
http://www.tutorialspoint.com/java/java_thread_synchronization.htm Copyright © tutorialspoint.com

JAVA - THREAD SYNCHRONIZATION

When we start two or more threads within a program, there may be a situation when mult iple
threads try to access the same resource and finally they can produce unforeseen result due to
concurrency issue. For example if mult iple threads try to write within a same file then they may
corrupt the data because one of the threads can overrite data or while one thread is opening the
same file at the same t ime another thread might be closing the same file.

So there is a need to synchronize the act ion of mult iple threads and make sure that only one thread
can access the resource at a given point in t ime. This is implemented using a concept called
monitors. Each object in Java is associated with a monitor, which a thread can lock or unlock. Only
one thread at a t ime may hold a lock on a monitor.

Java programming language provides a very handy way of creating threads and synchronizing their
task by using synchronized blocks. You keep shared resources within this block. Following is the
general form of the synchronized statement:

synchronized(objectidentifier) {
 // Access shared variables and other shared resources
}

Here, the objectidentifier is a reference to an object whose lock associates with the monitor that
the synchronized statement represents. Now we are going to see two examples where we will print
a counter using two different threads. When threads are not synchronized, they print counter value
which is not in sequence, but when we print counter by putt ing inside synchronized() block, then it
prints counter very much in sequence for both the threads.

Multithreading example without Synchronization:
Here is a simple example which may or may not print counter value in sequence and every t ime we
run it , it produces different result based on CPU availability to a thread.

class PrintDemo {
 public void printCount(){
 try {
 for(int i = 5; i > 0; i--) {
 System.out.println("Counter --- " + i);
 }
 } catch (Exception e) {
 System.out.println("Thread interrupted.");
 }
 }

}

class ThreadDemo extends Thread {
 private Thread t;
 private String threadName;
 PrintDemo PD;

 ThreadDemo(String name, PrintDemo pd){
 threadName = name;
 PD = pd;
 }
 public void run() {
 PD.printCount();
 System.out.println("Thread " + threadName + " exiting.");
 }

 public void start ()
 {
 System.out.println("Starting " + threadName);
 if (t == null)
 {
 t = new Thread (this, threadName);
 t.start ();

http://www.tutorialspoint.com/java/java_thread_synchronization.htm

 }
 }

}

public class TestThread {
 public static void main(String args[]) {

 PrintDemo PD = new PrintDemo();

 ThreadDemo T1 = new ThreadDemo("Thread - 1 ", PD);
 ThreadDemo T2 = new ThreadDemo("Thread - 2 ", PD);

 T1.start();
 T2.start();

 // wait for threads to end
 try {
 T1.join();
 T2.join();
 } catch(Exception e) {
 System.out.println("Interrupted");
 }
 }
}

This produces different result every t ime you run this program:

Starting Thread - 1
Starting Thread - 2
Counter --- 5
Counter --- 4
Counter --- 3
Counter --- 5
Counter --- 2
Counter --- 1
Counter --- 4
Thread Thread - 1 exiting.
Counter --- 3
Counter --- 2
Counter --- 1
Thread Thread - 2 exiting.

Multithreading example with Synchronization:
Here is the same example which prints counter value in sequence and every t ime we run it , it
produces same result .

class PrintDemo {
 public void printCount(){
 try {
 for(int i = 5; i > 0; i--) {
 System.out.println("Counter --- " + i);
 }
 } catch (Exception e) {
 System.out.println("Thread interrupted.");
 }
 }

}

class ThreadDemo extends Thread {
 private Thread t;
 private String threadName;
 PrintDemo PD;

 ThreadDemo(String name, PrintDemo pd){
 threadName = name;
 PD = pd;
 }
 public void run() {
 synchronized(PD) {

 PD.printCount();
 }
 System.out.println("Thread " + threadName + " exiting.");
 }

 public void start ()
 {
 System.out.println("Starting " + threadName);
 if (t == null)
 {
 t = new Thread (this, threadName);
 t.start ();
 }
 }

}

public class TestThread {
 public static void main(String args[]) {

 PrintDemo PD = new PrintDemo();

 ThreadDemo T1 = new ThreadDemo("Thread - 1 ", PD);
 ThreadDemo T2 = new ThreadDemo("Thread - 2 ", PD);

 T1.start();
 T2.start();

 // wait for threads to end
 try {
 T1.join();
 T2.join();
 } catch(Exception e) {
 System.out.println("Interrupted");
 }
 }
}

This produces same result every t ime you run this program:

Starting Thread - 1
Starting Thread - 2
Counter --- 5
Counter --- 4
Counter --- 3
Counter --- 2
Counter --- 1
Thread Thread - 1 exiting.
Counter --- 5
Counter --- 4
Counter --- 3
Counter --- 2
Counter --- 1
Thread Thread - 2 exiting.

