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Abstract

We study the problem of locality based graph coloring.
This problem is motivated by the problem of assigning
time slots for broadcast in mobile packet radio networks.
This problem has also been studied in the context of
distributed and parallel graph coloring [4, 6, 9, 8].

In this problem, one has to design a coloring algo-
rithm that assigns a color to a vertex based on the
label of the vertex and the labels on its neighbors.
Linial proved an upper bound of O(A2 log n) and a lower
bound of fl(log log n) on the number of colors needed to
locally color an n-vertex graph with maximum vertex
degree A [9, 8]. His main motivation was that repeated
application of local coloring gives a fast algorithm for
distributed coloring. He proved that one could get a A2
coloring in O(log* n) steps this way.

In this paper we improve upon the bounds for the
problem of local coloring. Using a new characterization
in terms of a family of set systems we design a ran-
domized algorithm for the problem and prove an upper
bound of O(A. 2A log log n). An important question left
open in Linial’s paper was the case of large A. The best
lower bound was A + 1. Linial observed that a result
of Erdos, Frankl and Furedi implied that his method
cannot be applied to reduce the number of colors to
below (A~2). We obtain lower bounds that match the
upper bounds within a factor that is poly-logarithmic in
terms of these bounds. Of particular interest we have
very precise bounds for the case when A > 2+. These
bounds are useful to obtain a heuristic estimate on the
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number of steps necessary to reduce the size of the color
set from A2 to A + 1, when local coloring algorithms
are used iteratively. The number of steps turns out to
be t3(A log A).

1 Introduction

Consider a set of mobile packet radio stations. At any
given time a station can see at most A others. We
associate a graph with each such configuration. The
set of vertices correspond to the radio stations and two
stations are adj scent if they can see each other.

The problem is to schedule transmissions in time to
avoid interference. To achieve this the time axis is di-
vided into units called frames. Each frame is divided
into slots and each radio station is assigned a slot in
which to transmit its information. So, in each frame, a
radio station transmits at most one message. In order
to avoid interference one has to assign slots to stations
so that adjacent stations do not get the same slot. Since
the configuration changes it is desirable if each station
can decide on its slot based on who its neighbors are.

This problem of slot allocation can be abstracted to
the problem of local graph coloring. Informally, we need
an algorithm (one for every vertex) that on input a la-
beled graph looks at the label of a vertex and the labels
on its neighbors and decides on the color the vertex
gets (a more formal definition can be found in the next
section). The combinatorial question here is a bound on
the number of colors needed so that such a coloring can
be accomplished. The algorithmic question is to devise
an algorithm that accomplishes this task.

The problem of transition scheduling was studied
in [1] and [2], where the authors considered a slightly
different model from ours.

Another motivation for this problem comes from the
problem of coloring in the distributed model of com-
putation. We refer the reader to the introduction sec-
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tion of Linial’s paper for a description of this model
[8, 9]. One algorithm for distributed coloring is to re-
peatedly apply a local coloring algorithm at every ver-
tex. The algorithm consists of phases. In the beginning
of the ith phase each vertex is assigned a color from
the color set {l,.. ., ni }. The vertices then simultane.
ously compute their own new color from their own and
their neighbour’s old color (the multiplicity with which
a color appears on the neighbors does not count). The
new colors are taken from the set {1, . . . . ni+l }. Typi-
cally n~+l < n~. Throughout the procedure the condi-
tion that neighboring vertices do not get the same color
should be maintained. Let us denote by k(n, A) the
minimal value for k such that there is a local coloring
algorithm which reduces the number of colors from n to
k for any graph with maximum vertex degree at most
A. We are interested in local coloring algorithms such
that k is strictly less then n when n > A+ 1. For these it
is possible to reduce the number of colors to A + 1 with
finitely many steps of reduction, where A is an upper
bound on the maximum degree.

