
Codenames AI Report

Xuewei Yan, Yongqing Li, Cameron Shaw

ABSTRACT

Codenames is a popular board game that relies on word association and its ultimate goal is to
connect multiple words together with a single clue word. In this paper, we construct a system
that incorporates artificial intelligence into the game to allow communication between humans
and AI as well as providing the capability of replacing human effort in creating such a clue word.
Our project utilized three types of word relationship measurements from Word2Vec, GloVe, and
WordNet, to design and understand word relationships used in this game. An AI system is built
on each measurement and tested on both AI-AI and AI-Human communication performance. We
evaluate the performance with each system’s average speed in finishing a game as well as its
ability to accurately identify their team words. The AI-AI team performance demonstrates
outstanding efficiency for AI to manage this game, and the best performing measurement is able
to achieve a 60% accuracy in its communication between AI and Human.

1. INTRODUCTION

For a long time, people have been using AIs to play games. From Atari games to Starcraft, in the
last few decades, artificial intelligence has been making its way into the games humans play to
varying levels of success. Games like Othello that have almost entirely been solved by AI, while
the ultimate strategy for games like chess and Go just became promising recently.

1.1 How to Play

In this project, we created an AI for the popular board game Codenames. The rules for this board
game are simple. There are two teams, each with a spymaster and a fixed number of guesser(s).
On the board, there is a five-by-five grid of words, randomly consisting of 9 agents for team A, 8
agents for team B, 7 neutral words, and 1 assassin word. The belonging of each word is only
known by the spymasters, and they want to have their guesser(s) identify all their agent words
before the other team does. The game progresses in alternating turns, and the spymaster is
allowed to give a clue to their guessers each turn. A clue consists of a word which is related to
some of their team’s agents on the board, followed by a number, which is the number of agents
to which the preceding word is related to. For example, a hint of “cloud: 3” is a hint that three of
the team’s agent words are related to “cloud” in some way. The guessing team is allowed to
guess the number of related words plus one additional word each turn. Guesses are made one at a

time, and if the guessed word is correct, the next word can be guessed. Each guess eliminates
that word from the game board. If the field agents guess a neutral word or an opposing team’s
agents, those words are eliminated and the turn ends. If a team guesses the assassin word, the
game immediately ends, and the opposing team wins automatically.

Codenames is a game that requires knowledge of how certain words are related to each other. For
a human, such knowledge can be different depending on person to person. However, this task can
also be executed using a computer. In this report, we investigate some methods that can be used
to simulate playing Codenames.

2. RELATED WORK

Our project utilizes learned word relationships to simulate the mindset of humans while playing
the board game Codenames. In this section, we will discuss relevant word relationships and
several existing Codenames AI projects.

2.1 Word Relationship

The entire game functions about word relationships, as the spymaster is trying to find a word that
has potential connections to as many words as possible, and the guessers are trying to decode this
thought process. Several standardized embeddings have been designed to emphasize inter-word
relationships.

[1][2] proposes a vector space word embedding (Word2Vec) that maps each word to a
high-dimensional vector. A neural network is trained on the input word corpus so that the vectors
of semantically similar words will have higher cosine similarities. Notably, special relationships,
such as super-subordinate and part-whole relations, are maintained in the embedding as a
constant vector difference between two words. For example, the vector difference between
Japan-Tokyo and US-Washington is similar in the Word2Vec embedding.

Noticing the importance of co-occurrence frequency in determining the word similarity, [3]
proposes a different cosine-similarity-based pipeline, GloVe, that emphasizes this observation. In
this project, we will include the word relationship trained from GloVe to compare these two
cosine similarity methods.

Another popular word relation corpus is WordNet [4]. Unlike the cosine similarity methods,
WordNet looks into the hierarchical closeness of two different words in terms of belonging
relationships. For example, “ant” and “spider” (both insects) will have a higher similarity than

that of “ant” and “lion”. For this project, we incorporated the Wu-Palmer similarity computed
from the WordNet corpus.

