--- title: "Reply to 'Mathematical Inconsistency in Solomonoff Induction?'" date: 2020-09-04 parent: Posts layout: post published: true --- <!-- l. 23 --><p class='noindent'>This is a reply to <a href='https://www.lesswrong.com/posts/hD4boFF6K782grtqX/mathematical-inconsistency-in-solomonoff-induction'>this LessWrong post</a>. </p><!-- l. 25 --><p class='indent'> I went through the maths in OP and it seems to check out. I think the core inconsistency is that SI implies <img class='math' src='../../imgs/2020-09-04-reply-to-math-contradiction-in-solomonoff-induction0x.png' alt='l(X ∪ Y) = l(X ) ' />. I’m going to redo the maths below (breaking it down step-by-step more). curi has <img class='math' src='../../imgs/2020-09-04-reply-to-math-contradiction-in-solomonoff-induction1x.png' alt='2l(X ) = l(X) ' /> which is the same inconsistency given his substitution. I’m not sure we can make that substitution but I also don’t think we need to. </p><!-- l. 27 --><p class='indent'> Let <span class='cmmi-10'>X </span>and <span class='cmmi-10'>Y </span>be independent hypotheses for Solomonoff induction. </p><!-- l. 29 --><p class='indent'> According to the prior, the non-normalized probability of <span class='cmmi-10'>X </span>(and similarly for <span class='cmmi-10'>Y </span>) is: </p> <table class='equation'><tr><td> <a id='x1-2r1'></a> <center class='math-display'> <img class='math-display' src='../../imgs/2020-09-04-reply-to-math-contradiction-in-solomonoff-induction2x.png' alt='P(X ) =--1-- 2l(X ) ' /></center></td><td class='equation-label'>(1)</td></tr></table> <!-- l. 37 --><p class='nopar'> </p><!-- l. 39 --><p class='indent'> what is the probability of <img class='math' src='../../imgs/2020-09-04-reply-to-math-contradiction-in-solomonoff-induction3x.png' alt='X ∪ Y ' />? </p> <table class='equation'><tr><td> <a id='x1-3r2'></a> <center class='math-display'> <img class='math-display' src='../../imgs/2020-09-04-reply-to-math-contradiction-in-solomonoff-induction4x.png' alt='P (X ∪Y ) = P (X )+ P (Y )− P(X ∩ Y ) --1-- --1- --1-- -1-- = 2l(X ) + 2l(Y) − 2l(X) ⋅2l(Y) --1-- --1- ----1----- = 2l(X ) + 2l(Y) − 2l(X) ⋅2l(Y ) --1-- --1- ----1---- = 2l(X ) + 2l(Y) − 2l(X)+l(Y) ' /></center></td><td class='equation-label'>(2)</td></tr></table> <!-- l. 48 --><p class='nopar'> </p><!-- l. 50 --><p class='indent'> However, by <a href='#x1-2r1'>Equation (1)</a> we have: </p> <table class='equation'><tr><td> <a id='x1-4r3'></a> <center class='math-display'> <img class='math-display' src='../../imgs/2020-09-04-reply-to-math-contradiction-in-solomonoff-induction5x.png' alt=' 1 P(X ∪ Y) = -l(X∪Y-) 2 ' /></center></td><td class='equation-label'>(3)</td></tr></table> <!-- l. 54 --><p class='nopar'> </p><!-- l. 56 --><p class='indent'> thus </p> <table class='equation'><tr><td> <a id='x1-5r4'></a> <center class='math-display'> <img class='math-display' src='../../imgs/2020-09-04-reply-to-math-contradiction-in-solomonoff-induction6x.png' alt=' 1 1 1 1 2l(X∪Y-) = 2l(X-) + 2l(Y-) − 2l(X)+l(Y) ' /></center></td><td class='equation-label'>(4)</td></tr></table> <!-- l. 60 --><p class='nopar'> </p><!-- l. 62 --><p class='indent'> This must hold for <span class='cmti-10'>any and all </span><span class='cmmi-10'>X </span>and <span class='cmmi-10'>Y </span>. </p><!-- l. 64 --><p class='indent'> curi considers the case where <span class='cmmi-10'>X </span>and <span class='cmmi-10'>Y </span>are the same length, starting with <a href='#x1-5r4'>Equation (4)</a> </p> <table class='equation'><tr><td> <a id='x1-6r5'></a> <center class='math-display'> <img class='math-display' src='../../imgs/2020-09-04-reply-to-math-contradiction-in-solomonoff-induction7x.png' alt='---1---= --1--+ --1- − ---1----- 2l(X∪Y ) 2l(X ) 2l(Y) 2l(X)+l(Y) = --1--+ --1--− ----1---- 2l(X ) 2l(X ) 2l(X)+l(X ) = --2--− --1-- 2l(X ) 22l(X) = ---1---− --1-- 2l(X )−1 22l(X) ' /></center></td><td class='equation-label'>(5)</td></tr></table> <!