ~<j ~< m, form a 2-ruling set of the directed graph. Step 2
uses the algorithm of Section 2.3 for finding a 2-ruling set.

In Step 3 we shortcut, in parallel, over each j such that R U L I N G (j) = 0.
The resulting list will contain exactly those elements in the 2-ruling set, of
which there are at most m/2. We make some further comments on the
operation of this step.

(a) Each element j for which R U L I N G (j) = 1 (an element of the
2-ruling set) is followed by at least one and at most two elements for which
RULI NG is 0.

(b) Each element over which we perform a shortcut will remain with
no incoming pointers. Such elements will be "deleted" in Step 4.

(c) The parameter t stands for the present time. (This parameter
increases as the algorithm progresses.) The information in OP(i, t) enables
us, later on, to reconstruct the operation of processor i at time t. This is
used in Step 6 to derive the final value of R(D(j)) by subtracting the
present value of R(j) from the final value of R(j). For this reason we
prefer here to name the processors performing the operations rather than
to use the framework of Brent's theorem.

Step 4 contracts the input array for the present while loop iteration into a
new array that contains exactly those elements in the new linked list.

When we arrive at Step 5, the length of the linked list at hand is

DETERMINISTIC COIN TOSSING 47

~<n/log n. Step 5 applies the standard parallel list ranking algorithm in
order to find the ranking of each element in this linked list.

Step 6 extends the list rankings to all elements of the original linked list
using the information in OP(.,.).

t := 1; (t is the present time)
while rn > n/log n do

Step 1 (Initialization for the present while loop iteration).

for j, 0 ~<j ~< m - 1, pardo
SERIALo(j) :=j

Step 2. Compute a 2-ruling set into vector RULING, using the
algorithm of Section 2.3. From now on we specify for each instruction
the processors that perform it. Suppose p processors are available.
Processor i, 1 ~< i<~p, is assigned to segment [(i -1)m/p , . . . , im/p-1] of
the array that forms the input to this while loop iteration. (For simplicity
we assume that m/p is an integer. Otherwise, we could assign Processor i
to the segment including all the integers in the half open interval
((i - 1) m/p- 1; im/p- 1].)

Step 3.

for Processor i, 1 ~< i ~< p, pardo
for j := (i - 1) m/p to irn/p - 1 do

if R U L I N G (j) = 1
then OP(i, t):= (D(j),j, R(j)) ;

R(j) := R(j) + R(D(j)); D(j) := D(D(j))(shortcut).
if R U L I N G (D (j)) = 0

then oe(i, t):= (O(j),j, R(j));
R(j) := R(j) + R(D(j));
O(j) := D(D(j))(shortcut).

Step 4. Perform the balanced binary tree prefix-sum computation
described in the previous section with respect to the vector RULING. As
a result,

(1) m := Z j R U L I N G (j), and

(2) each element j with R U L I N G (j) = 1 gets its entry number in a (con-
tracted) array of length rn containing the output linked list.
(This array is the input for the next iteration (if any) of the while loop.)

od

Let T be the last time unit for which an assignment into OP(,) was perfor-
med.

643/70/1-4

48 COLE AND VISHKIN

Step 5. Apply a simulation of the standard deterministic parallel algorithm
by p processors to the current array.

Step 6.

for Processor i, 1 <~ i <~ p, pardo
for t := T downto 1 do

R(OP(i, t) . l):= R(OP(i, t).2)- oe(i, t).3.
(Comment. OP(i, t).k, k = 1, 2, 3, represent the fields of OP(i, t).
If OP(i, t) is undefined, the instruction is interpreted to be a null
operation. Also, recall Comment (c) in the verbal description of
Step 3.)

Implementation Remark. Each time m gets a new value, broadcast it to
all processors as in Implementation Remark 1 of the previous section.

Complexity. We start by evaluating the operation and time
requirements of the algorithm (so, at present, we assume that we have an
unlimited number of processors available). Later, we use Brent's theorem
to derive processor and time bounds. Initialization requires O(n)
operations and O(1) time. Let us focus on one iteration of the while loop.

