
http://www.tutorialspoint.com/java/java_generics.htm Copyright © tutorialspoint.com

JAVA - GENERICS

It would be nice if we could write a single sort method that could sort the elements in an Integer
array, a String array or an array of any type that supports ordering.

Java Generic methods and generic classes enable programmers to specify, with a single method
declarat ion, a set of related methods or, with a single class declarat ion, a set of related types,
respectively.

Generics also provide compile-t ime type safety that allows programmers to catch invalid types at
compile t ime.

Using Java Generic concept, we might write a generic method for sort ing an array of objects, then
invoke the generic method with Integer arrays, Double arrays, String arrays and so on, to sort the
array elements.

Generic Methods:
You can write a single generic method declarat ion that can be called with arguments of different
types. Based on the types of the arguments passed to the generic method, the compiler handles
each method call appropriately. Following are the rules to define Generic Methods:

All generic method declarat ions have a type parameter section delimited by angle brackets (<
and >) that precedes the method's return type (< E > in the next example).

Each type parameter section contains one or more type parameters separated by commas. A
type parameter, also known as a type variable, is an identifier that specifies a generic type
name.

The type parameters can be used to declare the return type and act as placeholders for the
types of the arguments passed to the generic method, which are known as actual type
arguments.

A generic method's body is declared like that of any other method. Note that type parameters
can represent only reference types, not primit ive types (like int, double and char).

Example:
Following example illustrates how we can print array of different type using a single Generic method:

public class GenericMethodTest
{
 // generic method printArray
 public static < E > void printArray(E[] inputArray)
 {
 // Display array elements
 for (E element : inputArray){
 System.out.printf("%s ", element);
 }
 System.out.println();
 }

 public static void main(String args[])
 {
 // Create arrays of Integer, Double and Character
 Integer[] intArray = { 1, 2, 3, 4, 5 };
 Double[] doubleArray = { 1.1, 2.2, 3.3, 4.4 };
 Character[] charArray = { 'H', 'E', 'L', 'L', 'O' };

 System.out.println("Array integerArray contains:");
 printArray(intArray); // pass an Integer array

 System.out.println("\nArray doubleArray contains:");
 printArray(doubleArray); // pass a Double array

 System.out.println("\nArray characterArray contains:");

http://www.tutorialspoint.com/java/java_generics.htm

 printArray(charArray); // pass a Character array
 }
}

This would produce the following result:

Array integerArray contains:
1 2 3 4 5 6

Array doubleArray contains:
1.1 2.2 3.3 4.4

Array characterArray contains:
H E L L O

Bounded Type Parameters:
There may be t imes when you'll want to restrict the kinds of types that are allowed to be passed to
a type parameter. For example, a method that operates on numbers might only want to accept
instances of Number or its subclasses. This is what bounded type parameters are for.

To declare a bounded type parameter, list the type parameter's name, followed by the extends
keyword, followed by its upper bound.

Example:
Following example illustrates how extends is used in a general sense to mean either "extends" (as in
classes) or "implements" (as in interfaces). This example is Generic method to return the largest of
three Comparable objects:

public class MaximumTest
{
 // determines the largest of three Comparable objects
 public static <T extends Comparable<T>> T maximum(T x, T y, T z)
 {
 T max = x; // assume x is initially the largest
 if (y.compareTo(max) > 0){
 max = y; // y is the largest so far
 }
 if (z.compareTo(max) > 0){
 max = z; // z is the largest now
 }
 return max; // returns the largest object
 }
 public static void main(String args[])
 {
 System.out.printf("Max of %d, %d and %d is %d\n\n",
 3, 4, 5, maximum(3, 4, 5));

 System.out.printf("Maxm of %.1f,%.1f and %.1f is %.1f\n\n",
 6.6, 8.8, 7.7, maximum(6.6, 8.8, 7.7));

 System.out.printf("Max of %s, %s and %s is %s\n","pear",
 "apple", "orange", maximum("pear", "apple", "orange"));
 }
}

This would produce the following result:

Maximum of 3, 4 and 5 is 5

Maximum of 6.6, 8.8 and 7.7 is 8.8

Maximum of pear, apple and orange is pear

Generic Classes:
A generic class declarat ion looks like a non-generic class declarat ion, except that the class name is

followed by a type parameter section.

As with generic methods, the type parameter section of a generic class can have one or more type
parameters separated by commas. These classes are known as parameterized classes or
parameterized types because they accept one or more parameters.

Example:
Following example illustrates how we can define a generic class:

public class Box<T> {

 private T t;

 public void add(T t) {
 this.t = t;
 }

 public T get() {
 return t;
 }

 public static void main(String[] args) {
 Box<Integer> integerBox = new Box<Integer>();
 Box<String> stringBox = new Box<String>();

 integerBox.add(new Integer(10));
 stringBox.add(new String("Hello World"));

 System.out.printf("Integer Value :%d\n\n", integerBox.get());
 System.out.printf("String Value :%s\n", stringBox.get());
 }
}

This would produce the following result:

Integer Value :10
String Value :Hello World

