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1 Problem Statement

The Chromatic Number of the Plane, also called the Hadwiger-Nelson prob-
lem, is an unsolved geometric graph theory problem first formulated by Edward
Nelson in 1950. The problem asks for the minimum number of colours needed
to colour the plane such that any two points of unit distance (i.e. the distance
between them is exactly one) from each other have a different colour, the value
is often referred to as CNP . In 1951, de Brujin and Erdős proved that when all
finite subgraphs of an infinite graph G can be coloured with c colours, G could
be coloured with c colours as well. This reduced the Hadwiger-Nelson problem
to that of finding the largest possible chromatic number for a finite unit-distance
graph.[1] For any readers unfamiliar with the term, a unit-distance graph is a
graph formed by distinct points, with an edge between two points if the distance
between them is exactly one.

2 Early work on bounds

2.1 An Upper Bound

A construction of a colouring of the plane utilizing 7-colours can be seen
as follows. Consider a tiling of the plane of hexagons with diameter slightly
less than 1. In this case, all points within the same hexagon are less than unit
distance, and a hexagon can be surrounded with 6 hexagons of different colours.
Under this tiling, any 2 points of the same colour are either less than unit
distance, in which case they are in the same hexagon, or more than unit distance,
in which case they are separated by at least one hexagon of a different colour.
This tiling gives CNP ≤ 7 as an upper bound. See fig. 1 for a visualization of
such a tiling.

It’s certainly worth noting that no improvements have been made on this
upper bound since the discovery of this hexagonal tessellation by J. Isbell in the
1950s.

Figure 1: An example of a 7-colourable tiling of the plane, where each hexagon
has diameter slightly less than one.
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2.2 Trivial Lower Bounds

While proving CNP > 3 also proves that CNP > 2, a proof that CNP > 2
is presented anyway to show its simplicity.
Suppose the plane was 2-colourable. Now consider an equilateral triangle with
side length equal to one embedded in the plane as a unit-distance graph. Then,
two of the three points of the triangle must be the same colour, and since their
corresponding side length is one, it contradicts that the plane has a valid 2-
colouring.

Similarly, suppose the plane was 3-colourable. Consider an embedding of
the Moser Spindle (fig. 2), a unit distance, 4-colourable graph, in the plane.
The Moser Spindle graph is not 3-colourable, so two adjacent vertices contained
within it must share the same colour, contradicting that the plane has a valid
3 colouring. The same result can instead be shown using an embedding of the
Golomb graph (fig. 2), a separate unit-distance, 4-colourable graph. Thus,
CNP ≥ 4.

Figure 2: The Moser Spindle (left) and the Golomb Graph, both 4-coloured.

3 Improvement by De Grey

The lower bound of four remained for another 57 years, lasting until 2018
when Aubrey De Grey found a family of unit distance graphs that were not
4 colourable, with the smallest of which known to De Grey at the time of
publication being one with 1581 vertices. The graph (fig. 3) is far too dense
to make sense of its structure visually, but De Gray lies out his process for its
construction in detail in [2]. A short summary of the construction is as follows.
Begin by considering the 7-vertex, 12-edge unit distance graph H depicted in fig.
3. This graph can be coloured in four essentially distinct ways using at most
4 colours, with ”essentially distinct” referring to colourings that are distinct
up to rotation, reflection, and colour transposition. Note that two of these
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colourings consist of a monochromatic triple, a set of 3 vertices of the same
colour. De Grey iteratively constructed graphs using copies of H to build larger
graphs that are 4-colourable. From there, he exploits the presence or absence of
monochromatic triples in the H subgraphs in proper colourings of these larger
graphs to force a resulting graph to not 4-colourable. The 4-colourability check
is done with computer assistance due to the size of the graphs. Surprisingly,
this computation, based off a modified depth-first search, is efficient due to the
forced monochromatic triples in the final resulting graph allowing many colour
options to be fixed early in the search. Even for De Grey’s initial 20,000 vertex
graph, the verification was completed in mere minutes.

Since De Gray’s discovery, a set of mathematicians began working to exploit
the structural properties of his graph to find smaller examples of unit distance
graphs that were not 4-colourable. This was largely done through the collab-
orative mathematics project Polymath. Since then, smaller 5-colourable unit-
distance graphs have been found with the current smallest being a 510-vertex
example found by Jaan Partsin 2019. See the polymath thread ([3]) for some
interesting discussion and visualizations regarding these size improvements.

