
http://www.tutorialspoint.com/java/java_data_structures.htm Copyright © tutorialspoint.com

JAVA - DATA STRUCTURES

The data structures provided by the Java ut ility package are very powerful and perform a wide range
of functions. These data structures consist of the following interface and classes:

Enumeration

BitSet

Vector

Stack

Dict ionary

Hashtable

Propert ies

All these classes are now legacy and Java-2 has introduced a new framework called Collect ions
Framework, which is discussed in next tutorial:

The Enumeration:
The Enumeration interface isn't itself a data structure, but it is very important within the context of
other data structures. The Enumeration interface defines a means to retrieve successive elements
from a data structure.

For example, Enumeration defines a method called nextElement that is used to get the next
element in a data structure that contains mult iple elements.

To have more detail about this interface, check The Enumeration.

The BitSet
The BitSet class implements a group of bits or flags that can be set and cleared individually.

This class is very useful in cases where you need to keep up with a set of Boolean values; you just
assign a bit to each value and set or clear it as appropriate.

To have more detail about this class, check The BitSet.

The Vector
The Vector class is similar to a tradit ional Java array, except that it can grow as necessary to
accommodate new elements.

Like an array, elements of a Vector object can be accessed via an index into the vector.

The nice thing about using the Vector class is that you don't have to worry about sett ing it to a
specific size upon creation; it shrinks and grows automatically when necessary.

To have more detail about this class, check The Vector.

The Stack
The Stack class implements a last-in-first-out (LIFO) stack of elements.

You can think of a stack literally as a vert ical stack of objects; when you add a new element, it gets
stacked on top of the others.

When you pull an element off the stack, it comes off the top. In other words, the last element you
added to the stack is the first one to come back off.

http://www.tutorialspoint.com/java/java_data_structures.htm
/java/java_enumeration_interface.htm
/java/java_bitset_class.htm
/java/java_vector_class.htm

To have more detail about this class, check The Stack.

The Dictionary
The Dict ionary class is an abstract class that defines a data structure for mapping keys to values.

This is useful in cases where you want to be able to access data via a part icular key rather than an
integer index.

Since the Dict ionary class is abstract, it provides only the framework for a key-mapped data
structure rather than a specific implementation.

To have more detail about this class, check The Dict ionary.

The Hashtable
The Hashtable class provides a means of organizing data based on some user-defined key structure.

For example, in an address list hash table you could store and sort data based on a key such as ZIP
code rather than on a person's name.

The specific meaning of keys in regard to hash tables is totally dependent on the usage of the hash
table and the data it contains.

To have more detail about this class, check The Hashtable.

The Properties
Propert ies is a subclass of Hashtable. It is used to maintain lists of values in which the key is a String
and the value is also a String.

The Propert ies class is used by many other Java classes. For example, it is the type of object
returned by System.getPropert ies() when obtaining environmental values.

To have more detail about this class, check The Propert ies.

/java/java_stack_class.htm
/java/java_dictionary_class.htm
/java/java_hashtable_class.htm
/java/java_properties_class.htm