Step ! takes O(m) operations and O(1) time.
Step 2 takes O(m) operations and O(log m) time.
Step 3 takes O(m) operations and O(1) time.
Step 4 takes O(m) operations and O(log m) time.

So each iteration of the while loop takes O(m) operations and O(log m)
time. Each such iteration results in a linked list whose length is ~< ½ the
length of the list when the iteration started. Therefore, after O(loglog n)
iterations we get a list whose length is ~< n/logn. Summing up the
operation and time complexity of the while loop gives O(n) operations and
O(log n loglog n) time.

Step 5 takes O(n) operations and O(log n) time.
Step 6 requires the same number of operations and time as all the

iterations of Step 3, since it follows its "footsteps".
So we have a total of O(n) operations and O(lognloglogn) time.

Applying Brent's theorem we get O(n/p) time using any number
p ~< n/(log n loglog n) of processors. We know that any such result can be
alternatively stated as O(log nloglogn) time using n/(lognloglogn)
processors. We leave the reader to verify that the implementation problems
as per the remark following Brent's theorem can be readily overcome. We
have shown:

THEOREM 4.1. The list ranking problem can be solved in time O(n/p)
using p <~ n/(log n loglog n) processors.

DETERMINISTIC COIN TOSSING 49

5. THE FAST OPTIMAL ALGORITHM

We describe an algorithm that runs in time O(n/p) using any number
p ~< n/(log n log*n) of processors. A variant of the algorithm will yield our
second, non-optimal result.

The basic algorithm (of the previous section) had two stages. In the first
stage (the while loop) we employed an optimal algorithm (given a list of
length m it performed O(m) operations); had we performed the while loop
O(log m) times to finish shortcutting the list, the algorithm would have
taken O(logZm) time. In the second stage (step 5) we used an algorithm
that performed relatively more operations (for a list of length m,
O(m log m) operations), but it had the advantage of being faster (O(log m)
time). To profit from this we needed to ensure that the numbers of
operations performed by the two stages were roughly the same. And, in
fact, this was the case, because the list processed in the second stage was
sufficiently shorter. Our present algorithm pushes this methodology further.
The algorithm has three main stages, each one processing a relatively shor-
ter list. Stage 1 uses a slow optimal algorithm; its effect is to slightly reduce
the length of the input list. Stage 2 uses an almost optimal algorithm; it is
faster. Its effect is to further reduce the length of the list. Stage 3 uses the
standard deterministic parallel algorithm that misses optimality by a
logarithmic factor, but it is the fastest of the three algorithms. The overall
result is a fast optimal algorithm. We remark that stage 2, itself, can be
considered as a succession of (about log* n) algorithms, each succeeding
algorithm being slightly faster and slightly further from optimal. This
methodology was also used in (Vishkin, 1983b). In (Cole and Vishkin,
1986) we call it the accelerating cascades technique.

The input for Stage 1 is the input linked list of length n. The output of
stage 1 (and input for Stage 2) is a linked list of length ~< n/(log* n) 2. The
output of Stage 2 (input for Stage 3) is a linked list of length ~<n/(log n) 2,
Each of the linked lists mentioned above is given in an array whose size is
the same as the length of the list. Stage 3 simply consists of applying the
standard deterministic parallel algorithm.

Remarks. The algorithm will be described in less detail than the
preceding algorithms. In particular:

1. At each timestep of stages 1 and 2 we have a linked list that was
obtained from the input list by propagating pointers over vertices that were
omitted (as in the previous section). In particular, every edge, in any of the
linked lists that are obtained throughout these stages, corresponds to a
directed path in the original input list. We must maintain a vector (like R
in the previous section) that holds, for each such edge, the length of its
original path. However, in this presentation we focus only on the transi-

643/70/1-4 *

50 COLE AND VISHKIN

tions from a given linked list to a shorter one and avoid mentioning
updates of this vector.

2. Note that in (stages 1 and 2) we only mentioned contractions of a
linked list into a shorter one (the up-sweep part using the term of Sec-
tion 3). We will systematically omit the corresponding down-sweep part
throughout this section. No new ideas (beyond Sect. 4) are required in
order to fill in this part.

