
http://www.tutorialspoint.com/java/java_arrays.htm Copyright © tutorialspoint.com

JAVA - ARRAYS

Java provides a data structure, the array, which stores a fixed-size sequential collect ion of
elements of the same type. An array is used to store a collect ion of data, but it is often more useful
to think of an array as a collect ion of variables of the same type.

Instead of declaring individual variables, such as number0, number1, ..., and number99, you declare
one array variable such as numbers and use numbers[0], numbers[1], and ..., numbers[99] to
represent individual variables.

This tutorial introduces how to declare array variables, create arrays, and process arrays using
indexed variables.

Declaring Array Variables:
To use an array in a program, you must declare a variable to reference the array, and you must
specify the type of array the variable can reference. Here is the syntax for declaring an array
variable:

dataType[] arrayRefVar; // preferred way.

or

dataType arrayRefVar[]; // works but not preferred way.

Note: The style dataType[] arrayRefVar is preferred. The style dataType arrayRefVar[]
comes from the C/C++ language and was adopted in Java to accommodate C/C++ programmers.

Example:
The following code snippets are examples of this syntax:

double[] myList; // preferred way.

or

double myList[]; // works but not preferred way.

Creating Arrays:
You can create an array by using the new operator with the following syntax:

arrayRefVar = new dataType[arraySize];

The above statement does two things:

It creates an array using new dataType[arraySize];

It assigns the reference of the newly created array to the variable arrayRefVar.

Declaring an array variable, creating an array, and assigning the reference of the array to the variable
can be combined in one statement, as shown below:

dataType[] arrayRefVar = new dataType[arraySize];

Alternatively you can create arrays as follows:

dataType[] arrayRefVar = {value0, value1, ..., valuek};

The array elements are accessed through the index. Array indices are 0-based; that is, they start
from 0 to arrayRefVar.length-1.

http://www.tutorialspoint.com/java/java_arrays.htm

Example:
Following statement declares an array variable, myList, creates an array of 10 elements of double
type and assigns its reference to myList:

double[] myList = new double[10];

Following picture represents array myList. Here, myList holds ten double values and the indices are
from 0 to 9.

Processing Arrays:
When processing array elements, we often use either for loop or foreach loop because all of the
elements in an array are of the same type and the size of the array is known.

Example:
Here is a complete example of showing how to create, init ialize and process arrays:

public class TestArray {

 public static void main(String[] args) {
 double[] myList = {1.9, 2.9, 3.4, 3.5};

 // Print all the array elements
 for (int i = 0; i < myList.length; i++) {
 System.out.println(myList[i] + " ");
 }
 // Summing all elements
 double total = 0;
 for (int i = 0; i < myList.length; i++) {
 total += myList[i];
 }
 System.out.println("Total is " + total);
 // Finding the largest element
 double max = myList[0];
 for (int i = 1; i < myList.length; i++) {
 if (myList[i] > max) max = myList[i];
 }
 System.out.println("Max is " + max);
 }
}

This would produce the following result:

1.9
2.9
3.4
3.5
Total is 11.7

Max is 3.5

The foreach Loops:
JDK 1.5 introduced a new for loop known as foreach loop or enhanced for loop, which enables you to
traverse the complete array sequentially without using an index variable.

Example:
The following code displays all the elements in the array myList:

public class TestArray {

 public static void main(String[] args) {
 double[] myList = {1.9, 2.9, 3.4, 3.5};

 // Print all the array elements
 for (double element: myList) {
 System.out.println(element);
 }
 }
}

This would produce the following result:

1.9
2.9
3.4
3.5

Passing Arrays to Methods:
Just as you can pass primit ive type values to methods, you can also pass arrays to methods. For
example, the following method displays the elements in an int array:

public static void printArray(int[] array) {
 for (int i = 0; i < array.length; i++) {
 System.out.print(array[i] + " ");
 }
}

You can invoke it by passing an array. For example, the following statement invokes the printArray
method to display 3, 1, 2, 6, 4, and 2:

printArray(new int[]{3, 1, 2, 6, 4, 2});

Returning an Array from a Method:
A method may also return an array. For example, the method shown below returns an array that is
the reversal of another array:

public static int[] reverse(int[] list) {
 int[] result = new int[list.length];

 for (int i = 0, j = result.length - 1; i < list.length; i++, j--) {
 result[j] = list[i];
 }
 return result;
}

The Arrays Class:
The java.ut il.Arrays class contains various stat ic methods for sort ing and searching arrays, comparing
arrays, and filling array elements. These methods are overloaded for all primit ive types.

SN Methods with Description

1 public static int binarySearch(Object[] a, Object key)

Searches the specified array of Object (Byte, Int , double, etc.) for the specified value using
the binary search algorithm. The array must be sorted prior to making this call. This returns
index of the search key, if it is contained in the list ; otherwise, (-(insert ion point + 1).

2 public static boolean equals(long[] a, long[] a2)

Returns true if the two specified arrays of longs are equal to one another. Two arrays are
considered equal if both arrays contain the same number of elements, and all corresponding
pairs of elements in the two arrays are equal. This returns true if the two arrays are equal.
Same method could be used by all other primit ive data types (Byte, short, Int, etc.)

3 public static void fill(int[] a, int val)

Assigns the specified int value to each element of the specified array of ints. Same method
could be used by all other primit ive data types (Byte, short, Int etc.)

4 public static void sort(Object[] a)

Sorts the specified array of objects into ascending order, according to the natural ordering
of its elements. Same method could be used by all other primit ive data types (Byte, short,
Int, etc.)

