
http://www.tutorialspoint.com/java/java_thread_deadlock.htm Copyright © tutorialspoint.com

JAVA - THREAD DEADLOCK

Deadlock describes a situation where two or more threads are blocked forever, wait ing for each
other. Deadlock occurs when mult iple threads need the same locks but obtain them in different
order. A Java mult ithreaded program may suffer from the deadlock condit ion because the
synchronized keyword causes the executing thread to block while wait ing for the lock, or monitor,
associated with the specified object. Here is an example:

Example:
public class TestThread {
   public static Object Lock1 = new Object();
   public static Object Lock2 = new Object();
   
   public static void main(String args[]) {
   
      ThreadDemo1 T1 = new ThreadDemo1();
      ThreadDemo2 T2 = new ThreadDemo2();
      T1.start();
      T2.start();
   }
   
   private static class ThreadDemo1 extends Thread {
      public void run() {
         synchronized (Lock1) {
            System.out.println("Thread 1: Holding lock 1...");
            try { Thread.sleep(10); }
            catch (InterruptedException e) {}
            System.out.println("Thread 1: Waiting for lock 2...");
            synchronized (Lock2) {
               System.out.println("Thread 1: Holding lock 1 & 2...");
            }
         }
      }
   }
   private static class ThreadDemo2 extends Thread {
      public void run() {
         synchronized (Lock2) {
            System.out.println("Thread 2: Holding lock 2...");
            try { Thread.sleep(10); }
            catch (InterruptedException e) {}
            System.out.println("Thread 2: Waiting for lock 1...");
            synchronized (Lock1) {
               System.out.println("Thread 2: Holding lock 1 & 2...");
            }
         }
      }
   } 
}

When you compile and execute above program, you find a deadlock situation and below is the
output produced by the program:

Thread 1: Holding lock 1...
Thread 2: Holding lock 2...
Thread 1: Waiting for lock 2...
Thread 2: Waiting for lock 1...

Above program will hang forever because neither of the threads in posit ion to proceed and wait ing
for each other to release the lock, so you can come out of the program by pressing CTRL-C.

Deadlock Solution Example:
Let's change the order of the lock and run the same program to see if st ill both the threads waits for
each other:

http://www.tutorialspoint.com/java/java_thread_deadlock.htm


public class TestThread {
   public static Object Lock1 = new Object();
   public static Object Lock2 = new Object();
   
   public static void main(String args[]) {
   
      ThreadDemo1 T1 = new ThreadDemo1();
      ThreadDemo2 T2 = new ThreadDemo2();
      T1.start();
      T2.start();
   }
   
   private static class ThreadDemo1 extends Thread {
      public void run() {
         synchronized (Lock1) {
            System.out.println("Thread 1: Holding lock 1...");
            try { Thread.sleep(10); }
            catch (InterruptedException e) {}
            System.out.println("Thread 1: Waiting for lock 2...");
            synchronized (Lock2) {
               System.out.println("Thread 1: Holding lock 1 & 2...");
            }
         }
      }
   }
   private static class ThreadDemo2 extends Thread {
      public void run() {
         synchronized (Lock1) {
            System.out.println("Thread 2: Holding lock 1...");
            try { Thread.sleep(10); }
            catch (InterruptedException e) {}
            System.out.println("Thread 2: Waiting for lock 2...");
            synchronized (Lock2) {
               System.out.println("Thread 2: Holding lock 1 & 2...");
            }
         }
      }
   } 
}

So just changing the order of the locks prevent the program in going deadlock situation and
completes with the following result:

Thread 1: Holding lock 1...
Thread 1: Waiting for lock 2...
Thread 1: Holding lock 1 & 2...
Thread 2: Holding lock 1...
Thread 2: Waiting for lock 2...
Thread 2: Holding lock 1 & 2...

Above example has been shown just for making you the concept clear, but its a more complex
concept and you should deep dive into it  before you develop your applicat ions to deal with deadlock
situations.


