
http://www.tutorialspoint.com/java/java_using_iterator.htm Copyright © tutorialspoint.com

JAVA - HOW TO USE ITERATOR?

Often, you will want to cycle through the elements in a collect ion. For example, you might want to
display each element.

The easiest way to do this is to employ an iterator, which is an object that implements either the
Iterator or the List Iterator interface.

Iterator enables you to cycle through a collect ion, obtaining or removing elements. List Iterator
extends Iterator to allow bidirect ional traversal of a list , and the modificat ion of elements.

Before you can access a collect ion through an iterator, you must obtain one. Each of the collect ion
classes provides an iterator() method that returns an iterator to the start of the collect ion. By using
this iterator object, you can access each element in the collect ion, one element at a t ime.

In general, to use an iterator to cycle through the contents of a collect ion, follow these steps:

Obtain an iterator to the start of the collect ion by calling the collect ion's iterator() method.

Set up a loop that makes a call to hasNext(). Have the loop iterate as long as hasNext()
returns true.

Within the loop, obtain each element by calling next().

For collect ions that implement List , you can also obtain an iterator by calling List Iterator.

The Methods Declared by Iterator:

SN Methods with Description

1 boolean hasNext()

Returns true if there are more elements. Otherwise, returns false.

2 Object next()

Returns the next element. Throws NoSuchElementException if there is not a next element.

3 void remove()

Removes the current element. Throws IllegalStateException if an attempt is made to call
remove() that is not preceded by a call to next().

The Methods Declared by ListIterator:

SN Methods with Description

1 void add(Object obj)

Inserts obj into the list in front of the element that will be returned by the next call to next(
).

2 boolean hasNext()

Returns true if there is a next element. Otherwise, returns false.

http://www.tutorialspoint.com/java/java_using_iterator.htm

3 boolean hasPrevious()

Returns true if there is a previous element. Otherwise, returns false.

4 Object next()

Returns the next element. A NoSuchElementException is thrown if there is not a next
element.

5 int nextIndex()

Returns the index of the next element. If there is not a next element, returns the size of the
list .

6 Object previous()

Returns the previous element. A NoSuchElementException is thrown if there is not a
previous element.

7 int previousIndex()

Returns the index of the previous element. If there is not a previous element, returns -1.

8 void remove()

Removes the current element from the list . An IllegalStateException is thrown if remove() is
called before next() or previous() is invoked.

9 void set(Object obj)

Assigns obj to the current element. This is the element last returned by a call to either next(
) or previous().

Example:
Here is an example demonstrat ing both Iterator and List Iterator. It uses an ArrayList object, but the
general principles apply to any type of collect ion.

Of course, List Iterator is available only to those collect ions that implement the List interface.

import java.util.*;

public class IteratorDemo {

 public static void main(String args[]) {
 // Create an array list
 ArrayList al = new ArrayList();
 // add elements to the array list
 al.add("C");
 al.add("A");
 al.add("E");
 al.add("B");
 al.add("D");
 al.add("F");

 // Use iterator to display contents of al
 System.out.print("Original contents of al: ");
 Iterator itr = al.iterator();
 while(itr.hasNext()) {
 Object element = itr.next();
 System.out.print(element + " ");
 }

 System.out.println();

 // Modify objects being iterated
 ListIterator litr = al.listIterator();
 while(litr.hasNext()) {
 Object element = litr.next();
 litr.set(element + "+");
 }
 System.out.print("Modified contents of al: ");
 itr = al.iterator();
 while(itr.hasNext()) {
 Object element = itr.next();
 System.out.print(element + " ");
 }
 System.out.println();

 // Now, display the list backwards
 System.out.print("Modified list backwards: ");
 while(litr.hasPrevious()) {
 Object element = litr.previous();
 System.out.print(element + " ");
 }
 System.out.println();
 }
}

This would produce the following result:

Original contents of al: C A E B D F
Modified contents of al: C+ A+ E+ B+ D+ F+
Modified list backwards: F+ D+ B+ E+ A+ C+

