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1 Introduction

Which coffee shop is the closest so you can grab a cup without being late to
class? Which gas station is closest so you minimize your risk of running out of
fuel? Which post office is closest to you so you know where is best to drop off
your mail? These are examples of problems people face every day, all oriented
around the question, “If I'm here, whats the closest thing to me so I can get
there fastest?” This question is simply an informal statement of the famous
Nearest Neighbour Problem, also frequently called the Post Office Problem.

1.1 Problem Statement

Mathematically, the Nearest Neighbour Problem asks the following:

Given a query point ¢, and a set of points S, what is the point p € S such
that d(p,q) < d(r,q), Vr € S,r # p, for some distance function d.

The most clear example of the problem would be to use points in the plane,
this would be the same as above with S C R? and d(p, q) = ||p- q||. for p,q € S.

While this may be more clear, the problem naturally extends to any metric
space due to its general statement, and in real world data it is far more common
to have data with many more than two coordinates. Typically, the number of
attributes each object of S has is referred to as the dimensionality of the data.
For example, in R0, the dimensionality of the data would be 10.

2 Methodology

The nearest neighbour problem can be approached in numerous ways, and
the best approach is not always obvious. In cases with high dimensionality or
a very large amount of data, it may be better to find a “close enough” nearest
neighbour in a fraction of the time than it is to find the exact nearest neighbour,
in this scenario an approximate nearest neighbour approach can be employed. In
other cases the exact nearest neighbour may be required, with an approximation
simply not being good enough.

2.1 Brute Force Approach

The simplest method of solving the nearest neighbour problem is to check
the distance from the query point to all other points of S, keeping track of the
minimum at each check. This is the slowest approach, but on small sets of data
it may be sufficient and desired due to its simplicity. This brute force approach
takes O(n) time, where n is the size of the data set .S, but requires no additional
space. This O(n) time can become slow and lags behind other approaches as
the size of the set S increases.[1]



Input: q - a query point,
S - a set of points

Qutput: p - a point that is the nearest neighbour of g
Method Nearest Neighbour(qg, S):

min_d = +inf
min_p = Mone

for p in S:
if d{(q,p) < min_d:
min_d = d(p,q)
min p = p

return min_p

Figure 1: Psuedocode for a brute force nearest neighbour search

2.2 Space Partitioning Methods

A faster method for solving the nearest neighbour problem is to employ the
use of trees to quickly partition the data set, limiting the number of points
one needs to check to find the nearest neighbour. A common structure for this
approach is a kd-tree.

In a kd-tree, each internal node consists of a splitting plane that divides the
search region in half. Under this construction, a nearest neighbour search can
be performed in two parts, first by searching for the query point in the tree and
following the path to the leaf. If the path has k nodes, then the search space
has been split in half k£ times. Then this path can be unravelled to search for
candidate points close to the splitting planes by considering a hypershpere with
radius equal to the current minimum distance, and continuing down the other
side of the splitting plane if the sphere intersects the splitting plane to search
for closer candidate points.

For a set S of size n, the kd-tree requires O(n) space and can execute a
nearest neighbour query in, on average, O(logn) time, making this approach
significantly faster on average than the brute force approach.[2] However, for
randomly distributed points the worst case of the search is O(kn!~+), where k
is the dimensionality of the data. in this case, the increase over the brute force
method is marginal. [3]
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Figure 2: An example of a point set S and its corresponding k-d tree

2.3 Greedy Approximation

The methods mentioned previously are both exact methods, guaranteed to
give the nearest neighbour to the query point. However, there are cases where an
approximate nearest neighbour is essentially just as good. One example could
be that it does not make a large difference if you go to a coffee shop 310 meters
when the closest one is 300 meters away, as the difference is largely negligible
and you still get your coffee. In cases like this the use of an approximate nearest
neighbour algorithm can be employed. An important quality for approximate
nearest neighbour is that the approximation is, of course, good. Because of this
many greedy methods are designed such that the distance they return will be
less than a constant multiple times the true minimum distance [4]

The current best known approximation methods for the nearest neighbour
approaches are greedy in nature, with a common approach making use of prox-
imity graphs created using elements of S as vertices, with an edge between two
vertices if they are within a certain distance from each other. A nearest neigh-
bour approximation for a query point ¢ can then be found by picking a vertex
v of the proximity graph G, and calculating the distance between v and ¢, as
well as the distance between ¢ and all neighbours of v in G. If a neighbour of
v is closer to ¢, than the search moves to that vertex and repeats the process,
only terminating when the search arrives at a vertex whose neighbours are all
further from the query point than it is.[5]

Another approach is to convert the exact kd-tree approach into an approx-
imation method. This can be done by simply setting an upper bound on the
number of points checked and returning the minimum after either the search
has been exhausted or the upper bound is complete.