Figure 3: Left: H, the starting graph, and its 4 essentially distinct colourings.
Right: A 1581-vertex unit distance graph that is not 4-colourable

4 Axiomatic Issues

4.1 The Axiom of Choice

All proofs of the De Brujin-Erdős Theorem discovered so far are dependent
on the assumption that the Axiom of Choice holds. The Axiom of choice,
hereafter referred to as AC, says that given any collection of nonempty sets it
is possible to make a selection of exactly one element from each set, regardless
of if there are infinite sets in the collection. Therefore, in certain models of
mathematics where AC is not assumed true, the result by De Brujin and Erdős
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can not be assumed and the Hadwiger-Nelson problem cannot be reduced to
the problem of finding the maximal chromatic number of a finite unit distance
graph. The main controversy regarding the validity of AC is that it can be
used to show the existence of objects that seem paradoxical or, even stranger,
objects where it is consistent (impossible to contradict) that the object is not
definable. A notable example of one of these illogical sounding results is what
is called the Banach-Tarski paradox. This paradox states that, supposing AC
holds, it can be proved that a 3-dimensional ball can be broken down into a
finite number of point sets, and reassembled into two 3-dimensional balls with
the same volume as the original[4]. While this makes no sense intuitively, the
result is not actually a paradox, largely following from it being impossible to
measure the volume of a point set.

4.2 Effects on the Hadwiger-Nelson problem

If AC were to not hold, and the Hadwiger-Nelson problem were not reducable
by the De Brujin-Erdős Theorem, then it is entirely possible that the chromatic
number of the plane (an infinite unit-distance graph) could be greater than the
chromatic number of all finite unit-distance graphs. The only way to properly
bound CNP by above would be to prove the result for infinite unit-distance
graphs, which is certainly a difficult task. Especially since computer assistance
is a large factor in recent results, and would likely be much harder to apply to
the infinite case.

The lower bound for the Hadwiger-Nelson problem would however not be
affected, as it would still hold that the chromatic number of the plane cannot
be less than the chromatic number of a subset of the plane.

5 A General Statement and Similar Problems

One may ask the question, “Is a similar problem on a different metric space
easier? Harder?” This section will introduce some examples to show the varying
complexity of that question and how different it can be in approach. Referring
to the metric of a set as a distance function, the problem can be stated in its
most general form as:

“Given a metric space M , with distance function d. How many colours are
necessary to colour all elements of M such that for all m,n ∈M , if d(m,n) = k,
m and n have different colours.”

Clearly, taking R2 and the Euclidean distance as a metric space with k = 1
gives the standard definition of the Hadwiger-Nelson problem. For the following
examples, we define χ(M,d, k), where M is the set, d is the metric, and k is an
element of the image of d. This notation is convenient, and certainly much easier
to write. The Hadwiger-Nelson Problem, for example, would be represented as
CNP = χ(R2, || · ||, 1), where || · || is the Euclidean norm, much shorter than
the problem statement given in section 1.
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5.1 Higher Dimension

We first will look at problems of the form (χ(Rn), || · ||, 1) for n > 2. This
is the same as the statement of the Hadwiger-Nelson problem for dimension
greater than two. For example, the n = 3 case (usually referred to as the
chromatic number of space) is currently known to be bounded below by 6, and
bounded above by 15. The upper bound, shown by D. Coulson, was a result of
a lattice colouring scheme[5], while the lower bound, shown by O. Nechustan,
results from a three-dimensional, unit-distance graph that is shown to have no
5-colouring[6].

In the n-dimensional case the current best known bounds are

(1.239 + o(1))n ≤ χ(Rn) ≤ (3 + o(1))n

with o(1) being a function f(n) such that lim
n→∞

f(n) = 0. The lower bound

is a result of A. M. Raigorodksii[7] and the upper bound a result of Larman
and Rogers[8]. An alternate proof of the upper bound can be exhibited using
a multilattice approach, as shown by Prosanov.[9] While still complicated, it is
simpler than the original proof my Larman and Rogers.

5.2 Lower Dimension

Here, we consider the problem χ(R, || · ||, 1). The simplest way to phrase
this problem would be to ask how many colours are needed to colour the real
numbers such that if x is one colour, say red, x ± 1 are both not red. The
solution is almost as simple as the statement, consider two colours, say blue
and green. R can be coloured by considering an infinite sequence of distinct
sub-intervals [a, b), with 0.5 < b − a < 1.0 such that their union covers R, and
colouring them in an alternating fashion to construct a valid 2-colouring. Since
a 1-colouring is clearly not possible, this is the minimum, so χ(R, || · ||, 1) = 2.

In fact, the same approach works for any k, as long as k
2 < b− a < k

Thus, the real numbers are always 2-colourable under the Euclidean norm.