Cole and Vishkin were the first to note the power of
this technique[4]. They devised an algorithm to 3-color
a labeled cycle in O(log* n) time. Extending this work
substantially, Goldberg et. al [6] showed how one could
3-color trees in O(log* n) time if each vertex “knows its
parent”. Both results, though stated for the stronger
PRAM model, apply equally well to the distributed set-
ting. Goldberg et. al. also showed how to find a 0(A2)
coloring in time O(log” n), for constant A. This bound
was extended to work for non-constant A by Linial.

Linial was the first to explicitly consider the prob-
lem of local coloring. He proves a lower bound of
k(n, A) > log log n even when A = 2, i.e. the graph
is a union of cycles. He also proves that one needs
~ log* n steps to 3-color a cycle. He then proves that
k(n, A) < 0(A2 log n). Iterating this algorithm and
also using a construction due to Erdos, Frankl and
Fiiredi (for the case that n = A3) for the last iteration,
he observes that an 0(A2) coloring can be achieved in
O(log” n) steps.

We give an improved randomized algorithm to lo-
cally color a graph. Our algorithm uses at most
O(A . 2A log log n) colors. In section 5 we show that
this bound is essentially tight for small As. Note
that Linial’s upper bound is better than ours when
A > fl(log log n). When our local coloring algorithm
is used iteratively after two iterations of Linial’s algo-
rithm, we can 0(A2) color a graph in ~ log* n + O(1)
steps. This shows that Linial’s lower bound is precise
up to a constant term (!).

An important question left open in Linial’s paper was
the case of large A. The best lower bound known was
the obvious A+ 1. Linial observed that a result of Erdos,

Frankl and Fiiredi [5] implied that his method cannot
be applied to reduce the number of colors to (A~2). But
it was not known if one could use a better local coloring
function to reduce the number of colors substantially.
We answer this question in the negative. We prove a
lower bound of n – a < k(n, ~ + a). As a consequence,
the best algorithm that iteratively uses local colorings in
the distributed model of computation to obtain a A + 1
coloring, is likely to terminate in no less than Q(A log A)
steps as indicated by a heuristic argument in Section 8.

2 Preliminaries.

We begin with a formal definition of the problem. Our
notation is standard. Let [n] denote the set {1, . . . . n}.
For V a set (~) would denote the set of all k-subsets of
V. A set system is a pair (V, F), where F ~ 2“. V is

called the base set of the set system. In cases when V’s

identity is clear, we will also refer to just F as the set
system. By the size of the set system we mean IF I, i.e.
the number of sets in F. We follow Linial’s terminology:
a k-labeling of a graph G = (V, E) is a 1:1 mapping

-f : V ~ [k]. In case k = lV\ a k-labeling is called a
labeling. We will say that a labeling is proper (in which
case we refer to it as a coloring) if adj scent vertices
do not get the same labels. Throughout this paper,
labelings will always be proper. We describe most of our
results starting with a proper k-labeling when k = IVI,

but our results apply for the more general case when k

is less.
Let ~ = ~(n, A) be a family of graphs on n vertices

such that the maximum vertex degree is A. Let V be
the set of vertices. Let ~G (v) denote the neighbourhood
of vertex v in graph G, i.e. the set of vertices adjacent
to it in G.

A local k-coloring algorithm for a family of graphs ~
is a function x : V x 2“ ~ [k] such that VG c ~, Vi, j E

V(G) if {i, j} E E(G) then x(i, ~G(i)) # x(j, iVG(j)).
For the rest of the paper ~(n, A) will contain all n-
vertex labeled graphs of maximum vertex degree A.

Here’s a brief description of Linial’s proof of the

upper-bound. The following lemma (see [9, 5, 7]) is
the heart of Linial’s proof.

Lemma 1 For integers n > A there is a family J of n

subsets of{l, ..., 5(A210gnl} such that if Fe,, ... FA E
J, then

To find a local coloring, associate sets as in the lemma,
one with each vertex. Now, given a vertex i with neigh-
boursjl,. . . “~~d where d < A, color i with the minimum
color in

202



F; \ U~=lFj,. The lemma guarantees that such a color
exists.

This characterization of the local coloring problem in
terms of finding the set systems of the above type is not
exact. It can be shown that it is possible to find more
efficient local colorings than the ones found this way.