2.4 Dimensionality of Data

The dimensionality of the data is an important aspect for nearest neigh-
bour problems, as data with higher dimensionality is better suited to different
approaches than low dimensionality data. A common issue faced by high dimen-
sional data is informally known as the Curse of Dimensionality, and refers to
the tendency for nearest neighbour solutions to degrade in performance on data
with high dimensionality. For example, in the kd-tree scenario outlined above it
is common for higher dimensional data to be more sparse, causing the algorithm
to need to check in a wider range around its splitting plane, frequently causing
it to search down many paths. This can be so extreme that the query runs in
nearly linear time, erasing the speed benefit of the splitting approach while still
using O(n) space. [6]

It is important to note, however, that this is not always the case. The above
issue typically occurs when some of the data attributes are less impactful in the
distance calculations (and can be considered "noise” data, instead of valuable
information). Thus, it is very important to only include necessary data and to
apply dimensionality reduction on data when possible to alleviate this issue.

3 Some Common Variations

The Nearest Neighbour Problem has many variations, each with their own
complexities, intricacies, and approaches.

3.1 k-Nearest Neighbours

The k-nearest neighbours problem is a very similar problem to the classic
nearest neighbour problem. Instead of asking for the single closest neighbour,
to the query point g, it asks for the k nearest points. This variation frequently
occurs in the fields of statistics and machine learning due to its applications in
regression and classification which will be detailed more thoroughly in Section
5.3.

This variation can be solved using brute force in O(k + nlogn) by checking
the distance from the query point g to every point of S and storing it in an
array, then sorting the array and taking the first k elements.

Another approach is to use a kd-tree or a ball-tree, which allows for query
times of O(klogn).[7] In this approach, the k-d tree is constructed as normal,
and can then be queried k£ times, removing the nearest neighbour each time.
This still can be improved, as the k£ points found will be relatively close to each
other. Keeping this in mind, its possible to modify the k-d tree algorithm to
find all k nearest neighbours in one search. [§]

3.2 All Nearest Neighbours

The All Nearest Neighbours problem is equivalent to asking what the nearest
neighbour to ¢ is, for every ¢ in S. This can clearly be solved by running a nearest



neighbour query on each point of S (and not considering the d(g, q) case), but
this approach is very slow and makes many repeated calculations.

A better approach would be to exploit the repeated calculations (for example,
the distance from x to y is the same as the distance from y to x) to reduce the
number of distance calculations needed. Its been proven that O(nlogn) is the
optimal time complexity for an all nearest neighbours algorithm. A notable
example by P. Vaidya achieves this by splitting points into smaller and smaller
boxes, with each box containing some neighbourhood information. Vaidya also
proved that his algorithm is optimal up to a constant factor. [9]

3.3 Fixed Radius Nearest Neighbours

The fixed-radius nearest neighbour search is slightly different as it is the
only variation mentioned here where the number of neighbours being searched
for is not known beforehand. The fixed radius nearest neighbour problem asks,
“For a radius r, and a query point ¢, which points p of S have d(p, q) < r?” The
problem can be equivalently rephrased as, “Given an n-dimensional hypersphere
of radius r, centred at a given point ¢, which points p of S are contained within
the hypersphere?”, where the dimensionality of the data is n.

The problem can also be solved with kd-trees by visiting a nodes subtree if
and only if the subtree overlaps with the hypersphere of radius r, centered at
the query point.

4 The Closest Pair of Points Problem

The Closest Pair of Points problem asks the question, “Given a set of points
S, find the two points, p and ¢, of S such that d(p, ¢) is minimal.”

4.1 The Brute Force Solution

The problem can be solved in O(n?) time by calculating the distance from
each point to every other point, tracking the minimum at each comparison. This
process takes no extra space, but is very slow as the size of S increases.

The above psuedocode demonstrates the simplicity of the brute force ap-
proach.



