
http://www.tutorialspoint.com/java/java_collections.htm Copyright © tutorialspoint.com

JAVA COLLECTIONS FRAMEWORK

Prior to Java 2, Java provided ad hoc classes such as Dictionary, Vector, Stack, and Properties
to store and manipulate groups of objects. Although these classes were quite useful, they lacked a
central, unifying theme. Thus, the way that you used Vector was different from the way that you
used Propert ies.

The collect ions framework was designed to meet several goals.

The framework had to be high-performance. The implementations for the fundamental
collect ions (dynamic arrays, linked lists, trees, and hashtables) are highly efficient.

The framework had to allow different types of collect ions to work in a similar manner and with a
high degree of interoperability.

Extending and/or adapting a collect ion had to be easy.

Towards this end, the entire collect ions framework is designed around a set of standard interfaces.
Several standard implementations such as LinkedList, HashSet, and TreeSet , of these
interfaces are provided that you may use as-is and you may also implement your own collect ion, if
you choose.

A collect ions framework is a unified architecture for representing and manipulat ing collect ions. All
collect ions frameworks contain the following:

Interfaces: These are abstract data types that represent collect ions. Interfaces allow
collect ions to be manipulated independently of the details of their representation. In object-
oriented languages, interfaces generally form a hierarchy.

Implementations, i.e., Classes: These are the concrete implementations of the
collect ion interfaces. In essence, they are reusable data structures.

Algorithms: These are the methods that perform useful computations, such as searching
and sort ing, on objects that implement collect ion interfaces. The algorithms are said to be
polymorphic: that is, the same method can be used on many different implementations of the
appropriate collect ion interface.

In addit ion to collect ions, the framework defines several map interfaces and classes. Maps store
key/value pairs. Although maps are not collections in the proper use of the term, but they are fully
integrated with collect ions.

The Collection Interfaces:
The collect ions framework defines several interfaces. This sect ion provides an overview of each
interface:

SN Interfaces with Description

1
The Collect ion Interface

This enables you to work with groups of objects; it is at the top of the collect ions hierarchy.

2
The List Interface

This extends Collection and an instance of List stores an ordered collect ion of elements.

3
The Set

http://www.tutorialspoint.com/java/java_collections.htm
/java/java_collection_interface.htm
/java/java_list_interface.htm
/java/java_set_interface.htm

This extends Collect ion to handle sets, which must contain unique elements

4
The SortedSet

This extends Set to handle sorted sets

5
The Map

This maps unique keys to values.

6
The Map.Entry

This describes an element (a key/value pair) in a map. This is an inner class of Map.

7
The SortedMap

This extends Map so that the keys are maintained in ascending order.

8
The Enumeration

This is legacy interface and defines the methods by which you can enumerate (obtain one at
a t ime) the elements in a collect ion of objects. This legacy interface has been superceded
by Iterator.

The Collection Classes:
Java provides a set of standard collect ion classes that implement Collect ion interfaces. Some of the
classes provide full implementations that can be used as-is and others are abstract class, providing
skeletal implementations that are used as start ing points for creating concrete collect ions.

The standard collect ion classes are summarized in the following table:

SN Classes with Description

1 AbstractCollection

Implements most of the Collect ion interface.

2 AbstractList

Extends AbstractCollect ion and implements most of the List interface.

3 AbstractSequentialList

Extends AbstractList for use by a collect ion that uses sequential rather than random access
of its elements.

4
LinkedList

Implements a linked list by extending AbstractSequentialList .

/java/java_sortedset_interface.htm
/java/java_map_interface.htm
/java/java_mapentry_interface.htm
/java/java_sortedmap_interface.htm
/java/java_enumeration_interface.htm
/java/java_linkedlist_class.htm

5
ArrayList

Implements a dynamic array by extending AbstractList .

6 AbstractSet

Extends AbstractCollect ion and implements most of the Set interface.

7
HashSet

Extends AbstractSet for use with a hash table.

