
http://www.tutorialspoint.com/java/java_overriding.htm Copyright © tutorialspoint.com

JAVA - OVERRIDING

In the previous chapter, we talked about super classes and sub classes. If a class inherits a method
from its super class, then there is a chance to override the method provided that it is not marked
final.

The benefit of overriding is: ability to define a behavior that's specific to the subclass type which
means a subclass can implement a parent class method based on its requirement.

In object-oriented terms, overriding means to override the functionality of an exist ing method.

Example:
Let us look at an example.

class Animal{

 public void move(){
 System.out.println("Animals can move");
 }
}

class Dog extends Animal{

 public void move(){
 System.out.println("Dogs can walk and run");
 }
}

public class TestDog{

 public static void main(String args[]){
 Animal a = new Animal(); // Animal reference and object
 Animal b = new Dog(); // Animal reference but Dog object

 a.move();// runs the method in Animal class

 b.move();//Runs the method in Dog class
 }
}

This would produce the following result:

Animals can move
Dogs can walk and run

In the above example, you can see that the even though b is a type of Animal it runs the move
method in the Dog class. The reason for this is: In compile t ime, the check is made on the reference
type. However, in the runtime, JVM figures out the object type and would run the method that
belongs to that part icular object.

Therefore, in the above example, the program will compile properly since Animal class has the
method move. Then, at the runtime, it runs the method specific for that object.

Consider the following example :

class Animal{

 public void move(){
 System.out.println("Animals can move");
 }
}

class Dog extends Animal{

 public void move(){

http://www.tutorialspoint.com/java/java_overriding.htm

 System.out.println("Dogs can walk and run");
 }
 public void bark(){
 System.out.println("Dogs can bark");
 }
}

public class TestDog{

 public static void main(String args[]){
 Animal a = new Animal(); // Animal reference and object
 Animal b = new Dog(); // Animal reference but Dog object

 a.move();// runs the method in Animal class
 b.move();//Runs the method in Dog class
 b.bark();
 }
}

This would produce the following result:

TestDog.java:30: cannot find symbol
symbol : method bark()
location: class Animal
 b.bark();
 ^

This program will throw a compile t ime error since b's reference type Animal doesn't have a method
by the name of bark.

Rules for method overriding:
The argument list should be exactly the same as that of the overridden method.

The return type should be the same or a subtype of the return type declared in the original
overridden method in the superclass.

The access level cannot be more restrict ive than the overridden method's access level. For
example: if the superclass method is declared public then the overridding method in the sub
class cannot be either private or protected.

Instance methods can be overridden only if they are inherited by the subclass.

A method declared final cannot be overridden.

A method declared stat ic cannot be overridden but can be re-declared.

If a method cannot be inherited, then it cannot be overridden.

A subclass within the same package as the instance's superclass can override any superclass
method that is not declared private or final.

A subclass in a different package can only override the non-final methods declared public or
protected.

An overriding method can throw any uncheck exceptions, regardless of whether the overridden
method throws exceptions or not. However the overriding method should not throw checked
exceptions that are new or broader than the ones declared by the overridden method. The
overriding method can throw narrower or fewer exceptions than the overridden method.

Constructors cannot be overridden.

Using the super keyword:
When invoking a superclass version of an overridden method the super keyword is used.

class Animal{

 public void move(){

 System.out.println("Animals can move");
 }
}

class Dog extends Animal{

 public void move(){
 super.move(); // invokes the super class method
 System.out.println("Dogs can walk and run");
 }
}

public class TestDog{

 public static void main(String args[]){

 Animal b = new Dog(); // Animal reference but Dog object
 b.move(); //Runs the method in Dog class

 }
}

This would produce the following result:

Animals can move
Dogs can walk and run