3 Reformulating the problem in

terms of set systems

We begin with an exact characterization of the prob-
lem in terms of a family of set systems with certain
intersection conditions. We first give an informal defi-
nition of the equivalent characterization. A more formal
definition follows. Consider the complete digraph on n

vertices. Let the color-set (the set from which we choose
the colors for local coloring) be [k]. Associate with each
arc i ~ j a subset of the color set [k]. The sets must
satisfy the following two conditions:

1.

2.

Consider the sets associated with the arcs leaving
any fixed vertex v. Any A of these sets must have
a non-empty intersection.

For any two vertices u and v, the set on the arc u ~

v and the set on the arc v -+ u must be disjoint.

Here’s the more formal version: Find an assignment
a : V x V ~ 21kl, where k is some fixed parameter, such
that

1. For every fixed v E V and every U1, . . . . uA C
V\ {V}, a(V, U1) n... n CY(V,UA) # 0. [@SabdZ@

condition],

2. For any U,V E V,u # v,cr(u, v) n a(v, u) = 0 [dis-

jointness condition]

Theorem 2 The problem ofjinding an a for the above

problem with parameter k is equivalent to the problem

of jinding a local k-coloring x for ~(n, A).

Proof. We first show, how to find x given cr. Let G
be any graph from ~(n, A). For a vertex v c V(G) de-
fine x(v, ~G (v)) to be the smallest color in the following
intersection: nucNG(v) a(v, u). By the feasibility condi-
tion on the as’ this set is non-empty and by the dis-
jointness condition the color that adjacent vertices get
are different.

We now have to show how to find a given x. Sup-
pose that we are given a local coloring function x over
~(n, A). Define a(u, v) to be the set of colors that x as-
signs to u in any graph G c ~ such that {u, v} 6 E(G).
Formally, @(u, v) = {c : 3G c ~, x aasigns color c to u
in G, and {u, v} c E(G)}. We have to verify that the

above a satisfies the two conditions.
The Feasibility Condition: Fix a vertex v. Let
Ul, ..., ~A be A other vertices. Consider any graph G
such that, in G, v is adjacent to Ul, . . . . MA. Let c be
the color that x assigns to v in this graph. Clearly c
occurs in the sets Q(V, vi) for all i.
The Disjointness Condition: Consider two vertices u

and v. We need to prove that a(u, v) is disjoint from
a(v, u). Suppose for a contradiction that there is a color
c in both of them. Then there is some neighbourhood
~G, (v) of v and a neighbourhood ~G, (u) of u for which
x assigns the color c to both vertices. Also, by the con-
struction, u c iVGl (v) and v e NG~(u). But then con-
sider a graph G3 where u has neighbourhood NG, (u)

and v has neighbourhood NGI (v). In this graph then
x would give the color c to both u and v, despite the
presence of the edge {u, v); a contradiction. ~

To demonstrate the power of our new characterization
we observe that Linial’s log log n lower bound for A = 2
now follows immediately. (We must point out though
that Linial proved a stronger bound on an iterated ver-
sion of local coloring.) To each vertex u associate the
set system of the sets of colors adjacent to it, i.e., the
set ‘HU = {a(u, v) I v # u}.

Claim 1 l~u # v then ‘Hu # ‘HV.

Proof. Consider two vertices u and v. Every set as-
sociated with u (i.e. every set in ‘HU) has a non empty
intersection with Q(U, v) while cr(v, u), a member of ‘HU,
is disjoint from it. I

Since the number of subsets of 21kl is at most 22’ the
result follows.

4 Upper Bound

We show the proof of an upper bound O(A. 2A log log n)
originated in [10]. We begin with a simple lemma.

Lemma 3 It sufices to construct a family of set sys-

tems, Fl, ..., F~, on the color set [k] such that:

1. In each Fi, every collection of A sets have a non-

empty intersection.

2. For every pair i and j, there is a set A in Fi and a

set B in Fj such that An B = 0.