2.2 Codenames AI

Several Codenames AI projects have existed before our version, and they provide us with
strategic guidance as well as some baselines to outperform. For data acquiring, [5] utilized word
corpus from Wikipedia to extract the most frequent words. For words about general topics,
Wikipedia provides abundant links among words so that the most frequent words can be highly
associative to the words provided in Codenames. However, we discovered a preprocessed
Wikipedia word list [6] that already does this job for us. We will simply start from there to
extract the most frequent words as we need. The author of [7] suggested the potential influence
of vocabulary size to the performance of Codenames AI, which encourages us to perform a
dictionary size test to validate this idea while finding the optimal vocabulary size for our AI. On
the algorithm side, [8] proposed a lower bound for similarity score to be considered for human
beings. Multiple AIs who share the same knowledge base can understand the difference between
a cosine similarity of 0.1 and that of 0.09. However, word relations with such low similarities
become meaningless to humans. Therefore, the author of [8] performed experiments and
discovered that 0.45 will be a good threshold to cut off the cosine similarity, so that an AI
spymaster will ignore all weak relationships when teamed up with a human. This information
turns out to be useful when we implement the Human-AI mode, and we are expecting different
thresholds for different similarity metrics.

3. METHODOLOGY

3.1 Data

In building the Codenames AI system, we utilized the Simple Wiki dataset to obtain word
relationship measurements and vocabularies for the AI knowledge base. The Simple Wiki dataset
contains articles from the English Simple Wikipedia. The data is downloaded from the wiki
dump and is more general in its choice of topics. The innate property of such an encyclopedia is
that it can provide abundant information about word relationships covering a wide range of daily
topics.

In order to populate our dictionary bases, we first gathered all 400 words used in Codenames
from boardgamegeek.com. Then for the AI vocabulary base, we utilized existing projects that
provided the statistics of the most common English words. The first project contains the top 1000
most frequently appearing words, the results came from a n-gram frequency analysis on Google’s

Trillion Word Corpus. The second dataset presented a similar but longer list of most common
words that appeared in the English Wikipedia articles. With the larger file and ranking of word
frequencies, we can expand the dictionary size to see its impact on the system performance. We
propose vocabulary sizes of 3k, 5k, 10k, 20k, and 30k to test the idea in [7]. Details of this test
are presented in Section 5.1.

To process the Simple Wiki corpora for training, we converted all letters to lowercase, removed
punctuation, and tokenized the words. The final format of the corpus is a 2D list that contains the
word tokens for each individual article. For training, we utilized the Word2Vec model from the
gensim package to train the first vector embedding for each word in Codenames and our AI
vocabulary bases. This model takes in a correctly formatted text corpus and outputs a vector in a
300 dimensional space for each word. The vector embeddings for the words used in the both
vocabulary bases are then extracted to compute the similarities. We obtain the pretrained Global
Vectors, GloVe, from the Standard project and extract all words in Codenames and the AI
vocabulary base. The Wu-Palmer similarity is directly measured between two words by the
module in WordNet, so we simply iterate through the matrix and insert the similarity score
returned by the function.

3.2 Algorithms

Algorithm for Spymaster
Our Codenames AI optimizes each step of its action based on the current board information B,
the vocabulary base W it has, and its knowledge about word similarities in terms of a matrix M.
When playing as a spymaster, it will go through all of its vocabulary and try to optimize the clue
through the following criteria: 1) Connect to the greatest number of ally words on the current
board; 2) Is away from other words in terms of similarities as much as possible.

Algorithm 1: Naive Codenames Clue Nomination
Input: Available words on board B, set of ally words A, vocabulary base W, similarity matrix M.
Output: The optimal word as the clue w*.
𝑠𝑚𝑎𝑥 ← 0
w* ← None, c* ← 0
for w in W do

// Set of non-ally words still on board𝑈 ← 𝑥|𝑥 ∈ 𝐵 𝑎𝑛𝑑 𝑥 ∉ 𝐴{ }
𝑙 ← 𝑚𝑎𝑥 𝑀(𝑤, 𝑢)|𝑢 ∈ 𝑈{ }
𝑐 ← 0

