
http://www.tutorialspoint.com/java/java_basic_operators.htm Copyright © tutorialspoint.com

JAVA - BASIC OPERATORS

Java provides a rich set of operators to manipulate variables. We can divide all the Java operators into
the following groups:

Arithmetic Operators

Relat ional Operators

Bitwise Operators

Logical Operators

Assignment Operators

Misc Operators

The Arithmetic Operators:
Arithmetic operators are used in mathematical expressions in the same way that they are used in
algebra. The following table lists the arithmetic operators:

Assume integer variable A holds 10 and variable B holds 20, then:

Show Examples

Operator Description Example

+ Addit ion - Adds values on either side of the operator A + B will give 30

- Subtract ion - Subtracts right hand operand from left hand
operand

A - B will give -10

* Mult iplicat ion - Mult iplies values on either side of the operator A * B will give 200

/ Division - Divides left hand operand by right hand operand B / A will give 2

% Modulus - Divides left hand operand by right hand operand and
returns remainder

B % A will give 0

++ Increment - Increases the value of operand by 1 B++ gives 21

-- Decrement - Decreases the value of operand by 1 B-- gives 19

The Relational Operators:
There are following relat ional operators supported by Java language

Assume variable A holds 10 and variable B holds 20, then:

Show Examples

Operator Description Example

== Checks if the values of two operands are equal or not, if yes
then condit ion becomes true.

(A == B) is not
true.

!= Checks if the values of two operands are equal or not, if values
are not equal then condit ion becomes true.

(A != B) is true.

http://www.tutorialspoint.com/java/java_basic_operators.htm
/java/java_arithmatic_operators_examples.htm
/java/java_relational_operators_examples.htm

> Checks if the value of left operand is greater than the value of
right operand, if yes then condit ion becomes true.

(A > B) is not
true.

< Checks if the value of left operand is less than the value of right
operand, if yes then condit ion becomes true.

(A < B) is true.

>= Checks if the value of left operand is greater than or equal to
the value of right operand, if yes then condit ion becomes true.

(A >= B) is not
true.

<= Checks if the value of left operand is less than or equal to the
value of right operand, if yes then condit ion becomes true.

(A <= B) is true.

The Bitwise Operators:
Java defines several bitwise operators, which can be applied to the integer types, long, int, short,
char, and byte.

Bitwise operator works on bits and performs bit-by-bit operation. Assume if a = 60; and b = 13; now
in binary format they will be as follows:

a = 0011 1100

b = 0000 1101

a&b = 0000 1100

a|b = 0011 1101

a^b = 0011 0001

~a = 1100 0011

The following table lists the bitwise operators:

Assume integer variable A holds 60 and variable B holds 13 then:

Show Examples

Operator Description Example

& Binary AND Operator copies a bit to the result if it exists in both
operands.

(A & B) will give
12 which is 0000
1100

| Binary OR Operator copies a bit if it exists in either operand. (A | B) will give 61
which is 0011
1101

^ Binary XOR Operator copies the bit if it is set in one operand but
not both.

(A ^ B) will give
49 which is 0011
0001

~ Binary Ones Complement Operator is unary and has the effect of
'flipping' bits.

(~A) will give -61
which is 1100
0011 in 2's
complement
form due to a
signed binary
number.

<< Binary Left Shift Operator. The left operands value is moved left
by the number of bits specified by the right operan

A << 2 will give
240 which is 1111
0000

/java/java_bitwise_operators_examples.htm

>> Binary Right Shift Operator. The left operands value is moved
right by the number of bits specified by the right operand.

A >> 2 will give
15 which is 1111

>>> Shift right zero fill operator. The left operands value is moved
right by the number of bits specified by the right operand and
shifted values are filled up with zeros.

A >>>2 will give
15 which is 0000
1111

The Logical Operators:
The following table lists the logical operators:

Assume Boolean variables A holds true and variable B holds false, then:

Show Examples

Operator Description Example

&& Called Logical AND operator. If both the operands are non-zero,
then the condit ion becomes true.

(A && B) is false.

|| Called Logical OR Operator. If any of the two operands are non-
zero, then the condit ion becomes true.

(A || B) is true.