-- l. 73 --><p class='nopar'> </p><!-- l. 75 --><p class='indent'> but </p> <table class='equation'><tr><td> <a id='x1-7r6'></a> <center class='math-display'> <img class='math-display' src='../../imgs/2020-09-04-reply-to-math-contradiction-in-solomonoff-induction8x.png' alt='---1--- --1-- 2l(X)− 1 ≫ 22l(X) ' /></center></td><td class='equation-label'>(6)</td></tr></table> <!-- l. 79 --><p class='nopar'> </p><!-- l. 81 --><p class='indent'> and </p> <table class='equation'><tr><td> <a id='x1-8r7'></a> <center class='math-display'> <img class='math-display' src='../../imgs/2020-09-04-reply-to-math-contradiction-in-solomonoff-induction9x.png' alt='0 ≈ --1-- 22l(X) ' /></center></td><td class='equation-label'>(7)</td></tr></table> <!-- l. 85 --><p class='nopar'> </p><!-- l. 87 --><p class='indent'> so </p> <table class='equation'><tr><td> <a id='x1-9r8'></a> <center class='math-display'> <img class='math-display' src='../../imgs/2020-09-04-reply-to-math-contradiction-in-solomonoff-induction10x.png' alt=' ---1---≃ ---1--- 2l(X∪Y ) 2l(X )−1 ∴ l(X ∪ Y ) ≃ l(X )− 1 □ ' /></center></td><td class='equation-label'>(8)</td></tr></table> <!-- l. 95 --><p class='nopar'> </p><!-- l. 97 --><p class='indent'> curi has slightly different logic and argues <img class='math' src='../../imgs/2020-09-04-reply-to-math-contradiction-in-solomonoff-induction11x.png' alt='l(X ∪ Y) ≃ 2l(X ) ' /> which I think is reasonable. His argument means we get <img class='math' src='../../imgs/2020-09-04-reply-to-math-contradiction-in-solomonoff-induction12x.png' alt='l(X ) ≃ 2l(X ) ' />. I don’t think those steps are necessary but they are worth mentioning as a difference. I think <a href='#x1-9r8'>Equation (8)</a> is enough. </p><!-- l. 99 --><p class='indent'> I was curious about what happens when <img class='math' src='../../imgs/2020-09-04-reply-to-math-contradiction-in-solomonoff-induction13x.png' alt='l(X ) ⁄= l(Y ) ' />. Let’s assume the following: </p> <table class='equation'><tr><td> <a id='x1-10r9'></a> <center class='math-display'> <img class='math-display' src='../../imgs/2020-09-04-reply-to-math-contradiction-in-solomonoff-induction14x.png' alt=' l(X) < l(Y ) ∴ -1l(X)-≫ -l1(Y-) 2 2 ' /></center></td><td class='equation-label'>(9)</td></tr></table> <!-- l. 106 --><p class='nopar'> </p><!-- l. 108 --><p class='indent'> so, from <a href='#x1-3r2'>Equation (2)</a> </p> <table class='equation'><tr><td> <a id='x1-11r10'></a> <center class='math-display'> <img class='math-display' src='../../imgs/2020-09-04-reply-to-math-contradiction-in-solomonoff-induction15x.png' alt=' P (X ∪Y ) =--1--+ --1- − ----1---- 2l(X ) 2l(Y) 2l(X)+l(Y) 0 // 0 lim P (X ∪Y ) =--1--+ --/1/ − ---/1/--- l(Y)→∞ 2l(X ) /2l(Y) /2/l(X)+l(Y) ∴ P (X ∪Y ) ≃--1-- 2l(X ) ' /></center></td><td class='equation-label'>(10)</td></tr></table> <!-- l. 116 --><p class='nopar'> </p><!-- l. 118 --><p class='indent'> by <a href='#x1-4r3'>Equation (3)</a> and <a href='#x1-11r10'>Equation (10)</a> </p> <table class='equation'><tr><td> <a id='x1-12r11'></a> <center class='math-display'> <img class='math-display' src='../../imgs/2020-09-04-reply-to-math-contradiction-in-solomonoff-induction16x.png' alt=' 1 1 2l(X-∪Y) ≃ 2l(X) ∴ l(X ∪Y ) ≃ l(X) ⇒ l(Y ) ≃ 0 ' /></center></td><td class='equation-label'>(11)</td></tr></table> <!-- l. 126 --><p class='nopar'> </p><!-- l. 128 --><p class='indent'> but <a href='#x1-10r9'>Equation (9)</a> says <img class='math' src='../../imgs/2020-09-04-reply-to-math-contradiction-in-solomonoff-induction17x.png' alt='l(X) < l(Y ) ' /> – this contradicts <a href='#x1-12r11'>Equation (11)</a>. <img class='math' src='../../imgs/2020-09-04-reply-to-math-contradiction-in-solomonoff-induction18x.png' alt='■ ' /> </p><!