
http://www.tutorialspoint.com/java/java_nonaccess_modifiers.htm Copyright © tutorialspoint.com

JAVA NON ACCESS MODIFIERS

Java provides a number of non-access modifiers to achieve many other functionality.

The static modifier for creating class methods and variables

The final modifier for finalizing the implementations of classes, methods, and variables.

The abstract modifier for creating abstract classes and methods.

The synchronized and volatile modifiers, which are used for threads.

The static Modifier:
Static Variables:
The static key word is used to create variables that will exist  independently of any instances created
for the class. Only one copy of the stat ic variable exists regardless of the number of instances of
the class.

Stat ic variables are also known as class variables. Local variables cannot be declared stat ic.

Static Methods:
The stat ic key word is used to create methods that will exist  independently of any instances
created for the class.

Stat ic methods do not use any instance variables of any object of the class they are defined in.
Stat ic methods take all the data from parameters and compute something from those parameters,
with no reference to variables.

Class variables and methods can be accessed using the class name followed by a dot and the name
of the variable or method.

Example:
The stat ic modifier is used to create class methods and variables, as in the following example:

public class InstanceCounter {

   private static int numInstances = 0;

   protected static int getCount() {
      return numInstances;
   }

   private static void addInstance() {
      numInstances++;
   }

   InstanceCounter() {
      InstanceCounter.addInstance(); 
   }

   public static void main(String[] arguments) {
      System.out.println("Starting with " +
      InstanceCounter.getCount() + " instances");
      for (int i = 0; i < 500; ++i){
         new InstanceCounter();
   }
      System.out.println("Created " +
      InstanceCounter.getCount() + " instances");
   }
}

http://www.tutorialspoint.com/java/java_nonaccess_modifiers.htm


This would produce the following result:

Started with 0 instances
Created 500 instances

The final Modifier:
final Variables:
A final variable can be explicit ly init ialized only once. A reference variable declared final can never be
reassigned to refer to an different object.

However the data within the object can be changed. So the state of the object can be changed but
not the reference.

With variables, the final modifier often is used with static to make the constant a class variable.

Example:
public class Test{
  final int value = 10;
  // The following are examples of declaring constants:
  public static final int BOXWIDTH = 6;
  static final String TITLE = "Manager";
  
  public void changeValue(){
     value = 12; //will give an error
  }
}

final Methods:
A final method cannot be overridden by any subclasses. As mentioned previously the final modifier
prevents a method from being modified in a subclass.

The main intention of making a method final would be that the content of the method should not be
changed by any outsider.

Example:
You declare methods using the final modifier in the class declarat ion, as in the following example:

public class Test{
    public final void changeName(){
       // body of method
    }
}

final Classes:
The main purpose of using a class being declared as final is to prevent the class from being
subclassed. If a class is marked as final then no class can inherit  any feature from the final class.

Example:
public final class Test {
   // body of class
}

The abstract Modifier:
abstract Class:
An abstract class can never be instantiated. If a class is declared as abstract then the sole purpose
is for the class to be extended.



A class cannot be both abstract and final. (since a final class cannot be extended). If a class contains
abstract methods then the class should be declared abstract. Otherwise a compile error will be
thrown.

An abstract class may contain both abstract methods as well normal methods.

Example:
abstract class Caravan{
   private double price;
   private String model;
   private String year;
   public abstract void goFast(); //an abstract method
   public abstract void changeColor();
}

abstract Methods:
An abstract method is a method declared with out any implementation. The methods
body(implementation) is provided by the subclass. Abstract methods can never be final or strict .

Any class that extends an abstract class must implement all the abstract methods of the super
class unless the subclass is also an abstract class.

If a class contains one or more abstract methods then the class must be declared abstract. An
abstract class does not need to contain abstract methods.

The abstract method ends with a semicolon. Example: public abstract sample();

Example:
public abstract class SuperClass{
    abstract void m(); //abstract method
}

class SubClass extends SuperClass{
     // implements the abstract method
      void m(){
   .........
      }
}

The synchronized Modifier:
The synchronized key word used to indicate that a method can be accessed by only one thread at a
t ime. The synchronized modifier can be applied with any of the four access level modifiers.

Example:
public synchronized void showDetails(){
.......
} 

The transient Modifier:
An instance variable is marked transient to indicate the JVM to skip the part icular variable when
serializing the object containing it .

This modifier is included in the statement that creates the variable, preceding the class or data type
of the variable.

Example:
public transient int limit = 55;   // will not persist
public int b; // will persist



The volatile Modifier:
The volat ile is used to let the JVM know that a thread accessing the variable must always merge its
own private copy of the variable with the master copy in the memory.

Accessing a volat ile variable synchronizes all the cached copied of the variables in the main memory.
Volat ile can only be applied to instance variables, which are of type object or private. A volat ile
object reference can be null.

Example:
public class MyRunnable implements Runnable
{
    private volatile boolean active;
 
    public void run()
    {
        active = true;
        while (active) // line 1
        {
            // some code here
        }
    }
    public void stop()
    {
        active = false; // line 2
    }
}

Usually, run() is called in one thread (the one you start using the Runnable), and stop() is called from
another thread. If in line 1 the cached value of act ive is used, the loop may not stop when you set
active to false in line 2. That's when you want to use volatile.