! Called Logical NOT Operator. Use to reverses the logical state of
its operand. If a condit ion is true then Logical NOT operator will
make false.

!(A && B) is true.

The Assignment Operators:
There are following assignment operators supported by Java language:

Show Examples

Operator Description Example

= Simple assignment operator, Assigns values from right side
operands to left side operand

C = A + B will
assign value of A
+ B into C

+= Add AND assignment operator, It adds right operand to the left
operand and assign the result to left operand

C += A is
equivalent to C =
C + A

-= Subtract AND assignment operator, It subtracts right operand
from the left operand and assign the result to left operand

C -= A is
equivalent to C =
C - A

*= Mult iply AND assignment operator, It mult iplies right operand
with the left operand and assign the result to left operand

C *= A is
equivalent to C =
C * A

/= Divide AND assignment operator, It divides left operand with the
right operand and assign the result to left operand

C /= A is
equivalent to C =
C / A

%= Modulus AND assignment operator, It takes modulus using two
operands and assign the result to left operand

C %= A is
equivalent to C =
C % A

<<= Left shift AND assignment operator C <<= 2 is same
as C = C << 2

/java/java_logical_operators_examples.htm
/java/java_assignment_operators_examples.htm

>>= Right shift AND assignment operator C >>= 2 is same
as C = C >> 2

&= Bitwise AND assignment operator C &= 2 is same
as C = C & 2

^= bitwise exclusive OR and assignment operator C ^= 2 is same
as C = C ^ 2

|= bitwise inclusive OR and assignment operator C |= 2 is same as
C = C | 2

Misc Operators
There are few other operators supported by Java Language.

Conditional Operator (? :):
Condit ional operator is also known as the ternary operator. This operator consists of three operands
and is used to evaluate Boolean expressions. The goal of the operator is to decide which value
should be assigned to the variable. The operator is written as:

variable x = (expression) ? value if true : value if false

Following is the example:

public class Test {

 public static void main(String args[]){
 int a , b;
 a = 10;
 b = (a == 1) ? 20: 30;
 System.out.println("Value of b is : " + b);

 b = (a == 10) ? 20: 30;
 System.out.println("Value of b is : " + b);
 }
}

This would produce the following result:

Value of b is : 30
Value of b is : 20

instanceof Operator:
This operator is used only for object reference variables. The operator checks whether the object is
of a part icular type(class type or interface type). instanceof operator is wriiten as:

(Object reference variable) instanceof (class/interface type)

If the object referred by the variable on the left side of the operator passes the IS-A check for the
class/interface type on the right side, then the result will be true. Following is the example:

public class Test {

 public static void main(String args[]){
 String name = "James";
 // following will return true since name is type of String
 boolean result = name instanceof String;
 System.out.println(result);
 }
}

This would produce the following result:

true

This operator will st ill return true if the object being compared is the assignment compatible with the
type on the right. Following is one more example:

class Vehicle {}

public class Car extends Vehicle {
 public static void main(String args[]){
 Vehicle a = new Car();
 boolean result = a instanceof Car;
 System.out.println(result);
 }
}

This would produce the following result:

true

Precedence of Java Operators:
Operator precedence determines the grouping of terms in an expression. This affects how an
expression is evaluated. Certain operators have higher precedence than others; for example, the
mult iplicat ion operator has higher precedence than the addit ion operator:

For example, x = 7 + 3 * 2; here x is assigned 13, not 20 because operator * has higher precedence
than +, so it first gets mult iplied with 3*2 and then adds into 7.

Here, operators with the highest precedence appear at the top of the table, those with the lowest
appear at the bottom. Within an expression, higher precedence operators will be evaluated first .

Category Operator Associativity

Postfix () [] . (dot operator) Left toright

Unary ++ - - ! ~ Right to left

Mult iplicat ive * / % Left to right

Addit ive + - Left to right

Shift >> >>> << Left to right

Relat ional > >= < <= Left to right

Equality == != Left to right

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR || Left to right

Condit ional ?: Right to left

Assignment = += -= *= /= %= >>= <<= &= ^= |= Right to left

Comma , Left to right

What is Next?
Next chapter would explain about loop control in Java programming. The chapter will describe various
types of loops and how these loops can be used in Java program development and for what
purposes they are being used.