Input: S - a list of points sorted by x-value,
n - the size of S

Qutput: T - a 3-tuple containing p, q, and d(p,q),
where p and g are the closest pair of points in S

Method Closest Brute Force(S, n):
min = +inf
pointl = None
point2 = None
for p in points:
for g in points:
if p == q:
continue
if d{(p,q) < min:
min = d(p,q)
pointl = p
point2 = q

return (pointl,point2, min)

Figure 3: Psuedocode for the brute force closest pair solution

4.2 A Divide and Conquer Approach

The problem can also be solved by employing a recursive divide and conquer
technique on a point set sorted by x-value such that it divides the set into a
left side, a right side, and a middle strip at each division. The closest pair on
the left and right side as well as in the middle strip are calculated, and the
minimum of those is kept going into the next recursive call. The base case for
the recursion is when the split sides have 3 or fewer points, in which case the
brute force algorithm is run on them to calculate the closest pair.

This approach results in a query time of O(nlogn), and since all operations
are done on the original list of points, no additional space is required. The main
drawbacks of this approach is that it does not scale with the dimensionality of
the data, and is only practical in the planar case (dimensionality equal to two).
Despite this, its speed and simplicity make it one of the best approaches for the
planar closest pair problem.



Input: S - a list of points sorted by x-value,
n - the size of S

Qutput: T - a 3-tuple containing p, q, and d(p,q),
where p and g are the closest pair of points in S

Method Closest Recursive(S, n):
if n <= 3:
return Closest_Brute_Force(5,n)

mid = floor(n/2)
p = S[mid]

(pli, pl2, dl1) = Closest Recursive(5[@, mid], mid)
(prl, pr2, dr) = Closest Recursive(5[mid, n], n-mid)

if dl < dr:
min_pl = pll
min_p2 = pl2
min_d = dl

else:
min_pl = prl
min_p2 = pr2
min_ d = dr

strip = []

for point in 5:
if abs(point.x - p.x) < min_d:
strip.push(point)

strip n = len(strip)
(ps1,ps2,ds) = Closest Strip(strip, strip _n, min_pl, min_p2, min_d)

if min_d < ds:

return (min_pl, min_p2, min_d)
else:

return (psl,ps2,ds)

Figure 4: Psuedocode for the divide and conquer closest pair solution



Input: S - a list of points sorted by x-value,
n - the size of §,
pl - a current minimum point,
p2 - the other current minimum point,
dist - d(pl, p2)

Qutput: T - a 3-tuple containing p, q, and d(p,q), where p and q are the
closest pair of points in §

Method Closest_Strip(S, n, pl, p2, dist):
min_d = dist
min_p1 pl
min_p?2 p2

# Sort S by y-value
sort(5.y)

for i in range(@,n):
j = i+l
while j < n and S[j]-y - s[i].y < min_d:
min_d = d(S[1], S[3])
min_pl = S[i]
min_p2 = s[j]
j+=1
return (min_pl, min_p2, min_d)

Figure 5: Psuedocode for finding the closest pair within a middle strip

One interesting observation is that the calculation of the closest pair within
the strip (fig. 5) appears to be O(n?) at a glance, however, for each point in
the inner loop, there are only 6 points that need to be checked[10], making the
complexity of the strip method O(n).

This can be seen by considering a rectangle of side length d and 2d, it can
be shown by placing circles of radius d on each corner of the rectangle, as well
as at both halfway points of the longer line, that this box can only contain at
most 6 points. This observation means we only need to check 6 points for each
point in S, and thus, the Closest_Strip algorithm runs in O(nlogn) time as well
(due to the sorting of 5).

Analysis on n=50,000 unique points in R? with coordinates in [—~5000, 5000]
showed the divide and conquer algorithm running approximately 275x quicker
than the brute force algorithm, based off of the average of 10 random trials on
algorithms implemented in Rust.
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4.3 Relation to Voronoi Diagram

Recall that the Voronoi region of a point p is the region surrounding the
point such that all points within the region are closer to p than any other point,
and the Voronoi Diagram for a point set is the collection of Vonoroi regions for
each point in the set. Its clear that the closest pair of points will have adjacent
Voronoi regions, and thus the closest pair can be found by checking the distance
between points with adjacent Voronoi regions and storing the minimum.

The Delaunay Triangulation relates similarly to the closest pair problem. In
the Delaunay Triangulation, the dual of the Voronoi Diagram, the closest pair
of points corresponds to an edge, so each edge can be checked to find the closest
pair.

Both the Voronoi diagram and the Delaunay Triangulation can be calculated
in O(nlogn) time and, once either is obtained, the closest pair of points can be
found in O(n) time using the above observations.[10]

5 Applications

Due to its generality and importance, the nearest neighbour problem arises
in many different fields to solve problems. Nearest neighbour approaches can
be useful for any problem in which an objects similarity to other objects in a
set or database is important.