Let k be the integer such that log(~+l)n <log* n~<log(~)n. Note that
k~< log* n. The algorithm proceeds as follows.

Stage 1. This stage applies the while loop of the basic algorithm (of
Sect. 4) 2(log Ik+ ~)n) times. Thus the output of this stage is a linked list of
length <~n/(log¢k)n) 2. Clearly, this stage performs O(n) operations in time
O(log n log* n).

Stage 2. Stage 2 consists of k - 1 iterations of Procedure 1.

Iteration i o f Procedure 1 (1 ~< i ~< k - 1).

Let j = k - i.

Input. A linked list of length at most n/(log (j+l)n)2, given in an array
having the same length as the list.

Output. A linked list of length at most n/(loglJ)n) 2, given in an array
having the same length as the list.

1. Apply 2 log (j+ ~)n- 2 log/J+2)n iterations of Routine 1.

Iteration g of Routine 1, 0 ~< g < 2 log ~j+ ~)n - 2 log (j+ 2)n.

Input. A linked list of length m ~< 2 gn/(log (j+ 1)n) 2, given in an array of
length ~ n/(log (j+ ~)n) 2. (The vertices of the linked list are "spread over"
the array which may have more entries than the length of the list.
Redundant entries of the array (i.e., entries that represent vertices which
are not in the input list for iteration g) are marked as such. The reason
for this "wasteful" representation of the input is that iterations of
Routine 1 "save time" by not contracting their input array to include
only their output list. Only the end of Procedure 1 contracts the linked
list at hand).

Output. A linked of length rn~<~rn/2, given in an array of
length ~< n/(log ~j+ 1)n)2.

(a) Apply the recursive version of the basic step (see Sect. 2.2) to obtain
a 2-ruling set. (Denote the cardinality of this ruling set by m~.)

Explanation. The output list of the present iteration of Routine 1 will
consist of the vertices of the ruling set. So for each vertex v in the ruling
set the remaining job is to traverse the sublist of v (a list of length O(1));
as above, we call this the shortcutting operation.

DETERMINISTIC COIN TOSSING 51

(b) Shortcut (step 3 of the while loop of the basic algorithm).
This completes iteration g of Procedure 1.

Step 2 below concludes the present iteration of Procedure 1.

2. A prefix sum computation is applied in order to contract the input array
into an array containing only the vertices of the linked list at hand.

Time complexity of Stage 2. Complexity of iteration g of Routine 1: By
Corollary 2.1, using n/[log ~j+ 1)n]2 processors, step (a) takes time O(log*n)
time and step (b) takes O(1) time. This yields a bound of
O(n log*n/(log~j+l)n)2) operations and O(log*n)time.

Complexity of iteration i of Procedure 1: Step 1 consists of O(log ~j+ 1)n)
invocations of Routine 1. Step 2 needs O(n/(log ~j+ i)n)2) operations and
O(logn) time. Thus the ith iteration of Procedure 1 performs
O(n log*n/log Ij+l)n) operations in time O(log*n'log ~j+l/n +log n) =
O(log n).

So, overall, Stage 2 performs O(Z~-I 1 n log* n/log/j+ 1)n) = O(n)
operations in time O(k log n).

Stage 3 requires O(log n) time and O(n/log2n) operations. It is also easy
to bound the time and number of operations required by the down-sweep
part (which is missing in the above description) by the same time and num-
ber of operations as for stages 1 and 2.

Putting everything together, remembering that k ~< log*n, and applying
Brent's theorem, we deduce

THEOREM 5.1. The list ranking problem can be solved in time O(n/p)
using p <~ n/(log n log* n) processors. The implementation problems as per
the remark following Brent's theorem can be readily overcome.

We turn to our other main result.

THEOREM 5.2. The list ranking problem can be solved in time O(k log n)
using n log ~k) n/log n processors, for any fixed k.

