{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "

\n", "# **자연어와 Deep Learning**\n", "## **LSTM 단어 알파벳 완성모델**\n", "\n", "

\n", "## **1 Data : 학습대상**\n", "1. Sequence Data (전체 4개 알파벳의 연속성을 학습)\n", "1. **3개의 알파벳**으로 모델을 훈련하고, \n", "1. **마지막 1개를** Output과 연결하여 모델을 검증한다\n", "1. 훈련을 위한 **자연어 Token** 은 **알파벳** 이 된다" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# 분석할 데이터 (원하는 다른 내용으로 변경가능) \n", "seq_data = ['word', 'wood', 'deep', 'dive', 'cold', 'cool', 'load', 'love', 'kiss', 'kind']" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

\n", "## **2 데이터 임배딩 객체/ 함수 (Batch 함수) 정의**\n", "**One-Hot-Encoding** 활용" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Train 에 사용할 Input / Output 데이터를 숫자로 변환하기 위한 Index 를 특정한다 \n", "import tensorflow as tf\n", "import numpy as np\n", "char_arr = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', \n", " 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z']\n", "num_dic = {n: i for i, n in enumerate(char_arr)}\n", "dic_len = len(num_dic)\n", "\n", "print(\"One-Hot-Encoding 객체의 수 : {}개\\nOne-Hot-Encoding 내용 :\\n{}\".format(\n", " dic_len, num_dic))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# TensorFlow 에서 Token 을 숫자로 변환하는 함수\n", "def make_batch(seq_data):\n", " input_batch, target_batch = [], []\n", " for seq in seq_data: \n", " input_num = [num_dic[n] for n in seq[:-1]] \n", " target = num_dic[seq[-1]] \n", " input_batch.append(np.eye(dic_len)[input_num])\n", " target_batch.append(target) \n", " return input_batch, target_batch" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

\n", "## **3 모델의 정의**\n", "Train 할 Tensorflow Graph 를 정의한다" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# 학습에 필요한 파라미터를 정의한다\n", "tf.reset_default_graph()\n", "n_step = 3 \n", "learning_rate = 0.01\n", "n_hidden, total_epoch = 64, 30\n", "n_input = n_class = dic_len" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# RNN Cell 내부에서 학습하는 선형 회귀식을 정의 (tensorflow 객체)\n", "X = tf.placeholder(tf.float32, [None, n_step, n_input])\n", "Y = tf.placeholder(tf.int32, [None])\n", "\n", "W = tf.Variable(tf.random_normal([n_hidden, n_class])) \n", "b = tf.Variable(tf.random_normal([n_class]))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# RNN Cell 을 정의\n", "# Dropout : 모든 Cell을 연결하는 경우보다 중간 중간 끊어지는 학습시, 결과가 더 잘 나옴\n", "cell1 = tf.nn.rnn_cell.BasicLSTMCell(n_hidden)\n", "cell1 = tf.nn.rnn_cell.DropoutWrapper(cell1, output_keep_prob=0.5) \n", "cell2 = tf.nn.rnn_cell.BasicLSTMCell(n_hidden) \n", "multi_cell = tf.nn.rnn_cell.MultiRNNCell([cell1, cell2])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# RNN Cell 의 Model을 정의한다\n", "outputs, states = tf.nn.dynamic_rnn(multi_cell, X, dtype=tf.float32)\n", "outputs = tf.transpose(outputs, [1, 0, 2])\n", "outputs = outputs[-1]\n", "model = tf.matmul(outputs, W) + b" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# 학습을 보정하는 Cost 함수와, Optimizer(활성화) 함수를 정의한다\n", "cost = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(\n", " logits = model, labels = Y))\n", "optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

\n", "## **4 모델의 학습**\n", "위에서 정의한 Model 에, **make_batch** 로 단어를 숫자로 변환 후 학습한다" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%%time\n", "sess = tf.Session()\n", "sess.run(tf.global_variables_initializer())\n", "input_batch, target_batch = make_batch(seq_data)\n", "for epoch in range(total_epoch):\n", " _, loss = sess.run([optimizer, cost],\n", " feed_dict={X: input_batch, Y: target_batch})\n", " if epoch % 4 == 0:\n", " print('Epoch: {:.4f} cost = {:.6f}'.format(epoch + 1, loss))\n", "print('최적화 모델의 학습완료!')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

\n", "## **5 학습 모델의 평가**\n", "seq_data 를 활용하여 모델을 검증한다" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%%time\n", "# 앞에서 학습한 모델의 정확도를 판단을 위해 \n", "# 예측 Graph 를 활성화 한다\n", "prediction = tf.cast(tf.argmax(model, 1), tf.int32)\n", "prediction_check = tf.equal(prediction, Y) \n", "accuracy = tf.reduce_mean(tf.cast(prediction_check, tf.float32))\n", "\n", "input_batch, target_batch = make_batch(seq_data)\n", "predict, accuracy_val = sess.run([prediction, accuracy],\n", " feed_dict={X: input_batch, Y: target_batch})" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# 판단 결과를 출력한다\n", "predict_words = []\n", "for idx, val in enumerate(seq_data):\n", " last_char = char_arr[predict[idx]]\n", " predict_words.append(val[:3] + last_char)\n", "\n", "print('\\n=== 예측 결과 ===')\n", "print('입력값:', [w[:-1] + ' ' for w in seq_data])\n", "print('예측값:', predict_words)\n", "print('정확도:', accuracy_val)\n", "sess.close()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.3" } }, "nbformat": 4, "nbformat_minor": 2 }