
http://www.tutorialspoint.com/java/java_files_io.htm Copyright © tutorialspoint.com

JAVA - FILES AND I/O

The java.io package contains nearly every class you might ever need to perform input and output
(I/O) in Java. All these streams represent an input source and an output destination. The stream in
the java.io package supports many data such as primit ives, Object, localized characters, etc.

A stream can be defined as a sequence of data. The InputStream is used to read data from a source
and the OutputStream is used for writ ing data to a destination.

Java provides strong but flexible support for I/O related to Files and networks but this tutorial covers
very basic functionality related to streams and I/O. We would see most commonly used example one
by one:

Byte Streams
Java byte streams are used to perform input and output of 8-bit bytes. Though there are many
classes related to byte streams but the most frequently used classes are , FileInputStream and
FileOutputStream. Following is an example which makes use of these two classes to copy an
input file into an output file:

import java.io.*;

public class CopyFile {
 public static void main(String args[]) throws IOException
 {
 FileInputStream in = null;
 FileOutputStream out = null;

 try {
 in = new FileInputStream("input.txt");
 out = new FileOutputStream("output.txt");

 int c;
 while ((c = in.read()) != -1) {
 out.write(c);
 }
 }finally {
 if (in != null) {
 in.close();
 }
 if (out != null) {
 out.close();
 }
 }
 }
}

Now let 's have a file input.txt with the following content:

This is test for copy file.

As a next step, compile above program and execute it , which will result in creating output.txt file
with the same content as we have in input.txt. So let 's put above code in CopyFile.java file and do
the following:

$javac CopyFile.java
$java CopyFile

Character Streams
Java Byte streams are used to perform input and output of 8-bit bytes, where as Java Character
streams are used to perform input and output for 16-bit unicode. Though there are many classes
related to character streams but the most frequently used classes are , FileReader and
FileWriter.. Though internally FileReader uses FileInputStream and FileWriter uses FileOutputStream

http://www.tutorialspoint.com/java/java_files_io.htm

but here major difference is that FileReader reads two bytes at a t ime and FileWriter writes two
bytes at a t ime.

We can re-write above example which makes use of these two classes to copy an input file (having
unicode characters) into an output file:

import java.io.*;

public class CopyFile {
 public static void main(String args[]) throws IOException
 {
 FileReader in = null;
 FileWriter out = null;

 try {
 in = new FileReader("input.txt");
 out = new FileWriter("output.txt");

 int c;
 while ((c = in.read()) != -1) {
 out.write(c);
 }
 }finally {
 if (in != null) {
 in.close();
 }
 if (out != null) {
 out.close();
 }
 }
 }
}

Now let 's have a file input.txt with the following content:

This is test for copy file.

As a next step, compile above program and execute it , which will result in creating output.txt file
with the same content as we have in input.txt. So let 's put above code in CopyFile.java file and do
the following:

$javac CopyFile.java
$java CopyFile

Standard Streams
All the programming languages provide support for standard I/O where user's program can take input
from a keyboard and then produce output on the computer screen. If you are aware if C or C++
programming languages, then you must be aware of three standard devices STDIN, STDOUT and
STDERR. Similar way Java provides following three standard streams

Standard Input: This is used to feed the data to user's program and usually a keyboard is
used as standard input stream and represented as System.in.

Standard Output: This is used to output the data produced by the user's program and
usually a computer screen is used to standard output stream and represented as
System.out .

Standard Error: This is used to output the error data produced by the user's program and
usually a computer screen is used to standard error stream and represented as System.err.

Following is a simple program which creates InputStreamReader to read standard input stream
until the user types a "q":

import java.io.*;

public class ReadConsole {
 public static void main(String args[]) throws IOException

 {
 InputStreamReader cin = null;

 try {
 cin = new InputStreamReader(System.in);
 System.out.println("Enter characters, 'q' to quit.");
 char c;
 do {
 c = (char) cin.read();
 System.out.print(c);
 } while(c != 'q');
 }finally {
 if (cin != null) {
 cin.close();
 }
 }
 }
}

Let's keep above code in ReadConsole.java file and try to compile and execute it as below. This
program continues reading and outputt ing same character until we press 'q':

$javac ReadConsole.java
$java ReadConsole
Enter characters, 'q' to quit.
1
1
e
e
q
q

Reading and Writing Files:
As described earlier, A stream can be defined as a sequence of data. The InputStream is used to
read data from a source and the OutputStream is used for writ ing data to a destination.

Here is a hierarchy of classes to deal with Input and Output streams.

The two important streams are FileInputStream and FileOutputStream, which would be
discussed in this tutorial:

FileInputStream:
This stream is used for reading data from the files. Objects can be created using the keyword new
and there are several types of constructors available.

Following constructor takes a file name as a string to create an input stream object to read the file.:

InputStream f = new FileInputStream("C:/java/hello");

Following constructor takes a file object to create an input stream object to read the file. First we
create a file object using File() method as follows:

File f = new File("C:/java/hello");
InputStream f = new FileInputStream(f);

Once you have InputStream object in hand, then there is a list of helper methods which can be used
to read to stream or to do other operations on the stream.