8
LinkedHashSet

Extends HashSet to allow insert ion-order iterat ions.

9
TreeSet

Implements a set stored in a tree. Extends AbstractSet.

10 AbstractMap

Implements most of the Map interface.

11
HashMap

Extends AbstractMap to use a hash table.

12
TreeMap

Extends AbstractMap to use a tree.

13
WeakHashMap

Extends AbstractMap to use a hash table with weak keys.

14
LinkedHashMap

Extends HashMap to allow insert ion-order iterat ions.

15
IdentityHashMap

Extends AbstractMap and uses reference equality when comparing documents.

The AbstractCollection, AbstractSet, AbstractList, AbstractSequentialList and AbstractMap classes
provide skeletal implementations of the core collect ion interfaces, to minimize the effort required
to implement them.

The following legacy classes defined by java.ut il have been discussed in previous tutorial:

/java/java_arraylist_class.htm
/java/java_hashset_class.htm
/java/java_linkedhashset_class.htm
/java/java_treeset_class.htm
/java/java_hashmap_class.htm
/java/java_treemap_class.htm
/java/java_weakhashmap_class.htm
/java/java_linkedhashmap_class.htm
/java/java_identityhashmap_class.htm

SN Classes with Description

1
Vector

This implements a dynamic array. It is similar to ArrayList, but with some differences.

2
Stack

Stack is a subclass of Vector that implements a standard last-in, first-out stack.

3
Dict ionary

Dict ionary is an abstract class that represents a key/value storage repository and operates
much like Map.

4
Hashtable

Hashtable was part of the original java.ut il and is a concrete implementation of a Dict ionary.

5
Propert ies

Propert ies is a subclass of Hashtable. It is used to maintain lists of values in which the key is
a String and the value is also a String.

6
BitSet

A BitSet class creates a special type of array that holds bit values. This array can increase in
size as needed.

The Collection Algorithms:
The collect ions framework defines several algorithms that can be applied to collect ions and maps.
These algorithms are defined as stat ic methods within the Collect ions class.

Several of the methods can throw a ClassCastException, which occurs when an attempt is made
to compare incompatible types, or an UnsupportedOperationException, which occurs when an
attempt is made to modify an unmodifiable collect ion.

Collect ions define three stat ic variables: EMPTY_SET, EMPTY_LIST, and EMPTY_MAP. All are immutable.

SN Algorithms with Description

1
The Collect ion Algorithms

Here is a list of all the algorithm implementation.

How to use an Iterator ?
Often, you will want to cycle through the elements in a collect ion. For example, you might want to

/java/java_vector_class.htm
/java/java_stack_class.htm
/java/java_dictionary_class.htm
/java/java_hashtable_class.htm
/java/java_properties_class.htm
/java/java_bitset_class.htm
/java/java_collection_algorithms.htm

display each element.

The easiest way to do this is to employ an iterator, which is an object that implements either the
Iterator or the List Iterator interface.

Iterator enables you to cycle through a collect ion, obtaining or removing elements. List Iterator
extends Iterator to allow bidirect ional traversal of a list and the modificat ion of elements.

SN Iterator Methods with Description

1
Using Java Iterator

Here is a list of all the methods with examples provided by Iterator and List Iterator
interfaces.

How to use a Comparator ?
Both TreeSet and TreeMap store elements in sorted order. However, it is the comparator that
defines precisely what sorted order means.

This interface lets us sort a given collect ion any number of different ways. Also this interface can be
used to sort any instances of any class (even classes we cannot modify).

SN Iterator Methods with Description

1
Using Java Comparator

Here is a list of all the methods with examples provided by Comparator Interface.

Summary:
The Java collect ions framework gives the programmer access to prepackaged data structures as
well as to algorithms for manipulat ing them.

A collect ion is an object that can hold references to other objects. The collect ion interfaces declare
the operations that can be performed on each type of collect ion.

The classes and interfaces of the collect ions framework are in package java.ut il.

/java/java_using_iterator.htm
/java/java_using_comparator.htm