5.3 An example on the integers

Consider χ(Z2, || · ||, 1). A fun way to visualize this problem is to consider
an infinite sheet of grid paper, with each square being of side length 1. How can
this be coloured such that no square on the grid has 2 connected vertices of the
same colour? In other words, it asks the same question as the Hadwiger-Nelson
problem, but only for points with integral values.

A 2-colouring can be shown as follows. First, colour (0, 0), say green.
Then, (1, 0), (−1, 0), (0, 1), (0,−1) must be coloured the other colour, say or-
ange. Repeating the process a few times displays a very intuitive pattern de-
picted in fig(4). From the figure, a clear formulaic approach to the colour-
ing is to consider the sets of points S1 = {(x, x + 2b) : x ∈ Z, b ∈ Z} and
S2 = {(x, y − 1) : (x, y) ∈ Z}. A valid colouring is formed from colouring all
points of S1 green, and all points of S2 orange. Its clear to see that S1∪S2 = Z2
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and that the four neighbours of any point in S1 are in S2, and similarly the four
neighbours of a point in S2 are in S1, where

(u, v) ∈ N((x, y))→ ||(u, v) · (x, y)|| = 1

This shows that the above is a valid 2-colouring, and thus χ(Z2, || · ||, 1) = 2.

Figure 4: A small portion of Z2 coloured using 2 colours.

5.4 Something a bit different

So far all examples of metric spaces have used infinite sets of numbers, but
that’s not a requirement. As long as there exists a suitable metric for the objects,
any set of objects can be used. With that in mind, consider a set of strings
S = {”abc”, ”arc”, ”art”, ”bat”, ”cab”, ”car”, ”cat”, ”crc”, ”crr”, ”tab”, ”tar”,
”trr”}, this set, combined with the Hamming Distance, say d, a measurement of
how many characters differ between two strings, is a metric space. Thus, we can
consider χ(S, d, 1). To answer this problem we first construct a graph as follows.
Let G = (V,E) with V = {x|x ∈ S}, E = {(x, y)|x ∈ V, y ∈ V, d(x, y) = 1}.
In English, this is a graph with each ”word” in the set S as a vertex, with
an edge between two words in the graph if and only if they differ by exactly
one character. A visualization of the graph is provided in fig 5, with a valid
3-coluoring. Its clear to see that this is the minimal, as a 2-colouring is not
possible due to the K3 subgraph present in G.

While perhaps not the most mathematically useful example, this exhibits
that the general problem can be applied to a variety of different sets and issues,
and also shows that in the case of a finite set that the problem can be approached
by first constructing the graph and then verifying its colourability.
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Figure 5: G exhibited with a 3-colouring

6 Conclusion

From this study, its clear that the Hadwiger-Nelson problem is a far deeper
problem than its simple statement makes it seem and that only through the
multitude of approaches from a multitude of talented mathematicians, has it
become as close to solved as it is today. Its tie-ins with the axioms of set theory
give even more ambiguity to a solution, though AC is widely regarded to be
true, so the problem’s reliance on it will likely remain a footnote. De Grey’s
recent breakthroughs gives hope that a solution is not only possible, but feasible
through computer assistance and smart construction, even if it takes another 57
years. Furthermore, generalizing the problem to allow the colouring of arbitrary
metric spaces may help provide a new approach to the problem, but even if not,
it is a fun exercise on different metric spaces.
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[1] N.G. De Brujin, P. Erdős. (1951), A colour problem for infinite graphs and
a problem in the theory of relations. Nederl. Akad. Wetensch. Proc. Ser. A,
54: 371–373,

[2] A. De Grey. (2018), The Chromatic Number of the Plane is at least 5. Ge-
ombinatorics, 28: 5–18, arXiv:1804.02385

[3] Various. (2018), https://dustingmixon.wordpress.com/2019/07/08/polymath16-
thirteenth-thread-bumping-the-deadline/#comment-23999

[4] T. Tao (2011), An introduction to Measure Theory. p.3

[5] Coulson, D. (2002), A 15-colouring of 3-space omitting distance one”, Dis-
crete Math., 256 (1–2): 83–90. doi:10.1016/S0012-365X(01)00183-2

[6] O. Nechustan. (2002), On the Space Chromatic Number Discrete Mathemat-
ics 256 (2002) 499-507

[7] A. M. Raigorodskii. (2000). On the chromatic number of a space Uspekhi
Mat. Nauk, 55(2(332)):147–148

[8] D. G. Larman and C. A. Rogers. (1972) The realization of distances within
sets in Euclidean space Mathematika, 19:1–24

[9] R. Prosanov. (2018). A new proof of the Larman-Rogers upper bound for the
chromatic number of the Euclidean space arXiv:1610.02846

10