// Record the smallest similarity that is greater than l𝑚 ← 1
for v in do𝐴 ∩ 𝐵

if l then𝑀(𝑤, 𝑣) >
𝑐 ← 𝑐 + 1
if m then𝑀(𝑤, 𝑣) <

m ← 𝑀(𝑤, 𝑣)
// Adjusted count as if w is proposed as the clue. The value of s is dominated𝑠 ← 𝑐 + 𝑚 − 𝑙

by c.
if then𝑠 > 𝑠𝑚𝑎𝑥

𝑤* ← 𝑤, 𝑐* ← 𝑐, 𝑠𝑚𝑎𝑥 ← 𝑠
return w* , c*

To achieve this, we design an algorithm (Algorithm 1) that computes a score S(w; B, W, M) for
each vocabulary word w, and finally pick the word with the highest score as the clue proposed.
For each w, we first extract its similarity with all the existing words on the board. We compute a
lower bound lw as the maximum of the similarities among all non-ally words (i.e. opponents’
words + neutral words + assassin word). Then, we can have a set Sw composed of all ally words
that have higher similarities than lw. Assuming our guesser shares the exact same knowledge for
the similarities with the spymaster, it is guaranteed that the guesser will guess all words in Sw

before touching any of the non-ally words if provided with the clue w. Having this in mind, the
word w* will be the optimal clue if the size of Sw* is the largest. To break ties, we implemented a
safety weight that slightly prefers the word with a larger gap between lw and similarities for Sw.

The naive version of the clue nomination algorithm is strengthened in the following ways: 1)
When computing the maximum similarity of non-ally words for the lower bound lw, we assign
fixed weights (> 1) to words that we do not want the guesser AI to touch. Explicitly, the assassin
word will get the biggest weight because touching it will make the team lose automatically; the
enemy’s words have a higher weight than the neutral words for a similar reason. 2) When
playing with a human teammate, the lower bound will become where θ is the threshold𝑚𝑖𝑛(𝑙, θ)
for the connection to be human-interpretable, inspired by the observation in [7]. Qualitative and
quantitative methods are mixed to give suggestions to the threshold θ for each system, and
details will be explained in Section 5.2.

Algorithm for Guesser
After receiving the clue word w and the number of words related to the clue c, the guesser will
make a sequence of guesses based on the same idea. It ranks all words on the board based on
their similarity with w, and makes a guess on the word with the highest rank. If it succeeds, it
proceeds to the second, and the third, … The procedure ends until a non-ally word is touched, or
the guess count reaches the limit.

However, one should notice that, assuming both the spymaster and the guesser are AI players
who share the same knowledge base, there will be no chance for the guesser to get any guess

wrong, because the top k associated words are guaranteed to be ally words by Algorithm 1. This
makes the game played by pure AI teams finish super fast, as observed in Section 4.1. To
simulate the fact that different humans, although sharing the same commonsense of the world,
may have slightly different perceptions towards the strength of word similarities, we add a noise
matrix to the similarity matrix of the guesser. Such a matrix modifies the value of each similarity,
with each point of the noise matrix sampled from a normal distribution with a small standard
deviation. By increasing this standard deviation, we are able to simulate two teammates with
more different mindsets and less so-called “tacit understanding”. Details of this experiment can
be found in Section 5.3.

4. EXPERIMENTS AND RESULTS

In this section, we test for the performance of the three word relationships under the settings of
an AI-AI team and an AI-Human team. We use the best version of the dataset for each word
relationship measurement – Word2Vec, GloVe, and WordNet – after some preliminary
experiments on their performances. The final datasets contain around 23,000 words for the AI to
use for each word relationship. More details on how to come to the final dataset are mentioned in
Section 5.

The performance will be assessed with different metrics and standards to reflect different
expectations of the relationships under these two team settings. Ultimately, we want to find the
top performing combinations that can be deployed to optimize both types of communications. To
test for the best performance, hyperparameters have already been tuned beforehand for each
word relationship.

4.1 AI-AI Communication

For AI-AI communication, we primarily test on the accuracy of guessing and average number of
turns for the AI to finish the games. The statistics are obtained by simulating 100 random games
per word relationship, with AI taking all 4 roles: 2 spymasters and 2 guessers. To avoid
confounding factors, we controlled the experiments by using the same set of random seeds for
each set of word relationships.

(a) (b)
Figure 1. Three datasets are each tested with 100 simulations in the average number of turns taken to finish a game
and its ability to accurately choose the intended words from the spymaster. GloVe and word2vec datasets perform
better than that of the wup dataset.

As observed in figure 1a, the GloVe and Word2Vec dataset performed equally well, which is
better than the WordNet dataset. Our hypothesis of high values in game accuracy from AI-AI
communication is also tested with the final datasets. Figure 1b visualized both the true and total
accuracy for each dataset and we can see a nearly perfect performance for AI guessers to
correctly choose the intended words from the spymaster. This demonstrates the effectiveness of
the AI algorithm in communicating ideas when they share the same knowledge base. Although
not the main focus, we also observed a slightly better performance in the GloVe and Word2Vec
datasets.