Proof By way of motivation, we observe that, in the algorithm just
described, stage 2 is faster than stage 1 (on equal length inputs), but
requires more operations. Therefore, by substituting stage 2 for stage 1, we
might expect to reduce the running time and increase the total number of
operations. So, in the above algorithm, we replace Stage 1 with Routine 1
applied 2 log ~k+ l~n times, where the input for the gth iteration is a linked
list of length ~< 2 gn, stored in an array of length n. Then we perform the
rest of the above algorithm with no change. We achieve a running time of
O(k log n) taking O(n log ~k +1) n log* n) <~ O(n log ~k) n) operations. Our
result follows by Brent's theorem. |

52 COLE AND VISHKIN

This theorem shows that Wyllie's conjecture which was mentioned in the
introduction is not correct.

6. OPEN PROBLEMS

(1) Is there an optimal speed-up algorithm for the list ranking
problem using n/log n processors and running in time O(log n)?

(2) We recall that the new coin tossing technique distinguishes the
PRAM model from the more abstract PRAM-INFINITY model. We are
not aware of any other technique having this property. Are there others? In
addition, this remark calls for a "metatheoretical" discussion of the
applicability of PRAM-INFINITY lower bounds to PRAMs. We note that
a lower bound in the PRAM-INFINITY model is stronger than the same
lower bound in the decision tree model, a model that is often used when
proving lower bounds. Also, non-trivial lower bounds have been proved for
the PRAM-INFINITY model. Thus it seems useful to ascertain the
applicability and limitations of such lower bounds.

ACKNOWLEDGMENTS

Much gratitude to Baruch Schieber for helpful discussions and comments and to Dennis
Shasha for useful comments on an earlier draft.

RECEIYED October 28, 1985; ACCEPTED December 24, 1985

REFERENCES

AHO, A. V., HOPCROFT, J. E. AND ULLMAN, J. D. (1974), "The Design and Analysis of Com-
puter Algorithms," Addison-Wesley, Reading, Mass.

CHIN, F. Y., LAM, J. AND CHEN, I. (1981), Optimal parallel algorithms for the connected
component problems, in "Proceedings, 1981 International Conference on Parallel
Processing," pp. 170-175.

COLE, R. AND VISHKIN, U. (1986), Deterministic coin tossing and accelerating cascades: Micro
and macro techniques for designing parallel algorithms, in "Proceedings, 18th Annual A C M
Symposium on Theory of Computing," pp. 20(~219.

FICH, F. E., MEYER AUF DER HEIDE, F., RAGDE, P., AND WIGDERSON, A. (1985), One, two,
three.., infinity: lower bound for parallel computation in "Proceedings, 17th Annual ACM
Symposium on Theory of Computing," pp. 48-58.

FISHER, M. AND LADNER, L. (1980), Parallel prefix computation, J. Assoc. Comput. Mach. 27
(4) 831-838.

KRUSKAL, C. P., RUDOLPH, L. AND SNIR, M. (1985), Efficient parallel algorithms for graph
problems, in "'Proceedings, 1985 International Conference on Parallel Processing,"
pp. 180-185.

DETERMINISTIC COIN TOSSING 53

MEYER AUF DER HEIDE, F., AND WIGDERSON, A. (1985), The complexity of parallel sorting/n
"Proceedings, 26th IEEE Annual Conference on Foundations of Computer Science,
pp. 532 540.

TARJAN, R. E., AND VISHKIN, U. (1985), An efficient parallel biconnectivity algorithm, SIAM
J. Comput. 14, 862-874.

VISHKIN, U. (1983), "Synchronous Parallel Computation--a Survey," TR 71, Dept. of
Computer science, Courant Institute, New York University, New York.

VISHKIN, U. (1983b), An optimal parallel algorithm for selection, manuscript.
VISHK~N, U. (1984), An optimal parallel connectivity algorithm, Discrete Appl. Math. 9,

197-207.
VISHKIN, U. (1984), Randomized speed-ups in parallel computation, in "Proceedings, 16th

Annual ACM Symposium on Theory of Computing," 230-239.
VISI-IK~N, U. (1985), On efficient parallel strong orientation, Inform. Process. Lett. 20,

235-240.
WYLLIE, J. C. (1979), "The Complexity of Parallel Computation," TR79-387, Department of

Computer Science, Cornell University, Ithaca, N.Y.

