
http://www.tutorialspoint.com/java/java_inheritance.htm Copyright © tutorialspoint.com

JAVA - INHERITANCE

Inheritance can be defined as the process where one object acquires the propert ies of another. With
the use of inheritance the information is made manageable in a hierarchical order.

When we talk about inheritance, the most commonly used keyword would be extends and
implements. These words would determine whether one object IS-A type of another. By using
these keywords we can make one object acquire the propert ies of another object.

IS-A Relationship:
IS-A is a way of saying : This object is a type of that object. Let us see how the extends keyword is
used to achieve inheritance.

public class Animal{
}

public class Mammal extends Animal{
}

public class Reptile extends Animal{
}

public class Dog extends Mammal{
}

Now, based on the above example, In Object Oriented terms, the following are true:

Animal is the superclass of Mammal class.

Animal is the superclass of Reptile class.

Mammal and Reptile are subclasses of Animal class.

Dog is the subclass of both Mammal and Animal classes.

Now, if we consider the IS-A relat ionship, we can say:

Mammal IS-A Animal

Reptile IS-A Animal

Dog IS-A Mammal

Hence : Dog IS-A Animal as well

With use of the extends keyword the subclasses will be able to inherit all the propert ies of the
superclass except for the private propert ies of the superclass.

We can assure that Mammal is actually an Animal with the use of the instance operator.

Example:
public class Dog extends Mammal{

 public static void main(String args[]){

 Animal a = new Animal();
 Mammal m = new Mammal();
 Dog d = new Dog();

 System.out.println(m instanceof Animal);
 System.out.println(d instanceof Mammal);
 System.out.println(d instanceof Animal);
 }

http://www.tutorialspoint.com/java/java_inheritance.htm

}

This would produce the following result:

true
true
true

Since we have a good understanding of the extends keyword let us look into how the implements
keyword is used to get the IS-A relat ionship.

The implements keyword is used by classes by inherit from interfaces. Interfaces can never be
extended by the classes.

Example:
public interface Animal {}

public class Mammal implements Animal{
}

public class Dog extends Mammal{
}

The instanceof Keyword:
Let us use the instanceof operator to check determine whether Mammal is actually an Animal, and
dog is actually an Animal

interface Animal{}

class Mammal implements Animal{}

public class Dog extends Mammal{
 public static void main(String args[]){

 Mammal m = new Mammal();
 Dog d = new Dog();

 System.out.println(m instanceof Animal);
 System.out.println(d instanceof Mammal);
 System.out.println(d instanceof Animal);
 }
}

This would produce the following result:

true
true
true

HAS-A relationship:
These relat ionships are mainly based on the usage. This determines whether a certain class HAS-A
certain thing. This relat ionship helps to reduce duplicat ion of code as well as bugs.

Lets us look into an example:

public class Vehicle{}
public class Speed{}
public class Van extends Vehicle{
 private Speed sp;
}

This shows that class Van HAS-A Speed. By having a separate class for Speed, we do not have to
put the entire code that belongs to speed inside the Van class., which makes it possible to reuse
the Speed class in mult iple applicat ions.

In Object-Oriented feature, the users do not need to bother about which object is doing the real
work. To achieve this, the Van class hides the implementation details from the users of the Van
class. So basically what happens is the users would ask the Van class to do a certain act ion and the
Van class will either do the work by itself or ask another class to perform the act ion.

A very important fact to remember is that Java only supports only single inheritance. This means that
a class cannot extend more than one class. Therefore following is illegal:

public class extends Animal, Mammal{}

However, a class can implement one or more interfaces. This has made Java get rid of the
impossibility of mult iple inheritance.