We leave it as an easy exercise to show that this is an
equivalent formulation of our problem. Here is the al-
gorithm to construct the family of set systems. Assume
for ease of description that n is a power of 2. Consider
a binary tree of depth log n with n leaves. Label the
leaves arbitrarily from 1 to n. With each vertex of the
tree we will associate a subset of [k]. The set system Fi
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will consist of all the sets associated with the vertices
along the path from the root to the leaf i.

Suppose that u and v were sons of a common parent
p. We will assure, during the course of the construc-
tion, that the sets associated with vertices u and v are
disjoint. This takes care of requirement 2 since for set
systems Fi and Fj, if w is the last common vertex in the
paths from the root to the leaves i and j then the sets
associated with the sons of w will provide witnesses for
verifying the disjointness condition.

We use randomization to assign the sets to the ver-
tices in the tree. For a level / of the tree, flip a coin
for each element of [k]. This splits [k] into two disjoint
sets H4 (elements for which we got heads) and Tl (ele-
ments for which we got tails). We associate either HZ

or T1 with nodes at level l?such that if one son of a par-
ent gets H~ then the other gets T1. The coin tosses for
different levels are independent.

We now prove that such a construction works with
overwhelming probability when k = O(A . 2A log log n).

A bad event corresponds to some A sets not inter-
secting for some set system Fi. The number of ways in
which a bad event happens is at most 2A (]”~”). This
is because all possible bad events can be chosen by first
choosing A levels of the tree and then choosing one of
the 2A possible intersections from sets at these levels.
The probability of a bad event happening, once the A
sets are chosen is bounded in the lemma below.

Lemma 4 Suppose we pick A subsets of [k] at random

by jlipping a coin and putting an element in a set if the

coin toss was a head. Then the probability that these

sets are disjoint is at most e-k12A.

Proof. The probability that a fixed element is not in
the intersection is exactly (1 – ~). Since the coin-tosses
for the different elements are independent the probabil-
ity that none of the elements are in the intersection is
at most (1 – ~)k ~ e-kJ2A. ~

Hence the probability that the set systems we have
chosen is bad is at most e-k/2Ap (lo~n). we see that

choosing k as prescribed makes this probability small
and hence the method works with high probability. I

We make two comments on the upper bound.

1,

2,

Strictly speaking the algorithm is not probabilistic,
but rather the method with with an appropriate set
system can be found.

For A = 2 an explicit construction is possible.
Choose k, even, such that (k~2) > 2 log n. Now

for the ith level, pick sets Ai and [k]\ Ai such that
lAi I = k/2 and Ai has not been used at previous
levels. This construction works because any two

sets of size k/2 intersect as long ss one is not the
complement of the other.

5 Lower bounds

Thus far we have shown upper bounds. The two known
upper bounds 5A2 log n and A2A log log n will be de-
noted by B1 (n, A) and by B2(n, A) respectively. We
remark that these bounds are based on very different
construction ideas [9], [1O]. When A < log log n then
132(n, A) is better, otherwise B2(n, A).

In this section we show that no significant improve-
ment on these bounds can be made. When A ap-
proaches n however, then more subtle improvements on
the bounds become interesting. Section 7 gives very
tight bounds for the case of large As.

Let us denote the number of colors of an optimal con-
struction for n vertices and degree A by k(n, A). The
main result of this section is:

Theorem 5

k(n, A) ~ min(Bl(n, A), B2(n, A), n) ~

k(n, A)(log k(n, A))3. (1)

Proof: We have to prove the r.h.s. inequality of (l).
Define dthre~ = log log n – log log log n. The function
k(n, A) is monotone increasing in both of its variables.
We use different estimates for different ranges of A. If
A ~ dihre, then we use Theorem 6. If 7dtbre, ~ A ~
d~hre$ then the monotone increasing property of k(n, A)
gives a log n lower bound. If @ ~ A ~ dthve. then we
use Theorem 7. If A > fi then again, monotonicity
gives us an n/ log(n) lower bound. It is an easy calcula-
tion that inequality 1 holds for the above four different
ranges of A. ~

Theorem 6 If A < dthre, then:

k(rz, A) ~ 2‘-4 loglogn.