-- l. 130 --><p class='indent'> So there’s an inconsistency regardless of whether <img class='math' src='../../imgs/2020-09-04-reply-to-math-contradiction-in-solomonoff-induction19x.png' alt='l(X ) = l(Y ) ' /> or not. </p> <style> /* start css.sty */ .cmr-7{font-size:70%;} .cmmi-7{font-size:70%;font-style: italic;} .cmmi-10{font-style: italic;} .cmsy-7{font-size:70%;} .cmti-10{ font-style: italic;} p{margin-top:0;margin-bottom:0} p.indent{text-indent:0;} p + p{margin-top:1em;} p + div, p + pre {margin-top:1em;} div + p, pre + p {margin-top:1em;} @media print {div.crosslinks {visibility:hidden;}} a img { border-top: 0; border-left: 0; border-right: 0; } center { margin-top:1em; margin-bottom:1em; } td center { margin-top:0em; margin-bottom:0em; } .Canvas { position:relative; } img.math{vertical-align:middle;} li p.indent { text-indent: 0em } li p:first-child{ margin-top:0em; } li p:last-child, li div:last-child { margin-bottom:0.5em; } li p~ul:last-child, li p~ol:last-child{ margin-bottom:0.5em; } .enumerate1 {list-style-type:decimal;} .enumerate2 {list-style-type:lower-alpha;} .enumerate3 {list-style-type:lower-roman;} .enumerate4 {list-style-type:upper-alpha;} div.newtheorem { margin-bottom: 2em; margin-top: 2em;} .obeylines-h,.obeylines-v {white-space: nowrap; } div.obeylines-v p { margin-top:0; margin-bottom:0; } .overline{ text-decoration:overline; } .overline img{ border-top: 1px solid black; } td.displaylines {text-align:center; white-space:nowrap;} .centerline {text-align:center;} .rightline {text-align:right;} div.verbatim {font-family: monospace,monospace; white-space: nowrap; text-align:left; clear:both; } .fbox {padding-left:3.0pt; padding-right:3.0pt; text-indent:0pt; border:solid black 0.4pt; } div.fbox {display:table} div.center div.fbox {text-align:center; clear:both; padding-left:3.0pt; padding-right:3.0pt; text-indent:0pt; border:solid black 0.4pt; } div.minipage{width:100%;} div.center, div.center div.center {text-align: center; margin-left:1em; margin-right:1em;} div.center div {text-align: left;} div.flushright, div.flushright div.flushright {text-align: right;} div.flushright div {text-align: left;} div.flushleft {text-align: left;} .underline{ text-decoration:underline; } .underline img{ border-bottom: 1px solid black; margin-bottom:1pt; } .framebox-c, .framebox-l, .framebox-r { padding-left:3.0pt; padding-right:3.0pt; text-indent:0pt; border:solid black 0.4pt; } .framebox-c {text-align:center;} .framebox-l {text-align:left;} .framebox-r {text-align:right;} span.thank-mark{ vertical-align: super } span.footnote-mark sup.textsuperscript, span.footnote-mark a sup.textsuperscript{ font-size:80%; } div.footnotes{border-top:solid 1px black; border-bottom:solid 1px black; padding-bottom:1ex; padding-top:0.5ex; margin-right:15%; margin-top:2ex; font-style:italic; font-size:85%;} div.footnotes p{margin-top:0; margin-bottom:0; text-indent:0;} div.tabular, div.center div.tabular {text-align: center; margin-top:0.5em; margin-bottom:0.5em; } table.tabular td p{margin-top:0em;} table.tabular {margin-left: auto; margin-right: auto;} td p:first-child{ margin-top:0em; } td p:last-child{ margin-bottom:0em; } div.td00{ margin-left:0pt; margin-right:0pt; } div.td01{ margin-left:0pt; margin-right:5pt; } div.td10{ margin-left:5pt; margin-right:0pt; } div.td11{ margin-left:5pt; margin-right:5pt; } table[rules] {border-left:solid black 0.4pt; border-right:solid black 0.4pt; } td.td00{ padding-left:0pt; padding-right:0pt; } td.td01{ padding-left:0pt; padding-right:5pt; } td.td10{ padding-left:5pt; padding-right:0pt; } td.td11{ padding-left:5pt; padding-right:5pt; } table[rules] {border-left:solid black 0.4pt; border-right:solid black 0.4pt; } .hline hr, .cline hr{ height : 0px; margin:0px; } .hline td, .cline td{ padding: 0; } .hline hr, .cline hr{border:none;border-top:1px solid black;} .tabbing-right {text-align:right;} div.float, div.figure {margin-left: auto; margin-right: auto;} div.float img {text-align:center;} div.figure img {text-align:center;} .marginpar,.reversemarginpar {width:20%; float:right; text-align:left; margin-left:auto; margin-top:0.5em; font-size:85%; text-decoration:underline;} .marginpar p,.reversemarginpar p{margin-top:0.4em; margin-bottom:0.4em;} .reversemarginpar{float:left;} table.equation {width:100%;} .equation td{text-align:center; } td.equation { margin-top:1em; margin-bottom:1em; } td.equation-label { width:5%; text-align:center; } td.eqnarray4 { width:5%; white-space: normal; } td.eqnarray2 { width:5%; } table.eqnarray-star, table.eqnarray {width:100%;} div.eqnarray{text-align:center;} div.array {text-align:center;} div.pmatrix {text-align:center;} table.pmatrix {width:100%;} span.pmatrix img{vertical-align:middle;} div.pmatrix {text-align:center;} table.pmatrix {width:100%;} span.bar-css {text-decoration:overline;} table.tabular{border-collapse: collapse; border-spacing: 0;} img.cdots{vertical-align:middle;} .partToc a, .partToc, .likepartToc a, .likepartToc {line-height: 200%; font-weight:bold; font-size:110%;} .index-item, .index-subitem, .index-subsubitem {display:block} div.caption {text-indent:-2em; margin-left:3em; margin-right:1em; text-align:left;} div.caption span.id{font-weight: bold; white-space: nowrap; } h1.partHead{text-align: center} p.bibitem { text-indent: -2em; margin-left: 2em; margin-top:0.6em; margin-bottom:0.6em; } p.bibitem-p { text-indent: 0em; margin-left: 2em; margin-top:0.6em; margin-bottom:0.6em; } .paragraphHead, .likeparagraphHead { margin-top:2em; font-weight: bold;} .subparagraphHead, .likesubparagraphHead { font-weight: bold;} .quote {margin-bottom:0.25em; margin-top:0.25em; margin-left:1em; margin-right:1em; text-align:justify;} .verse{white-space:nowrap; margin-left:2em} div.maketitle {text-align:center;} h2.titleHead{text-align:center;} div.maketitle{ margin-bottom: 2em; } div.author, div.date {text-align:center;} div.thanks{text-align:left; margin-left:10%; font-size:85%; font-style:italic; } .quotation {margin-bottom:0.25em; margin-top:0.25em; margin-left:1em; } .abstract p {margin-left:5%; margin-right:5%;} div.abstract {width:100%;} figure.float, div.figure {margin-left: auto; margin-right: auto;} figure.float img {text-align:center;} figure.figure img {text-align:center;} figure.figure > p {text-align:center;} figcaption.caption {text-indent:-2em; margin-left:3em; margin-right:1em; text-align:center;} figcaption.caption span.id{font-weight: bold; white-space: nowrap; } .equation td{text-align:center; } .equation-star td{text-align:center; } table.equation-star { width:100%; } table.equation { width:100%; } table.align, table.alignat, table.xalignat, table.xxalignat, table.flalign {width:95%; margin-left:5%; white-space: nowrap;} table.align-star, table.alignat-star, table.xalignat-star, table.flalign-star {margin-left:auto; margin-right:auto; white-space: nowrap;} td.align-label { width:5%; text-align:center; } td.align-odd { text-align:right; padding-right:0.3em;} td.align-even { text-align:left; padding-right:0.6em;} table.multline, table.multline-star {width:100%;} td.gather {text-align:center; } table.gather {width:100%;} div.gather-star {text-align:center;} dt.enumerate-enumitem{float:left; clear:left; margin-left:1em; margin-right:1em;} /* end css.sty */ </style>