
http://www.tutorialspoint.com/java/java_interfaces.htm Copyright © tutorialspoint.com

JAVA - INTERFACES

An interface is a collect ion of abstract methods. A class implements an interface, thereby inherit ing
the abstract methods of the interface.

An interface is not a class. Writ ing an interface is similar to writ ing a class, but they are two different
concepts. A class describes the attributes and behaviors of an object. An interface contains
behaviors that a class implements.

Unless the class that implements the interface is abstract, all the methods of the interface need to
be defined in the class.

An interface is similar to a class in the following ways:

An interface can contain any number of methods.

An interface is written in a file with a .java extension, with the name of the interface matching
the name of the file.

The bytecode of an interface appears in a .class file.

Interfaces appear in packages, and their corresponding bytecode file must be in a directory
structure that matches the package name.

However, an interface is different from a class in several ways, including:

You cannot instantiate an interface.

An interface does not contain any constructors.

All of the methods in an interface are abstract.

An interface cannot contain instance fields. The only fields that can appear in an interface must
be declared both stat ic and final.

An interface is not extended by a class; it is implemented by a class.

An interface can extend mult iple interfaces.

Declaring Interfaces:
The interface keyword is used to declare an interface. Here is a simple example to declare an
interface:

Example:
Let us look at an example that depicts encapsulat ion:

/* File name : NameOfInterface.java */
import java.lang.*;
//Any number of import statements

public interface NameOfInterface
{
 //Any number of final, static fields
 //Any number of abstract method declarations\
}

Interfaces have the following propert ies:

An interface is implicit ly abstract. You do not need to use the abstract keyword when
declaring an interface.

Each method in an interface is also implicit ly abstract, so the abstract keyword is not needed.

http://www.tutorialspoint.com/java/java_interfaces.htm

Methods in an interface are implicit ly public.

Example:
/* File name : Animal.java */
interface Animal {

 public void eat();
 public void travel();
}

Implementing Interfaces:
When a class implements an interface, you can think of the class as signing a contract, agreeing to
perform the specific behaviors of the interface. If a class does not perform all the behaviors of the
interface, the class must declare itself as abstract.

A class uses the implements keyword to implement an interface. The implements keyword
appears in the class declarat ion following the extends port ion of the declarat ion.

/* File name : MammalInt.java */
public class MammalInt implements Animal{

 public void eat(){
 System.out.println("Mammal eats");
 }

 public void travel(){
 System.out.println("Mammal travels");
 }

 public int noOfLegs(){
 return 0;
 }

 public static void main(String args[]){
 MammalInt m = new MammalInt();
 m.eat();
 m.travel();
 }
}

This would produce the following result:

Mammal eats
Mammal travels

When overriding methods defined in interfaces there are several rules to be followed:

Checked exceptions should not be declared on implementation methods other than the ones
declared by the interface method or subclasses of those declared by the interface method.

The signature of the interface method and the same return type or subtype should be
maintained when overriding the methods.

An implementation class itself can be abstract and if so interface methods need not be
implemented.

When implementation interfaces there are several rules:

A class can implement more than one interface at a t ime.

A class can extend only one class, but implement many interfaces.

An interface can extend another interface, similarly to the way that a class can extend another
class.

Extending Interfaces:

An interface can extend another interface, similarly to the way that a class can extend another class.
The extends keyword is used to extend an interface, and the child interface inherits the methods
of the parent interface.

The following Sports interface is extended by Hockey and Football interfaces.

//Filename: Sports.java
public interface Sports
{
 public void setHomeTeam(String name);
 public void setVisitingTeam(String name);
}

//Filename: Football.java
public interface Football extends Sports
{
 public void homeTeamScored(int points);
 public void visitingTeamScored(int points);
 public void endOfQuarter(int quarter);
}

//Filename: Hockey.java
public interface Hockey extends Sports
{
 public void homeGoalScored();
 public void visitingGoalScored();
 public void endOfPeriod(int period);
 public void overtimePeriod(int ot);
}

The Hockey interface has four methods, but it inherits two from Sports; thus, a class that
implements Hockey needs to implement all six methods. Similarly, a class that implements Football
needs to define the three methods from Football and the two methods from Sports.

Extending Multiple Interfaces:
A Java class can only extend one parent class. Mult iple inheritance is not allowed. Interfaces are not
classes, however, and an interface can extend more than one parent interface.

The extends keyword is used once, and the parent interfaces are declared in a comma-separated
list .

For example, if the Hockey interface extended both Sports and Event, it would be declared as:

public interface Hockey extends Sports, Event

Tagging Interfaces:
The most common use of extending interfaces occurs when the parent interface does not contain
any methods. For example, the MouseListener interface in the java.awt.event package extended
java.ut il.EventListener, which is defined as:

package java.util;
public interface EventListener
{}

An interface with no methods in it is referred to as a tagging interface. There are two basic design
purposes of tagging interfaces:

Creates a common parent: As with the EventListener interface, which is extended by dozens of
other interfaces in the Java API, you can use a tagging interface to create a common parent among a
group of interfaces. For example, when an interface extends EventListener, the JVM knows that this
part icular interface is going to be used in an event delegation scenario.

Adds a data type to a class: This situation is where the term tagging comes from. A class that
implements a tagging interface does not need to define any methods (since the interface does not
have any), but the class becomes an interface type through polymorphism.