5.1 In DNA Sequencing

One fascinating example of the nearest neighbour problem’s applicability is
in DNA sequencing. Given a query DNA sample, finding its nearest neighbours
in a set of DNA samples with known classifications (proneness to disease for ex-
ample), can give approximations of what the classification of the query DNA is
as well. This is particularly useful on large data sets where the k-nearest neigh-
bours to a sample are more likely to accurately reflect the classification of the
sample, as too sparse of a dataset may give results that are largely meaningless
or innaccurate.

5.2 Plagiarism Detection

Another interesting example of an application of the nearest neighbour prob-
lem is in plagiarism detection. For each submitted assignment, how close it is
to its nearest neighbour in a database of entries would be an accurate measure
of how much identical content is shared between the two documents. There
are certainly more complexities in the distance calculations for these objects,
with a modified Levenchstein distance being a likely candidate for measuring
similarity by measuring the amount of operations (character removal, changing,
or a cyclic shift of the string) it takes to transform one string of characters into
another.
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5.3 Machine Learning

Nearest neighbour problems are frequently employed in classification and
regression, with the k-nearest neighbour algorithm being a very fundamental
algorithm in classification. Consider a query picture and a set of pictures whose
classification is known, then the classification of the query picture can be as-
sumed based off of the classification of its k-nearest neighbours. Similarly, if you
had a set of points, and their corresponding values, you could find the approx-
imate value of a query point ¢ by finding the k-nearest neighbours, and taking
the average of their values, this allows k-nearest neighbours to be used to model
regression when enough test data is obtained.

One large drawback of this method is that if the data is dominated by points
of one type of classification, its likely that the k-nearest neighbours for a query
point will include points of that classification, regardless on whether its accurate
or not. This makes data reduction and proper data collection extremely impor-
tant when it comes to using k-nearest neighbours for classification problems.
For example, if a database has 20,000 pictures of cats, but only 5,000 pictures
of dogs, then a collection of k-nearest neighbours for a query picture of a dog
may be more likely to include pictures of cats that skew the classification and
accuracy of the algorithm.

Conveniently enough, a modified nearest neighbour search known as Con-
densed Nearest Neighbour search can be used to reduce datasets. CNN search
uses a set of prototype data (known to give accurate results) and, for each pro-
totype, selects its nearest neighbours with different classifications to create a
new, smaller dataset that can more reliably be used for classification.

6 Current Research Focuses

Due to the large amount of focus on machine learning and artificial in-
telligence, current research and applications regarding the nearest neighbour
problem are skewed towards these results, with a large portion of papers being
related to applications of k-nearest neighbour to machine learning. This is un-
surprising since the k-nearest neighbours algorithm is one of the most popular
classification approaches in machine learning due to its speed and simplicity.

Applying nearest neighbour search to new problems and areas like animal
behaviour is also a recurring research theme when looking at recent nearest
neighbour publications.

This overall trend shows that as of right now the research climate around this
problem is applying nearest neighbour results to other fields and areas, with a
smaller focus on improving the nearest neighbour approaches themselves. This
could largely be due to multiple variations having near optimal algorithms al-
ready, such as all nearest neighbour and k-nearest neighbour. However, due to
its prevalence in artificial intelligence, variations of k-nearest neighbour algo-
rithms have been created for solving classification problems. [11]

While the fundamental algorithms are near optimal, plenty of work has been
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done in improving specialized nearest neighbour algorithms in different appli-
cations. For example, an improved nearest neighbour algorithm for DNA clus-
tering was recently developed. [12]

7 Future Work

Potential areas for future study would be to examine more specialized vari-
ants of the nearest neighbour problem, such as the ones used in DNA sequencing
and a closer look into k-nearest neighbour algorithms used in classification. An-
other interesting area of future work would be to provide more implementation
and runtime details for nearest neighbour algorithms and variations, such as a
kd-tree implementation or proximity graph based approximation method. These
could be compared in runtime and accuracy to a brute force implementation on
separate data sets to weigh the benefits of the separate approaches and highlight
the worst case scenarios for both.

8 Conclusion

It is evident from its wide range of variations and applications that the near-
est neighbour problem is an important, fundamental problem that spans many
different fields in terms of its applicability. Through an analysis of the closest
point variation, we can see the extreme run-time differences that approaching
the nearest neighbour problem in a smart manner can create. It can also be seen
that its applications to areas like machine learning reinforce its importance, as it
allows for greater progress to develop in other areas. It seems likely that as the
nearest neighbour problem is applied to more and more fields, more variations
will arise to efficiently solve these specialized problems.
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