Theorem 7 If& ~ A ~ 7dthTe. then

A2
log n.‘(n> ‘) ~ (log A + log log A)2 log A

Proof of Theorems 6 and 7: Assume that we
have a construction cr(i, j) (1 ~ i, j < n) which sat-
isfies the conditions in Section 3 on a color set [k].

Let ~ be a parameter, which is 1/2 if A is below

d~h,e~ = log log n –log log log n and (2106‘+5 ‘“gn~ oth-
erwise. We partition the vertex set into two classes:

Clsss 1: A vertex v belongs to the first class if there
is a non empty set Ho such that for every vertex z # v :
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[Il. \ a(v, z)] < ~lllo 1. For instance, if a single color c
occurred in every set a(v, z) then one could take lfu =
{c}.

C1SSS2: Every other vertex.
For the sake of analysis, we distinguish two cases de-
pending on whether the number of vertices in class 1 is
larger or smaller than the number of vertices in class 2.
Within each case we will also analyse the A ~ C&hres

and the A ~ 7dth~es cases separately.

Case 1: The number of vertices that belong to
the first class is at least n/2.

Consider first, the case when A c dt hr... we claim

that in this case H. # H. for u # v. This is because
more than 1/2 of the elements in the set HU is contained
in a(u, v) and more than 1/2 of the elements in the set
H“ is contained in a(v, u). Since a(u, v) n a(v, u) =

0, H. # H.. Hence the base set [k] has size at least
log(n/2) and the estimate in Theorem 6 follows.

Consider now, the case when A z 7dthreS. Clas-
sify these n/2 or more H“’s according to their size.
(Loosely- consider even equal Ho’s associated with dif-
ferent vertices to be different.) For some i (1 s, i S
log n) the number of His that have size between 2’ and
2i+1 is at least n/ log n. Concentrate only on these H“s.

If HV and 17W are two such sets, then IH” n HW I is

at most 3@lHV 1. This is because IHV n HW I ~ IHV \

cr(u, v)l + IHu \a(v, u)l+ lcr(u, v)n~(v, u)l S @(lH.1 +

IH”I) 5 3/31H~l. That a system of m = O(n/ logn)
sets with the above condition on their pairwise inter-
sections should be supported on a basis of size at least

min(m, W* log m) will be the topic of the next

section. The estimate is clearly sufficient to vindicate
Theorem 7.

Case 2: The number of vertices that belong to
the second class is at least n/2.

First, for every vertex v in class 2, using a proce-
dure that we describe below, we construct a set X(v).
X(v) will be the intersection of A – 2 sets of the form
cr(v, z). Define the set X1(v) to be any of the sets
(r(v, z). We will construct sets Xi(v), deriving set
X~+l(v) from set Xi(v), as given below. X(v) will be
the set XA-Z(V). Suppose that we have determined
the sets Xl(v),.. ., X~(v) = Xk. We now choose an
z~+l = z~+l(v) such that lxk \ a(v, ~k+l)l ~ /31X~l.
Note that such an ~k+l exists; otherwise v would be
a clam 1 vertex with HV = xk (v). We then set
Xk+l := Xk n a(V, Zk+l). f% x(v) is non-empty be-

cause of the feasibility condition. Note that lX~+I (v) I =
lXk(V) fI ~(V, Sk+l)l &

(1 – ~)lxk(v)l. Hence

Ix(ll)l s

The above inequality

Xl(v)l(l – 8)*-3. (2)

immediately gives Theorem 7

when A ~ 7dih,e. using the obvious IXV I ~ 1. (Re-

call that in this case /3 = (2 ‘og‘~~ *og‘l.)
We now turn to the analysls of the A < dth,e.

case. Our goal here is to extend (substantially!) the
“log log n“ lower bound proof for the A = 2 case. So,
mimicing the main idea of the A = 2 case, we associate,
with each vertex v belonging to the second class, a set
system Sv, such that the set systems ~sociated with
different vertices are different. For each such a v we
construct a set system Sv as follows. The set system
Su will consist of all the sets X(V) n a(v, Z), where z
runs through all the vertices different from v. We now
claim that if v and w are vertices in Class 2 then the
systems SV and SW are distinct. Indeed, a(v, w) h~
non-empty intersection with any element of Sv (which
are of the form XV (1 a(v, z)), whereas its intersection
with XW (1a(w, v), an element of the other set system is
empty. We will use the following simple combinatorial
lemma

Lemma 8 I.. (X1, S1), (XZ, SZ),.. .,(X~, S~) are $e~
systems such that the S~’s are distinct then either

maxi lX~l ~ lglgm/2 or I U~X~l ~ lgm/2.