4.2 AI-Human Communication

For this section of the experiment, we use the same experimental set up as AI-AI testing, with
the exception of substituting the AI guesser with a human player and testing with a smaller group
of datasets. Similar to above, we will take into consideration the average number of turns taken
to finish the game. Now that the players are using different knowledge bases, we will also
examine their interactions in terms of how accurately the human guesser can uncover the AI
intended words.

For each of the simulations, we record the same data as the above experiment with additional
statistics regarding the accuracy per game. Every round, the AI spymaster will generate a clue
word and have a set of target words that it intends to connect with. We record these intended
words along with the guesses made by the human guesser to calculate the accuracies for each
game. We measure 2 types of accuracies in this section. The first one, true (intended) accuracy,

being the number of team words that are correctly guessed as intended by the AI. The second
one, total accuracy, is calculated as the number of team words that are correctly guessed and
these do not have to be in the set of words intended by the AI spymaster.

We carry out the same experiments as above and replace the role of AI guessers with humans for
both teams. With the introduction of human efforts, the average turns taken for a game to finish
has increased in 5 out of the 6 experiment settings (figure 2a). This behavior is expected,
however, as there exists a gap between human and AI communication. Similar to AI-AI
communication, the GloVe and Word2Vec datasets had better performances. We then compare
each datasets’ impact on triggering the assassin word, which would cause an immediate
termination of the game. Figure 2b presents the GloVe dataset as having the most number of
complete games in a simulation with 100 games. Finally we analyze the accuracies of each
dataset in figure 2c. GloVe again stood out with the highest accuracies amongst the 3 datasets.

It is interesting to see that even though the Word2Vec dataset finished the games faster, its
accuracy in performance was the worst. This might be caused by the fact that the AI using
Word2Vec embeddings like to propose clues with higher number of word connections while
sacrificing the meaningfulness of the hint. As both high accuracy and less turns are needed to
succeed in the game, the tradeoffs between the two will need to be balanced by the players based
on the preferred goal. In this section we conclude that the GloVe dataset is most compatible with
human players given its high accuracy and low game termination. As discussed in Section 2, this
conclusion might suggest that human beings prefer to see two words relating to each other
through the con-occurence of the words, rather than their categorical belonging (WordNet) or
semantic identity (Word2Vec).

(a) (b) (c)
Figure 2. Three datasets are each tested with 100 simulations in the average number of turns taken to finish a game,
number of assassin words triggered, and its ability to accurately choose the intended words from the spymaster. The
GloVe dataset performed best when human players are introduced to the game.

5. SIDE EXPERIMENTS AND DISCUSSIONS

5.1 Vocabulary Size

With larger vocabulary size, one can imagine having more options to choose from when
proposing the clue while playing the game. However, recording the relationship between
codenames words and more vocabularies will result in a larger file of storage. Having this
trade-off in mind, we are curious about the actual impact of the increase in vocabulary size as to
the performance of the AI. Therefore, we prepared copies of the dataset with different
vocabulary sizes varying from 3k, 5k, 10k, to 20k. We did a round of testing with 100 games for
each dataset, and visualized the results in Figure 3 below.

Figure 3. Impact of vocabulary size on the performance of AI-AI gameplay.

As observed above, an increase in vocabulary size will significantly improve the performance of
the model when the size is less than 10k. The model keeps improving after 10k, but becomes
relatively negligible. Therefore, if there is a need for portability, an optimal vocabulary size
should be around 10k. However, as we are testing for the best potential of the AI model, we use
the maximum size of vocabulary for the final testing in Section 4.

5.2 Human Interpretable Threshold

As discussed in [8], although the AI-AI team can take advantage of the full similarity matrix
when proposing clues, a word relationship with a relatively low similarity score is meaningless
to a human being. As a result, when the AI spymaster is teaming up with a human, proposing
clues with a high number of connections but low similarity scores will have much stronger
negative side effects than benefits. Thus, for the betterment of the AI-Human team performance,
it is effective to remove all the word relationships that have a similarity score lower than a

certain threshold. In practice, we set the similarity value of these cases to zero so that the AI
won’t see any connection between the pair of words.

