
http://www.tutorialspoint.com/java/java_regular_expressions.htm Copyright © tutorialspoint.com

JAVA - REGULAR EXPRESSIONS

Java provides the java.ut il.regex package for pattern matching with regular expressions. Java regular
expressions are very similar to the Perl programming language and very easy to learn.

A regular expression is a special sequence of characters that helps you match or find other strings or
sets of strings, using a specialized syntax held in a pattern. They can be used to search, edit , or
manipulate text and data.

The java.ut il.regex package primarily consists of the following three classes:

Pattern Class: A Pattern object is a compiled representation of a regular expression. The
Pattern class provides no public constructors. To create a pattern, you must first invoke one
of its public stat ic compile methods, which will then return a Pattern object. These methods
accept a regular expression as the first argument.

Matcher Class: A Matcher object is the engine that interprets the pattern and performs
match operations against an input string. Like the Pattern class, Matcher defines no public
constructors. You obtain a Matcher object by invoking the matcher method on a Pattern
object.

PatternSyntaxException: A PatternSyntaxException object is an unchecked exception
that indicates a syntax error in a regular expression pattern.

Capturing Groups:
Capturing groups are a way to treat mult iple characters as a single unit . They are created by placing
the characters to be grouped inside a set of parentheses. For example, the regular expression (dog)
creates a single group containing the letters "d", "o", and "g".

Capturing groups are numbered by counting their opening parentheses from left to right. In the
expression ((A)(B(C))), for example, there are four such groups:

((A)(B(C)))

(A)

(B(C))

(C)

To find out how many groups are present in the expression, call the groupCount method on a
matcher object. The groupCount method returns an int showing the number of capturing groups
present in the matcher's pattern.

There is also a special group, group 0, which always represents the entire expression. This group is
not included in the total reported by groupCount.

Example:
Following example illustrates how to find a digit string from the given alphanumeric string:

import java.util.regex.Matcher;
import java.util.regex.Pattern;

public class RegexMatches
{
 public static void main(String args[]){

 // String to be scanned to find the pattern.
 String line = "This order was placed for QT3000! OK?";
 String pattern = "(.*)(\\d+)(.*)";

 // Create a Pattern object
 Pattern r = Pattern.compile(pattern);

http://www.tutorialspoint.com/java/java_regular_expressions.htm

 // Now create matcher object.
 Matcher m = r.matcher(line);
 if (m.find()) {
 System.out.println("Found value: " + m.group(0));
 System.out.println("Found value: " + m.group(1));
 System.out.println("Found value: " + m.group(2));
 } else {
 System.out.println("NO MATCH");
 }
 }
}

This would produce the following result:

Found value: This order was placed for QT3000! OK?
Found value: This order was placed for QT300
Found value: 0

Regular Expression Syntax:
Here is the table list ing down all the regular expression metacharacter syntax available in Java:

Subexpression Matches

^ Matches beginning of line.

$ Matches end of line.

. Matches any single character except newline. Using m option allows it to
match newline as well.

[...] Matches any single character in brackets.

[^...] Matches any single character not in brackets

\A Beginning of entire string

\z End of entire string

\Z End of entire string except allowable final line terminator.

re* Matches 0 or more occurrences of preceding expression.

re+ Matches 1 or more of the previous thing

re? Matches 0 or 1 occurrence of preceding expression.

re{ n} Matches exactly n number of occurrences of preceding expression.

re{ n,} Matches n or more occurrences of preceding expression.

re{ n, m} Matches at least n and at most m occurrences of preceding expression.

a| b Matches either a or b.

(re) Groups regular expressions and remembers matched text.

(?: re) Groups regular expressions without remembering matched text.

(?> re) Matches independent pattern without backtracking.

\w Matches word characters.

\W Matches nonword characters.

\s Matches whitespace. Equivalent to [\t \n\r\f].

\S Matches nonwhitespace.

\d Matches digits. Equivalent to [0-9].

\D Matches nondigits.

\A Matches beginning of string.

\Z Matches end of string. If a newline exists, it matches just before newline.

\z Matches end of string.

\G Matches point where last match finished.

\n Back-reference to capture group number "n"

\b Matches word boundaries when outside brackets. Matches backspace (0x08)
when inside brackets.

\B Matches nonword boundaries.

\n, \t , etc. Matches newlines, carriage returns, tabs, etc.

\Q Escape (quote) all characters up to \E

\E Ends quoting begun with \Q

Methods of the Matcher Class:
Here is a list of useful instance methods:

Index Methods:
Index methods provide useful index values that show precisely where the match was found in the
input string:

SN Methods with Description

1 public int start()

Returns the start index of the previous match.

2 public int start(int group)

Returns the start index of the subsequence captured by the given group during the previous
match operation.

3 public int end()

Returns the offset after the last character matched.

4 public int end(int group)

Returns the offset after the last character of the subsequence captured by the given group
during the previous match operation.

Study Methods:
Study methods review the input string and return a Boolean indicating whether or not the pattern is
found:

SN Methods with Description

1 public boolean lookingAt()

Attempts to match the input sequence, start ing at the beginning of the region, against the
pattern.

2 public boolean find()

Attempts to find the next subsequence of the input sequence that matches the pattern.