SN Methods with Description

1 public void close() throws IOException{}

This method closes the file output stream. Releases any system resources associated with
the file. Throws an IOException

2 protected void finalize()throws IOException {}

This method cleans up the connection to the file. Ensures that the close method of this file
output stream is called when there are no more references to this stream. Throws an
IOException.

3 public int read(int r)throws IOException{}

This method reads the specified byte of data from the InputStream. Returns an int. Returns
the next byte of data and -1 will be returned if it 's end of file.

4 public int read(byte[] r) throws IOException{}

This method reads r.length bytes from the input stream into an array. Returns the total
number of bytes read. If end of file -1 will be returned.

5 public int available() throws IOException{}

Gives the number of bytes that can be read from this file input stream. Returns an int.

There are other important input streams available, for more detail you can refer to the following
links:

ByteArrayInputStream

DataInputStream

FileOutputStream:
FileOutputStream is used to create a file and write data into it . The stream would create a file, if it
doesn't already exist, before opening it for output.

Here are two constructors which can be used to create a FileOutputStream object.

Following constructor takes a file name as a string to create an input stream object to write the file:

OutputStream f = new FileOutputStream("C:/java/hello")

Following constructor takes a file object to create an output stream object to write the file. First , we
create a file object using File() method as follows:

/java/java_bytearrayinputstream.htm
/java/java_datainputstream.htm

File f = new File("C:/java/hello");
OutputStream f = new FileOutputStream(f);

Once you have OutputStream object in hand, then there is a list of helper methods, which can be
used to write to stream or to do other operations on the stream.

SN Methods with Description

1 public void close() throws IOException{}

This method closes the file output stream. Releases any system resources associated with
the file. Throws an IOException

2 protected void finalize()throws IOException {}

This method cleans up the connection to the file. Ensures that the close method of this file
output stream is called when there are no more references to this stream. Throws an
IOException.

3 public void write(int w)throws IOException{}

This methods writes the specified byte to the output stream.

4 public void write(byte[] w)

Writes w.length bytes from the mentioned byte array to the OutputStream.

There are other important output streams available, for more detail you can refer to the following
links:

ByteArrayOutputStream

DataOutputStream

Example:
Following is the example to demonstrate InputStream and OutputStream:

import java.io.*;

public class fileStreamTest{

 public static void main(String args[]){

 try{
 byte bWrite [] = {11,21,3,40,5};
 OutputStream os = new FileOutputStream("test.txt");
 for(int x=0; x < bWrite.length ; x++){
 os.write(bWrite[x]); // writes the bytes
 }
 os.close();

 InputStream is = new FileInputStream("test.txt");
 int size = is.available();

 for(int i=0; i< size; i++){
 System.out.print((char)is.read() + " ");
 }
 is.close();
 }catch(IOException e){
 System.out.print("Exception");
 }
 }

/java/java_bytearrayoutputstream.htm
/java/java_dataoutputstream.htm

}

The above code would create file test.txt and would write given numbers in binary format. Same
would be output on the stdout screen.

File Navigation and I/O:
There are several other classes that we would be going through to get to know the basics of File
Navigation and I/O.

File Class

FileReader Class

FileWriter Class

Directories in Java:
A directory is a File which can contains a list of other files and directories. You use File object to
create directories, to list down files available in a directory. For complete detail check a list of all the
methods which you can call on File object and what are related to directories.

Creating Directories:
There are two useful File ut ility methods, which can be used to create directories:

The mkdir() method creates a directory, returning true on success and false on failure.
Failure indicates that the path specified in the File object already exists, or that the directory
cannot be created because the entire path does not exist yet.

The mkdirs() method creates both a directory and all the parents of the directory.

Following example creates "/tmp/user/java/bin" directory:

import java.io.File;

public class CreateDir {
 public static void main(String args[]) {
 String dirname = "/tmp/user/java/bin";
 File d = new File(dirname);
 // Create directory now.
 d.mkdirs();
 }
}

Compile and execute above code to create "/tmp/user/java/bin".

Note: Java automatically takes care of path separators on UNIX and Windows as per conventions. If
you use a forward slash (/) on a Windows version of Java, the path will st ill resolve correct ly.

Listing Directories:
You can use list() method provided by File object to list down all the files and directories available
in a directory as follows:

import java.io.File;

public class ReadDir {
 public static void main(String[] args) {

 File file = null;
 String[] paths;

 try{
 // create new file object
 file = new File("/tmp");

 // array of files and directory

/java/java_file_class.htm
/java/java_filereader_class.htm
/java/java_filewriter_class.htm

 paths = file.list();

 // for each name in the path array
 for(String path:paths)
 {
 // prints filename and directory name
 System.out.println(path);
 }
 }catch(Exception e){
 // if any error occurs
 e.printStackTrace();
 }
 }
}

This would produce following result based on the directories and files available in your /tmp
directory:

test1.txt
test2.txt
ReadDir.java
ReadDir.class