The straightforward way to determine the threshold is to manually evaluate the percentage of
meaningful connections among all pairs of words. To do this, we randomly sampled 10 words
from the codenames word list, and sorted all the vocabulary words by their similarity score with
the codenames word. Some examples of this process can be found in Appendix B. By
observation, the top 30 words have super strong connections that a human can identify with no
effort. However, having only 30 connections per word makes the final matrix very sparse, hence
producing no clues with connections higher than one. We lower the expectation and conclude
that the top 80-120 words contain some meaningful connection to the target word. This is our
secondary threshold that is acceptable but not satisfying.

In the end, we chose the threshold to be the 96.5th percentile of the entire matrix, which is on
average 80 words per target word. We did another round of 100 game simulation of AI-AI testing
on this sparse version of the dataset, where the human threshold restriction is enforced. The
result is shown in Figure 4. The average number of turns is roughly the same with the AI-Human
testing results, which indicates that our threshold restriction pushes the performance of AI closer
to that of a Human.

(a) (b)
Figure 4. Average number of turns and accuracy for AI-AI testing (N=100) with human threshold restriction
enforced.

5.3 Level of Human-AI Misinformation

A significant advantage of the AI-AI team is that both the spymaster and the guesser use the
same word relationship matrix to make decisions. Hence, their knowledge base is completely the

same. On the other hand, this is the main reason that this board game is entertaining for humans
but trivial for AI.

To simulate the gameplay of a Human, i.e. different individuals have different knowledge base
for the word relationship, we add a confusion matrix as noise to the matrix of the guesser. Each
element of the confusion matrix is sampled from an i.i.d. Gaussian distribution with mean 0 and
standard deviation σ. The higher the value of σ is, the more different the knowledge bases of AI
spymaster and AI guesser will be. We would expect an increase in the average number of turns
and a decrease in the accuracy as σ increases. To see how much of a standard deviation can make
an AI perform similar to a Human in terms of these statistics, we did a set of experiments with
different sets of thresholds.

Figure 5 shows the result of this confusion matrix experiment. As different word relationship
embeddings have different standard deviation σm within the original matrix, for fairness, we
represent the standard deviation of the confusion matrix σc as a rescale of σm. That is, the x-axis
in Figure 5 represents the value of σc /σm.

Figure 5. Accuracy of AI-AI communication with confusion matrix imposed.

The intersection between the accuracy curve and the constant line representing the human testing
result quantifies the level of misinformation between human and AI. The level is around 0.5 data
standard deviation for the GloVe and Word2Vec model, while around 1.5 for the WordNet
dataset. This observation agrees with the AI-Human testing results in Section 4.2, as human
cannot understand the relationship implied in wup compared to the other two. For the purpose of
developing a fair game AI, we may want to set the confusion matrix of AI so that their
performances match the AI-Human performance (i.e. at 0.5 and 1.5 respectively).

6. CONCLUSIONS AND LIMITATIONS

6.1 Limitations

While the result of this project was a functional AI that could understand and simulate playing a
game of Codenames with a human teammate, we observed some limitations when implementing
an AI with this method. The chief concern with this method is in its inflexibility. In our current
implementation, the threshold the AI uses to determine what its human partner will and will not
understand is a definite number. From our observations, this will work for most cases in word
relationships, but even in our testing experience it will still occasionally miss the mark.
Especially in early phases of the game, all implementations of our AI could give a hint which
wouldn’t be related to any words on the board from a human perspective. Moreover, as the game
continued, the AI would only be able to give hints for one or two words at a time, since our
threshold and algorithm judged that those would be best for a human to understand. Realistically,
a human team would be able to guess 2-3 words more often than what our AI-human teams
could guess. The inflexible nature of our human-AI relationship implementation means that there
will still be a weakness in that certain guesses and hints are beyond the scope of the AI to
understand and be able to give hints.

Another limitation we encountered was in dictionary size. As stated in Section 5.1, we observed
that larger dictionary sizes helped the AI have greater accuracy and shorter game times in our
AI-AI testing. However, with the storage sizes required for keeping vocabulary bases larger than
30-40k words, it quickly became unfeasible for this project. However, this could be an area for
further exploration. Overall, the limitations we observed in this AI is in its simplicity and naive
approach.