Proof. Assume that maz lXi I < lg lg m/2. This im-

plies that there are at least m/22°””= distinct Xi ‘s.

Which means that the size of their union is at least
lg(m/22”” “’”) > lg m/2. 1

Applying the lemma to our case, we see that either

the largest of Xv has size at least log1°~(’”2], or else,

the number of colors is at least -. In the first case
we use Inequality 2 to get Theorem 6, whereas in the
second case Theorem 6 follows immediately. #

6 Constant weight codes

Here we deal with the problem raised in the previous
section. The problem is that given an integer m and a
ratio O <7< 1 determine the lower bound on the size of
X for a set sysem (X, S) with the following properties:

● ISI = m.

● There is an integer w such that for each H E S

w ~ IHl ~ 2w.

● If H1, H2 c S then IH1 nH21 S TIHII.

We simplify the problem by leaving out elements from
each H E $ such that their size becomes w uniformly.
This may incresse -y by a factor of at most 2. We then
recast this problem in the ‘coding theory’ framework
by considering the characteristic vectors of these sets.
Let us denote by A(k, d, w) the maximal possible num-
ber of binary vectors of length k, Hamming distance
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at least d apart, and constant weight w. This prob-
lem is studied extensively in [3]. Our task now trans-
lates to: Give a lower bound on k under the assumption
that A(k, d, w) ~ m and d = 2[w(1 – 7)1 for some
fixed y. (Note that the Hamming distance between the
characteristic vectors of two sets H’l and Hz is exactly
IHIAH,I = lH,l+p7,1-21H,nHzl.)

To this end we use a fairly trivial upper bound on A:

A(k, 2(5,W) ~
k(k–l)... (w+c$ )$)

(3)
W(W–l) ...6 “

First fix k and optimize the above expression over all w
under the condition that 6 = [w(1 – 7)1. If 6 = w then
the optimal value for w is 1. In this case we can lower
bound k by m. Otherwise the condition w > [w(1 –-Y)l
implies that w ~ y-1. (Note that w is an integer.) One
can show that in this case the expression increases in a
monotone fashion until w reaches k/e. We show that
w ~ 4ky. We have -y-l ~ n/ logn ~ m. Consider now
1/(27) sets, each of size w with pairwise intersection at
most yw. If we leave out the union for all the other
sets from any one of these sets, then we are still left
with at least w – (w7)/(27) = w/2 elements. So each
set contains at least w/2 elements that do not appear
in any of the other sets. This immediately gives that
k ~ -y-l w/4. Thus we can estimate the optimal value
for w by w = O(~k). But then from Inequality 3:

Hence k ~ min(m, ~((-~~~~j~~ log m)),

We mention that the upper bound construction of
Linial can be built using constant weight codes with
parameters ~ = l/A and A(k, d, w) ~ n.

7 More precise upper and lower

bounds for large values of A

Consider the case when A is very large compared to n.
The range of our interest is when A is at least 2@. It is
easy to show that when A=n–l, k = k(n, A)=n–1.
It is not hard either to show that if A = n – 2, then
k = n – 1, For n – 22 A z 2fi the following lemma
yields good lower bounds:

Lemma 9 If A ~ n/a + a then k is at least n – a.

Proof: Partition the vertices into two classes. Class 1
contains those vertices u for which there is an elment pu

that is common in all a(u, v), where v ranges through all
the vertices v # u. Every other vertex belongs to class

2. We argue that there are at most a– 1 vertices that be-
long to class 2. Indeed, assume that U1, . . ., u. are all in
ClaSS2. For 1 ~ i ~ a define Hi = fll<i#j<a ~(’lli , Uj).

