
http://www.tutorialspoint.com/java/java_variable_types.htm Copyright © tutorialspoint.com

JAVA - VARIABLE TYPES

A variable provides us with named storage that our programs can manipulate. Each variable in Java
has a specific type, which determines the size and layout of the variable's memory; the range of
values that can be stored within that memory; and the set of operations that can be applied to the
variable.

You must declare all variables before they can be used. The basic form of a variable declarat ion is
shown here:

data type variable [= value][, variable [= value] ...] ;

Here data type is one of Java's datatypes and variable is the name of the variable. To declare more
than one variable of the specified type, you can use a comma-separated list .

Following are valid examples of variable declarat ion and init ializat ion in Java:

int a, b, c; // Declares three ints, a, b, and c.
int a = 10, b = 10; // Example of initialization
byte B = 22; // initializes a byte type variable B.
double pi = 3.14159; // declares and assigns a value of PI.
char a = 'a'; // the char variable a iis initialized with value 'a'

This chapter will explain various variable types available in Java Language. There are three kinds of
variables in Java:

Local variables

Instance variables

Class/stat ic variables

Local variables:
Local variables are declared in methods, constructors, or blocks.

Local variables are created when the method, constructor or block is entered and the variable
will be destroyed once it exits the method, constructor or block.

Access modifiers cannot be used for local variables.

Local variables are visible only within the declared method, constructor or block.

Local variables are implemented at stack level internally.

There is no default value for local variables so local variables should be declared and an init ial
value should be assigned before the first use.

Example:
Here, age is a local variable. This is defined inside pupAge() method and its scope is limited to this
method only.

public class Test{
 public void pupAge(){
 int age = 0;
 age = age + 7;
 System.out.println("Puppy age is : " + age);
 }

 public static void main(String args[]){
 Test test = new Test();
 test.pupAge();
 }

http://www.tutorialspoint.com/java/java_variable_types.htm

}

This would produce the following result:

Puppy age is: 7

Example:
Following example uses age without init ializing it , so it would give an error at the t ime of compilat ion.

public class Test{
 public void pupAge(){
 int age;
 age = age + 7;
 System.out.println("Puppy age is : " + age);
 }

 public static void main(String args[]){
 Test test = new Test();
 test.pupAge();
 }
}

This would produce the following error while compiling it :

Test.java:4:variable number might not have been initialized
age = age + 7;
 ^
1 error

Instance variables:
Instance variables are declared in a class, but outside a method, constructor or any block.

When a space is allocated for an object in the heap, a slot for each instance variable value is
created.

Instance variables are created when an object is created with the use of the keyword 'new' and
destroyed when the object is destroyed.

Instance variables hold values that must be referenced by more than one method, constructor
or block, or essential parts of an object 's state that must be present throughout the class.

Instance variables can be declared in class level before or after use.

Access modifiers can be given for instance variables.

The instance variables are visible for all methods, constructors and block in the class. Normally,
it is recommended to make these variables private (access level). However visibility for
subclasses can be given for these variables with the use of access modifiers.

Instance variables have default values. For numbers the default value is 0, for Booleans it is
false and for object references it is null. Values can be assigned during the declarat ion or within
the constructor.

Instance variables can be accessed direct ly by calling the variable name inside the class.
However within stat ic methods and different class (when instance variables are given
accessibility) should be called using the fully qualified name . ObjectReference.VariableName.

Example:
import java.io.*;

public class Employee{
 // this instance variable is visible for any child class.
 public String name;

 // salary variable is visible in Employee class only.
 private double salary;

 // The name variable is assigned in the constructor.
 public Employee (String empName){
 name = empName;
 }

 // The salary variable is assigned a value.
 public void setSalary(double empSal){
 salary = empSal;
 }

 // This method prints the employee details.
 public void printEmp(){
 System.out.println("name : " + name);
 System.out.println("salary :" + salary);
 }

 public static void main(String args[]){
 Employee empOne = new Employee("Ransika");
 empOne.setSalary(1000);
 empOne.printEmp();
 }
}

This would produce the following result:

name : Ransika
salary :1000.0

Class/static variables:
Class variables also known as stat ic variables are declared with the static keyword in a class,
but outside a method, constructor or a block.

There would only be one copy of each class variable per class, regardless of how many objects
are created from it .

Stat ic variables are rarely used other than being declared as constants. Constants are
variables that are declared as public/private, final and stat ic. Constant variables never change
from their init ial value.

Stat ic variables are stored in stat ic memory. It is rare to use stat ic variables other than
declared final and used as either public or private constants.

Stat ic variables are created when the program starts and destroyed when the program stops.

Visibility is similar to instance variables. However, most stat ic variables are declared public
since they must be available for users of the class.

Default values are same as instance variables. For numbers, the default value is 0; for
Booleans, it is false; and for object references, it is null. Values can be assigned during the
declarat ion or within the constructor. Addit ionally values can be assigned in special stat ic
init ializer blocks.

Stat ic variables can be accessed by calling with the class name . ClassName.VariableName.

When declaring class variables as public stat ic final, then variables names (constants) are all in
upper case. If the stat ic variables are not public and final the naming syntax is the same as
instance and local variables.

Example:
import java.io.*;

public class Employee{
 // salary variable is a private static variable
 private static double salary;

 // DEPARTMENT is a constant
 public static final String DEPARTMENT = "Development ";

 public static void main(String args[]){
 salary = 1000;
 System.out.println(DEPARTMENT+"average salary:"+salary);
 }
}

This would produce the following result:

Development average salary:1000

Note: If the variables are access from an outside class the constant should be accessed as
Employee.DEPARTMENT

What is Next?
You already have used access modifiers (public & private) in this chapter. The next chapter will
explain you Access Modifiers and Non Access Modifiers in detail.