6.2 Conclusions

Ultimately, the conclusion of this project reveals a few ideas that come to mind when considering
AI for games like Codenames. One observation we made is in the weaknesses of methods like
Word2Vec and GloVe in creating word relationships that can be discernible to the human eye.
The methods used in this project generate maps and vectors that are difficult to interpret on their
own, and require metrics and measurements in order to make sense of them. This presents an
inflexibility in how the AI’s knowledge base is generated when compared with a human’s
knowledge base. The way all methods tested here calculate word relationships is fundamentally
different from a human’s way of thinking, and the number of hoops to jump through in order to
bring those two thought processes together is a daunting task. Our implementation still has that
weakness even after all our iterations.

The conclusion we must ultimately draw from this project is that vector embeddings and word
maps, while good at determining the absolute relationships between words, are too narrow of a
scope to provide a solid baseline for producing an AI in a game like Codenames. The way a
player of Codenames can relate words is too varied and abstract for a purely mathematical
method like we used here to be the base for an AI’s decision making. In future projects
pertaining to the creation of automated Codenames players, approaches using traditional AI
techniques used in modern computer games, like decision trees, can more effectively simulate
the human decision making required for this game. Methods like Word2Vec, GloVe and our
algorithm can, and should, be used as part of that process, but from the results of this project, we
must conclude that using our method alone isn’t enough to create a strong, competent AI that can
simulate a true to life game of Codenames.

References
[1] Mikolov, Tomas; et al. (2013). "Efficient Estimation of Word Representations in Vector
Space". arXiv:1301.3781
[2] Mikolov, Tomas (2013). "Distributed representations of words and phrases and their
compositionality". Advances in Neural Information Processing Systems. arXiv:1310.4546
[3] Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. GloVe: Global Vectors
for Word Representation. In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1532–1543, Doha, Qatar. Association for
Computational Linguistics.
[4] Princeton University "About WordNet." WordNet. Princeton University. 2010.
[5] Kirkby, David (2017). “CodeNames AI”. Github repository,
https://github.com/dkirkby/CodeNames.
[6] Semenov, Ilya. “wikipedia-word-frequency”. GitHub repository,
 https://github.com/IlyaSemenov/wikipedia-word-frequency/tree/master/results
[7] Shafir Michael (2017). “Codenames AI”. Github repository,
https://github.com/mshafir/codenames-ai.
[8] Pbatch (2020). “Codenames”. GitHub repository, https://github.com/Pbatch/Codenames.
[9] Kaufman, Josh. “google-10000-english”. GitHub repository,
https://github.com/first20hours/google-10000-english.
[10] Jean-Baptiste Michel*, Yuan Kui Shen, Aviva Presser Aiden, Adrian Veres, Matthew K.
Gray, William Brockman, The Google Books Team, Joseph P. Pickett, Dale Hoiberg, Dan
Clancy, Peter Norvig, Jon Orwant, Steven Pinker, Martin A. Nowak, and Erez Lieberman
Aiden*. Quantitative Analysis of Culture Using Millions of Digitized Books. Science (Published
online ahead of print: 12/16/2010)

Appendix

Appendix A. Project Proposal

Codenames is a popular word association game that involves 2 teams, 4 roles, and 25 word
cards. The cards are laid out in a 5x5 display and each team gets randomly assigned 8 or 9
words. The rest of the cards are all neutral except for 1 assassin card. The teams compete by
designating a spymaster, who knows the identity of all the cards, to give a one-word clue along
with a number for the guessers, the rest of the team, to identify which cards belong to their team.
The two teams will take turns until either one team correctly guesses all their words, or victory is
declared to the opponents if one team revealed the assassin card.

We are interested in developing an AI system that could replace the roles of the spymaster and/or
guesser for the game Codenames. This will allow for humans to team up or compete with AI and
we hope to discover interesting behaviors during the process. As the game involves associations
between different words, we will investigate the relationship for all word choices provided by the
game. Data will be obtained from the website boardgamegeek.com which consists of the 400
words used for the game. In order to accomplish this, we will utilize Word2Vec models and
transform the words in the game and a dictionary consisting of the most common 10,000 English
words into vector embeddings. Then we can produce good word clues by using cosine
similarities as words that are closely associated should have a higher similarity score.

Appendix B Examples of Ranked Word Relationship

