
http://www.tutorialspoint.com/java/java_basic_syntax.htm Copyright © tutorialspoint.com

JAVA - BASIC SYNTAX

When we consider a Java program it can be defined as a collect ion of objects that communicate via
invoking each other's methods. Let us now briefly look into what do class, object, methods and
instance variables mean.

Object - Objects have states and behaviors. Example: A dog has states - color, name, breed
as well as behaviors -wagging, barking, eating. An object is an instance of a class.

Class - A class can be defined as a template/ blue print that describes the behaviors/states
that object of its type support.

Methods - A method is basically a behavior. A class can contain many methods. It is in
methods where the logics are written, data is manipulated and all the act ions are executed.

Instance Variables - Each object has its unique set of instance variables. An object 's state
is created by the values assigned to these instance variables.

First Java Program:
Let us look at a simple code that would print the words Hello World.

public class MyFirstJavaProgram {

 /* This is my first java program.
 * This will print 'Hello World' as the output
 */

 public static void main(String []args) {
 System.out.println("Hello World"); // prints Hello World
 }
}

Let's look at how to save the file, compile and run the program. Please follow the steps given below:

Open notepad and add the code as above.

Save the file as: MyFirst JavaProgram.java.

Open a command prompt window and go o the directory where you saved the class. Assume
it 's C:\.

Type ' javac MyFirst JavaProgram.java ' and press enter to compile your code. If there are no
errors in your code, the command prompt will take you to the next line (Assumption : The path
variable is set).

Now, type ' java MyFirst JavaProgram ' to run your program.

You will be able to see ' Hello World ' printed on the window.

C : > javac MyFirstJavaProgram.java
C : > java MyFirstJavaProgram
Hello World

Basic Syntax:
About Java programs, it is very important to keep in mind the following points.

Case Sensitivity - Java is case sensit ive, which means identifier Hello and hello would have
different meaning in Java.

Class Names - For all class names the first letter should be in Upper Case.

If several words are used to form a name of the class, each inner word's first letter should be in

http://www.tutorialspoint.com/java/java_basic_syntax.htm

Upper Case.

Example class MyFirstJavaClass

Method Names - All method names should start with a Lower Case letter.

If several words are used to form the name of the method, then each inner word's first letter
should be in Upper Case.

Example public void myMethodName()

Program File Name - Name of the program file should exactly match the class name.

When saving the file, you should save it using the class name (Remember Java is case
sensit ive) and append '.java' to the end of the name (if the file name and the class name do
not match your program will not compile).

Example : Assume 'MyFirst JavaProgram' is the class name. Then the file should be saved as
'MyFirstJavaProgram.java'

public static void main(String args[]) - Java program processing starts from the main()
method which is a mandatory part of every Java program..

Java Identifiers:
All Java components require names. Names used for classes, variables and methods are called
identifiers.

In Java, there are several points to remember about identifiers. They are as follows:

All identifiers should begin with a letter (A to Z or a to z), currency character ($) or an
underscore (_).

After the first character identifiers can have any combination of characters.

A key word cannot be used as an identifier.

Most importantly identifiers are case sensit ive.

Examples of legal identifiers: age, $salary, _value, __1_value

Examples of illegal identifiers: 123abc, -salary

Java Modifiers:
Like other languages, it is possible to modify classes, methods, etc., by using modifiers. There are
two categories of modifiers:

Access Modifiers: default , public , protected, private

Non-access Modifiers: final, abstract, strictfp

We will be looking into more details about modifiers in the next section.

Java Variables:
We would see following type of variables in Java:

Local Variables
Class Variables (Stat ic Variables)
Instance Variables (Non-stat ic variables)

Java Arrays:
Arrays are objects that store mult iple variables of the same type. However, an array itself is an

object on the heap. We will look into how to declare, construct and init ialize in the upcoming
chapters.

Java Enums:
Enums were introduced in java 5.0. Enums restrict a variable to have one of only a few predefined
values. The values in this enumerated list are called enums.

With the use of enums it is possible to reduce the number of bugs in your code.

For example, if we consider an applicat ion for a fresh juice shop, it would be possible to restrict the
glass size to small, medium and large. This would make sure that it would not allow anyone to order
any size other than the small, medium or large.

Example:
class FreshJuice {

 enum FreshJuiceSize{ SMALL, MEDIUM, LARGE }
 FreshJuiceSize size;
}

public class FreshJuiceTest {

 public static void main(String args[]){
 FreshJuice juice = new FreshJuice();
 juice.size = FreshJuice. FreshJuiceSize.MEDIUM ;
 System.out.println("Size: " + juice.size);
 }
}

Above example will produce the following result:

Size: MEDIUM

Note: enums can be declared as their own or inside a class. Methods, variables, constructors can be
defined inside enums as well.

Java Keywords:
The following list shows the reserved words in Java. These reserved words may not be used as
constant or variable or any other identifier names.

abstract assert boolean break

byte case catch char

class const continue default

do double else enum

extends final finally float

for goto if implements

import instanceof int interface

long native new package

private protected public return

short stat ic strictfp super

switch synchronized this throw

throws transient try void

volat ile while

Comments in Java
Java supports single-line and mult i-line comments very similar to c and c++. All characters available
inside any comment are ignored by Java compiler.

public class MyFirstJavaProgram{

 /* This is my first java program.
 * This will print 'Hello World' as the output
 * This is an example of multi-line comments.
 */

 public static void main(String []args){
 // This is an example of single line comment
 /* This is also an example of single line comment. */
 System.out.println("Hello World");
 }
}

Using Blank Lines:
A line containing only whitespace, possibly with a comment, is known as a blank line, and Java totally
ignores it .

Inheritance:
In Java, classes can be derived from classes. Basically if you need to create a new class and here is
already a class that has some of the code you require, then it is possible to derive your new class
from the already exist ing code.

This concept allows you to reuse the fields and methods of the exist ing class without having to
rewrite the code in a new class. In this scenario the exist ing class is called the superclass and the
derived class is called the subclass.

Interfaces:
In Java language, an interface can be defined as a contract between objects on how to communicate
with each other. Interfaces play a vital role when it comes to the concept of inheritance.

An interface defines the methods, a deriving class(subclass) should use. But the implementation of
the methods is totally up to the subclass.

What is Next?
The next section explains about Objects and classes in Java programming. At the end of the session
you will be able to get a clear picture as to what are objects and what are classes in Java.