3 public boolean find(int start

Resets this matcher and then attempts to find the next subsequence of the input
sequence that matches the pattern, start ing at the specified index.

4 public boolean matches()

Attempts to match the entire region against the pattern.

Replacement Methods:
Replacement methods are useful methods for replacing text in an input string:

SN Methods with Description

1 public Matcher appendReplacement(StringBuffer sb, String replacement)

Implements a non-terminal append-and-replace step.

2 public StringBuffer appendTail(StringBuffer sb)

Implements a terminal append-and-replace step.

3 public String replaceAll(String replacement)

Replaces every subsequence of the input sequence that matches the pattern with the
given replacement string.

4 public String replaceFirst(String replacement)

Replaces the first subsequence of the input sequence that matches the pattern with the
given replacement string.

5 public static String quoteReplacement(String s)

Returns a literal replacement String for the specified String. This method produces a String
that will work as a literal replacement s in the appendReplacement method of the Matcher
class.

The start and end Methods:
Following is the example that counts the number of t imes the word "cats" appears in the input
string:

import java.util.regex.Matcher;
import java.util.regex.Pattern;

public class RegexMatches
{
 private static final String REGEX = "\\bcat\\b";
 private static final String INPUT =
 "cat cat cat cattie cat";

 public static void main(String args[]){
 Pattern p = Pattern.compile(REGEX);
 Matcher m = p.matcher(INPUT); // get a matcher object
 int count = 0;

 while(m.find()) {
 count++;
 System.out.println("Match number "+count);
 System.out.println("start(): "+m.start());
 System.out.println("end(): "+m.end());
 }
 }
}

This would produce the following result:

Match number 1
start(): 0
end(): 3
Match number 2
start(): 4
end(): 7
Match number 3
start(): 8
end(): 11
Match number 4
start(): 19
end(): 22

You can see that this example uses word boundaries to ensure that the letters "c" "a" "t" are not
merely a substring in a longer word. It also gives some useful information about where in the input
string the match has occurred.

The start method returns the start index of the subsequence captured by the given group during
the previous match operation, and end returns the index of the last character matched, plus one.

The matches and lookingAt Methods:
The matches and lookingAt methods both attempt to match an input sequence against a pattern.
The difference, however, is that matches requires the entire input sequence to be matched, while
lookingAt does not.

Both methods always start at the beginning of the input string. Here is the example explaining the
functionality:

import java.util.regex.Matcher;
import java.util.regex.Pattern;

public class RegexMatches
{
 private static final String REGEX = "foo";
 private static final String INPUT = "fooooooooooooooooo";
 private static Pattern pattern;
 private static Matcher matcher;

 public static void main(String args[]){
 pattern = Pattern.compile(REGEX);
 matcher = pattern.matcher(INPUT);

 System.out.println("Current REGEX is: "+REGEX);
 System.out.println("Current INPUT is: "+INPUT);

 System.out.println("lookingAt(): "+matcher.lookingAt());
 System.out.println("matches(): "+matcher.matches());
 }
}

This would produce the following result:

Current REGEX is: foo
Current INPUT is: fooooooooooooooooo
lookingAt(): true
matches(): false

The replaceFirst and replaceAll Methods:
The replaceFirst and replaceAll methods replace text that matches a given regular expression. As
their names indicate, replaceFirst replaces the first occurrence, and replaceAll replaces all
occurrences.

Here is the example explaining the functionality:

import java.util.regex.Matcher;
import java.util.regex.Pattern;

public class RegexMatches
{
 private static String REGEX = "dog";
 private static String INPUT = "The dog says meow. " +
 "All dogs say meow.";
 private static String REPLACE = "cat";

 public static void main(String[] args) {
 Pattern p = Pattern.compile(REGEX);
 // get a matcher object
 Matcher m = p.matcher(INPUT);
 INPUT = m.replaceAll(REPLACE);
 System.out.println(INPUT);
 }
}

This would produce the following result:

The cat says meow. All cats say meow.

The appendReplacement and appendTail Methods:
The Matcher class also provides appendReplacement and appendTail methods for text replacement.

Here is the example explaining the functionality:

import java.util.regex.Matcher;
import java.util.regex.Pattern;

public class RegexMatches
{
 private static String REGEX = "a*b";
 private static String INPUT = "aabfooaabfooabfoob";
 private static String REPLACE = "-";
 public static void main(String[] args) {
 Pattern p = Pattern.compile(REGEX);
 // get a matcher object
 Matcher m = p.matcher(INPUT);
 StringBuffer sb = new StringBuffer();
 while(m.find()){
 m.appendReplacement(sb,REPLACE);
 }
 m.appendTail(sb);
 System.out.println(sb.toString());
 }

}

This would produce the following result:

-foo-foo-foo-

PatternSyntaxException Class Methods:
A PatternSyntaxException is an unchecked exception that indicates a syntax error in a regular
expression pattern. The PatternSyntaxException class provides the following methods to help you
determine what went wrong:

SN Methods with Description

1 public String getDescription()

Retrieves the descript ion of the error.

2 public int getIndex()

Retrieves the error index.

3 public String getPattern()

Retrieves the erroneous regular expression pattern.

4 public String getMessage()

Returns a mult i-line string containing the descript ion of the syntax error and its index, the
erroneous regular expression pattern, and a visual indication of the error index within the
pattern.

