
COMP 5704 Project Presentation

Simplifying Round-Based Distributed
Graph Coloring

David Worley
School of Electrical Engineering and Computer Science

University of Ottawa, Ottawa, Canada
dworl020@uottawa.ca

COMP 5704 Project Presentation

What is Graph Coloring?

Graph Coloring is the process of taking a graph and applying a
color to each vertex such that no two neighbouring vertices
share a color.

The main focuses of this problem are finding the smallest number
of colors possible for certain graph classes, or for designing
algorithms to find good, but not necessarily optimal, colorings in
fast runtime.

COMP 5704 Project Presentation

An Example Coloring

The image above shows a proper 3-coloring of
a 10-vertex, cubic graph.

COMP 5704 Project Presentation

Distributed Graph Coloring

Distributed graph coloring is the process of parallelizing graph
coloring algorithms to find proper colorings using as few colors
as possible, as fast as possible. This is usually done with round-
based algorithms to calculate a proper coloring after R rounds.

A coloring with a larger amount of colors can also be useful if we
have ways to reduce the number of colors using a separate
distributed algorithm that runs as fast or faster

COMP 5704 Project Presentation

A Lower Bound for Graph Coloring

Let Δ be the maximum degree of the
graph, then a Δ +1 coloring can be
generated for any graph using a simple
greedy sequential coloring algorithm.

This gives a baseline for a good coloring
size on our distributed setting, as we
know it is always obtainable.

A greedy Δ+1 coloring on a graph

with 8 vertices and Δ=4

COMP 5704 Project Presentation

An Upper Bound by Linial

In 1992, such a bound was established by Linial with an algorithm

that generates an O(Δ2) coloring in O(log*n) time, where log*n is
the iterated log function.

This gives a suitable upper bound as any graph coloring algorithm
running as fast, or slower, than Linial’s algorithm can use Linial’s
algorithm to obtain an O(Δ2) coloring.

COMP 5704 Project Presentation

Algorithm Optimality and Runtime

Linial also proved in his paper that any graph coloring algorithm
must use at least Ω(log*n) time to color even the simplest
graphs.

Since many graph coloring algorithms are round-based, the
complexity is expressed with respect to the number of rounds as
opposed to runtime with respect to the number of vertices.

COMP 5704 Project Presentation

Color Reduction

This changes research focus from finding a coloring algorithm to
finding a color reduction algorithm, that takes in a graph with an
input coloring and outputs a graph with a smaller coloring within
a certain amount of rounds

For example, the image to the right shows a

color reduction from a 4-coloring to a 2-coloring

COMP 5704 Project Presentation

Maus’s Paper

Maus introduces a new flexible coloring algorithm that generalizes
many current state of the art algorithms while simplifying the
ideas that they use.

This generalization is done using clever use of multiple parameters
that allow the algorithm to scale from running 1 round up to Δ,
with the size of the coloring scaling inversely

COMP 5704 Project Presentation

Parameters and Generality

Specifically, Maus’s algorithm will take in a value, k, specified by the user, and
generate an O(Δk)-coloring (16kΔ to be exact) in Δ/k rounds, assuming it was
given a graph with an input m-coloring and maximum degree Δ.

To view just how flexible this is, consider setting k= Δ. this gives an O(Δ2) coloring
in 1 round, recreating the results of Linial’s famous algorithm. We can similarly
get an O(Δ) coloring in O(Δ) rounds by setting k < Δ.

The algorithm is also adaptable enough to calculate a d-defective coloring as
well, generalizing many relevant results in distributed graph coloring.

COMP 5704 Project Presentation

Maus’s Algorithm

The algorithm generates the above polynomials of degree
f=ceil(logΔm) from a prime field of size q, where q is the smallest
prime > 2ΔlogΔm.

This choice of f and q guarantees that the sequences for any two
vertices will only conflict with f tuples, and since the algorithm
will test more than f tuples, a proper coloring is guaranteed.