For 1 s i ~ a the sets Hi are disjoiint, _Thus there
is some i such that lHi I s n/a. We now define sets
YO,Y1, Y2, . . . such that Yj is the intersection of exactly
j + a sets of the form ~(~i, z). Define YO= Hi. Once Y1
is defined, define Y?+l as Yi n cr(u~, v), for such a v that
Ilj+l I < Ilf [. Such a w exists because Ui is in class 2.
We stop when Y becomes the empty set. The number
of steps (i.e. 1) is at most [YoI = lHil ~ n/a. Note that
Y/ is the intersection of at most ~ + a of ~(~i, V)S. But
this violates the feasibility condition since A ~ ~ + a.

9

On the other hand:

Theorem 10 There is a construction for A ~ l; – 3j
that uses n – a colors.

Proof: Set the color set to be [k] = [n – a]. To
the first a vertices U1, ..., u~ we assign disjoint sets
Tl, ..., To, each of size [n/a – 1]. The corresponding set
systems (Ti, ‘HU, ) contain exactly those subsets of their
basis set that have size [n/a – 2j. For the remaining
vertices ua, . . . . u~ the set systems are disjoint single-

tons: (H., = {i – a}, a < i s n). One can see that the
conditions of Lemma 4 in Section 4 hold.

8 Iterative use of local coloring

R. Cole and Uzi Vishkin in [4] were the first to call atten-
tion to a type of algorithm that could break symmetry
in a distributed environment without using randomiza-
tion. They refer to the paradigm that these algorithms
follow as accelerated cascades. To break the symmetry,
each processor uses its own label as well the label of its
neighbors. In each phase the labels are recomputed and
the label set shrinks. However, throughout the com-
putation neighboring vertices never receive identical
labels. This gives an illusion, locally to each processor,
that the labeling is proper, i.e. each node has a different
label assigned to it. If, the size of the label set shrinks
exponentially in each phase, then the number of phases
is log* n + O(l). This allows them to 3-color a cycle in
log* n+ O(1) phases. Our upper bound construction for
the case A = 2 yields an algorithm that 3-colors a cycle
in (1/2) log* n + O(1) phases which, by Linial’s lower
bound, is tight to within the O(1) term.

The iteration is made possible by the following
lemma:

Lemma 11 Let G be graph with a proper coloring x :

V(G) ~[l,..., kl]. Then we can obtain another color-

ing x’ using the set systems a(i, j) (1 < i, j ~ kl) with
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properties described in Section 3, to create # by the fol-

lowing procedure: For a vertex v denote i = x(v) and

i =x(w) ,..., ~A = x(~A). Then X’(v) is defined as
the smallest element ofn~=la(i, j$). Coloring X’ will

be proper.

To see that the lemma holds we observe that # will be
proper because of the “disjointness condition” (see sec-
tion 3), When a local coloring procedure is iterated, is
each step the number of colors is reduced. Typically one
step reduces a color set of size n to one of size k(n, A).
There is a possibility however, that after a few steps of
iteration we arrive at a very special type of coloring that
can be very efficient y reduced in the steps thereafter.
Assuming that this does not happen, the results of the
previous section give the following theorem:

Theorem 12 (heuristic) Let 1< b < a s A/2. To

decrease the number of colors from aA to bA it takes

@(A log(a/b)) steps. In particular, to decrease the num-

ber of colors from A2/2 to A requires @(A log A) steps.

9 Open Problems

We list the following open problems:

Find an explicit version of the upper bound con-
struction given in this paper.

We have a set-system characterization when one
does local coloring after seeing only the immediate
neighborhood of a vertex. Is there such a char-
acterization of the problem when one looks at the
label on a vertex v and also at the subgraph in-
duced by the set of vertices that are at a distance t?
from v to decide on the color of v. Such a charac-
terization could then, perhaps, be used to find the
number of steps required to find a A + 1 coloring in
the distributed model of computing–a major open
question in that field.
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