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What is Graph Coloring?

Graph Coloring is the process of taking a graph and applying a 
color to each vertex such that no two neighbouring vertices 
share a color. 

The main focuses of this problem are finding the smallest number 
of colors possible for certain graph classes, or for designing 
algorithms to find good, but not necessarily optimal, colorings in 
fast runtime. 
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An Example Coloring

The image above shows a proper 3-coloring of 
a 10-vertex, cubic graph.



COMP 5704 Project Presentation

Distributed Graph Coloring

Distributed graph coloring is the process of parallelizing graph 
coloring algorithms to find proper colorings using as few colors 
as possible, as fast as possible. This is usually done with round-
based algorithms to calculate a proper coloring after R rounds.

A coloring with a larger amount of colors can also be useful if we 
have ways to reduce the number of colors using a separate 
distributed algorithm that runs as fast or faster
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A Lower Bound for Graph Coloring

Let Δ be the maximum degree of the 
graph, then a Δ +1 coloring can be 
generated for any graph using a simple 
greedy sequential coloring algorithm.

This gives a baseline for a good coloring 
size on our distributed setting, as we 
know it is always obtainable.

A greedy Δ+1 coloring on a graph 

with 8 vertices and Δ=4
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An Upper Bound by Linial

In 1992, such a bound was established by Linial with an algorithm 

that generates an O(Δ2) coloring in O(log*n) time, where log*n is 
the iterated log function.

This gives a suitable upper bound as any graph coloring algorithm 
running as fast, or slower, than Linial’s algorithm can use Linial’s 
algorithm to obtain an O(Δ2) coloring.
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Algorithm Optimality and Runtime

Linial also proved in his paper that any graph coloring algorithm 
must use at least Ω(log*n) time to color even the simplest 
graphs. 

Since many graph coloring algorithms are round-based, the 
complexity is expressed with respect to the number of rounds as 
opposed to runtime with respect to the number of vertices. 
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Color Reduction

This changes research focus from finding a coloring algorithm to 
finding a color reduction algorithm, that takes in a graph with an 
input coloring and outputs a graph with a smaller coloring within 
a certain amount of rounds

For example, the image to the right shows a 

color reduction from a 4-coloring to a 2-coloring
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Maus’s Paper

Maus introduces a new flexible coloring algorithm that generalizes 
many current state of the art algorithms while simplifying the 
ideas that they use.

This generalization is done using clever use of multiple parameters 
that allow the algorithm to scale from running 1 round up to Δ, 
with the size of the coloring scaling inversely
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Parameters and Generality

Specifically, Maus’s algorithm will take in a value, k, specified by the user, and 
generate an O(Δk)-coloring (16kΔ to be exact) in Δ/k rounds, assuming it was 
given a graph with an input m-coloring and maximum degree Δ. 

To view just how flexible this is, consider setting k= Δ. this gives an O(Δ2) coloring 
in 1 round, recreating the results of Linial’s famous algorithm. We can similarly 
get an O(Δ) coloring in O(Δ) rounds by setting k < Δ.

The algorithm is also adaptable enough to calculate a d-defective coloring as 
well, generalizing many relevant results in distributed graph coloring.
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Maus’s Algorithm

The algorithm generates the above polynomials of degree 
f=ceil(logΔm) from a prime field of size q, where q is the smallest 
prime > 2ΔlogΔm.

This choice of f and q guarantees that the sequences for any two 
vertices will only conflict with f tuples, and since the algorithm 
will test more than f tuples, a proper coloring is guaranteed.
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Coloring a Vertex With Maus’s Algorithm

So take pm = a1x1+ a2x2+ … + afxf where  f=logΔm

and (a0, a1,…, af) corresponds to the mth polynomial

If a vertex v has input color m, we sample 

polynomial pm for k values (p(x) for x=0,…,k-1)

Seqv = (pm(0)%q, pm(1)%q, …, pm(k-1)%q)

Calculate the sequence of v, modding the 

elements by q as pm is a polynomial from a 

finite field.

The processor working on vertex v will send

this sequence to the main processor for 

conflict checking.
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A Round of Maus’s Algorithm

Step 1: Each processor calculates

the sequence for its nodes and 

sends it to the main processor

Step 2: Main processor uses 

the sequences to check for 

conflicts and create the new 

coloring

Step 3: Main processor redistributes

the new coloring so each processor 

can calculate new sequences

*working*
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Algorithm Implementation

The algorithm was implemented in C++ using MPI and involved 
generating the polynomials for each input color.

Then, each processor will calculate the color sequence for each 
vertex it was assigned and send these sequences to a main 
processor. This main processor will attempt to recolor vertices 
with their sequences, marking them as inactive when they’ve 
been successfully colored.

This process is repeated for the required number of rounds, and 
the unique properties of polynomials from a prime field 
guarantee that all vertices will be colored upon completion.



COMP 5704 Project Presentation

Data and Parameters

Why is 

A small Python program to generate random graphs was used to 
generate input colorings for the implementation. These input colorings 
would randomly generate an edge set, calculate Δ, and generate a 
coloring, then output the contents for testing.

The coloring initially chosen was to use each vertex’s ID as its color for 
an input |V|-coloring and k was chosen such that 1 <= k <= 4Δ
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Before and After Coloring

A graph with an input 46-coloring The graph after 6 rounds of Maus’s Algorithm, 

now with a 15-coloring

The above graphs are isomorphic, though the graph visualization library used 

displays them slightly differently
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Experimental Results

Why is 

Number of 

Vertices

Max 

Degree (Δ)

Number of 

Rounds

Colors in 

Input 

Coloring

Colors in 

Output 

Coloring

Time 

Elapsed 

(s)

10 6 4 10 8 0.115

100 13 10 100 26 0.692

250 10 16 250 55 1.553

500 12 19 500 76 1.859

1000 13 20 1000 91 53.562*

*The long runtime of the 1000 vertex graph is likely due to the implementation 

of the graph as an adjacency matrix as opposed to an adjacency list
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Future Work

Why is 

1. The runtime of the algorithm could be improved by using an adjacency list instead 
of an adjacency matrix to minimize the time it takes to check for conflicts with 
neighbours 

2. Due to needing the most up to date coloring during its conflict checking, the 
algorithm works off of a main processor that collects the color sequences after 
each round and checks conflicts, this creates a bottleneck that will be especially 
noticeable as the number of processors increases.

3. Adapting the implementation to handle d-defective colorings (where the current 
algorithm uses d=0) would add extra flexibility and generality to the algorithm. 
This involves significant changes to the conflict checking methodology.
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Summary

Why is 

Overall Maus’s algorithm shows strong results in reducing large input 
colorings on graphs. The algorithm can recreate the results of various 
algorithms using a clever choice of parameters and is a strong, flexible 
algorithm that simplifies many state of the art results in distributed 
graph coloring.

Further, additional work to improve the implementation should show 
strong runtime speedups for large graphs as well.
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Questions For Audience

Why is 

1. Why is research focusing on color reduction algorithms instead of 
coloring algorithms?

2. Why do we have a lower bound of Δ+1 for colorings instead of 
something smaller/bigger?

3. Is it possible to color an n-cycle in constant time?
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Thanks!

Any Questions?