COMP 5704 Project Presentation

Coloring a Vertex With Maus’s Algorithm

So take pm = a1x1+ a2x2+ … + afxf where f=logΔm

and (a0, a1,…, af) corresponds to the mth polynomial

If a vertex v has input color m, we sample

polynomial pm for k values (p(x) for x=0,…,k-1)

Seqv = (pm(0)%q, pm(1)%q, …, pm(k-1)%q)

Calculate the sequence of v, modding the

elements by q as pm is a polynomial from a

finite field.

The processor working on vertex v will send

this sequence to the main processor for

conflict checking.

COMP 5704 Project Presentation

A Round of Maus’s Algorithm

Step 1: Each processor calculates

the sequence for its nodes and

sends it to the main processor

Step 2: Main processor uses

the sequences to check for

conflicts and create the new

coloring

Step 3: Main processor redistributes

the new coloring so each processor

can calculate new sequences

working

COMP 5704 Project Presentation

Algorithm Implementation

The algorithm was implemented in C++ using MPI and involved
generating the polynomials for each input color.

Then, each processor will calculate the color sequence for each
vertex it was assigned and send these sequences to a main
processor. This main processor will attempt to recolor vertices
with their sequences, marking them as inactive when they’ve
been successfully colored.

This process is repeated for the required number of rounds, and
the unique properties of polynomials from a prime field
guarantee that all vertices will be colored upon completion.

COMP 5704 Project Presentation

Data and Parameters

Why is

A small Python program to generate random graphs was used to
generate input colorings for the implementation. These input colorings
would randomly generate an edge set, calculate Δ, and generate a
coloring, then output the contents for testing.

The coloring initially chosen was to use each vertex’s ID as its color for
an input |V|-coloring and k was chosen such that 1 <= k <= 4Δ

COMP 5704 Project Presentation

Before and After Coloring

A graph with an input 46-coloring The graph after 6 rounds of Maus’s Algorithm,

now with a 15-coloring

The above graphs are isomorphic, though the graph visualization library used

displays them slightly differently

COMP 5704 Project Presentation

Experimental Results

Why is

Number of

Vertices

Max

Degree (Δ)

Number of

Rounds

Colors in

Input

Coloring

Colors in

Output

Coloring

Time

Elapsed

(s)

10 6 4 10 8 0.115

100 13 10 100 26 0.692

250 10 16 250 55 1.553

500 12 19 500 76 1.859

1000 13 20 1000 91 53.562*

*The long runtime of the 1000 vertex graph is likely due to the implementation

of the graph as an adjacency matrix as opposed to an adjacency list

COMP 5704 Project Presentation

Future Work

Why is

1. The runtime of the algorithm could be improved by using an adjacency list instead
of an adjacency matrix to minimize the time it takes to check for conflicts with
neighbours

2. Due to needing the most up to date coloring during its conflict checking, the
algorithm works off of a main processor that collects the color sequences after
each round and checks conflicts, this creates a bottleneck that will be especially
noticeable as the number of processors increases.

3. Adapting the implementation to handle d-defective colorings (where the current
algorithm uses d=0) would add extra flexibility and generality to the algorithm.
This involves significant changes to the conflict checking methodology.

COMP 5704 Project Presentation

Summary

Why is

Overall Maus’s algorithm shows strong results in reducing large input
colorings on graphs. The algorithm can recreate the results of various
algorithms using a clever choice of parameters and is a strong, flexible
algorithm that simplifies many state of the art results in distributed
graph coloring.

Further, additional work to improve the implementation should show
strong runtime speedups for large graphs as well.

COMP 5704 Project Presentation

Questions For Audience

Why is

1. Why is research focusing on color reduction algorithms instead of
coloring algorithms?

2. Why do we have a lower bound of Δ+1 for colorings instead of
something smaller/bigger?

3. Is it possible to color an n-cycle in constant time?

COMP 5704 Project Presentation

Thanks!

Any Questions?

