{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "\n", " \n", "## [mlcourse.ai](https://mlcourse.ai) – Open Machine Learning Course \n", "\n", "Author: [Yury Kashnitsky](https://yorko.github.io). Translated and edited by [Christina Butsko](https://www.linkedin.com/in/christinabutsko/), Gleb Filatov, and [Yuanyuan Pao](https://www.linkedin.com/in/yuanyuanpao/). This material is subject to the terms and conditions of the [Creative Commons CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/) license. Free use is permitted for any non-commercial purpose." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In our next case, we solve a binary classification problem (approve/deny a loan) based on the \"Age\", \"Home-ownership\", \"Income\", and \"Education\" features.\n", " \n", "The decision tree as a machine learning algorithm is essentially the same thing as the diagram shown above; we incorporate a stream of logical rules of the form \"feature $a$ value is less than $x$ and feature $b$ value is less than $y$ ... => Category 1\" into a tree-like data structure. The advantage of this algorithm is that they are easily interpretable. For example, using the above scheme, the bank can explain to the client why they were denied for a loan: e.g the client does not own a house and her income is less than 5,000.\n", "\n", "As we'll see later, many other models, although more accurate, do not have this property and can be regarded as more of a \"black box\" approach, where it is harder to interpret how the input data was transformed into the output. Due to this \"understandability\" and similarity to human decision-making (you can easily explain your model to your boss), decision trees have gained immense popularity. C4.5, a representative of this group of classification methods, is even the first in the list of 10 best data mining algorithms (\"Top 10 Algorithms in Data Mining\", Knowledge and Information Systems, 2008. [ResearchGate](https://www.researchgate.net/publication/29467751_Top_10_algorithms_in_data_mining))." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### How to Build a Decision Tree\n", "\n", "Earlier, we saw that the decision to grant a loan is made based on age, assets, income, and other variables. But what variable to look at first? Let's discuss a simple example where all the variables are binary.\n", " \n", "Recall the game of \"20 Questions\", which is often referenced when introducing decision trees. You've probably played this game -- one person thinks of a celebrity while the other tries to guess by asking only \"Yes\" or \"No\" questions. What question will the guesser ask first? Of course, they will ask the one that narrows down the number of the remaining options the most. Asking \"Is it Angelina Jolie?\" would, in the case of a negative response, leave all but one celebrity in the realm of possibility. In contrast, asking \"Is the celebrity a woman?\" would reduce the possibilities to roughly half. That is to say, the \"gender\" feature separates the celebrity dataset much better than other features like \"Angelina Jolie\", \"Spanish\", or \"loves football.\" This reasoning corresponds to the concept of information gain based on entropy." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Entropy\n", "Shannon's entropy is defined for a system with N possible states as follows:\n", "\n", "$$\\Large S = -\\sum_{i=1}^{N}p_i \\log_2{p_i},$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "where $p_i$ is the probability of finding the system in the $i$-th state. This is a very important concept used in physics, information theory, and other areas. Entropy can be described as the degree of chaos in the system. The higher the entropy, the less ordered the system and vice versa. This will help us formalize \"effective data splitting\", which we alluded to in the context of \"20 Questions\"." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Toy Example\n", "To illustrate how entropy can help us identify good features for building a decision tree, let's look at a toy example. We will predict the color of the ball based on its position.\n", "\n", "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "There are 9 blue balls and 11 yellow balls. If we randomly pull out a ball, then it will be blue with probability $p_1=\\frac{9}{20}$ and yellow with probability $p_2=\\frac{11}{20}$, which gives us an entropy $S_0 = -\\frac{9}{20}\\log_2{\\frac{9}{20}}-\\frac{11}{20}\\log_2{\\frac{11}{20}} \\approx 1$. This value by itself may not tell us much, but let's see how the value changes if we were to break the balls into two groups: with the position less than or equal to 12 and greater than 12." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The left group has 13 balls, 8 blue and 5 yellow. The entropy of this group is $S_1 = -\\frac{5}{13}\\log_2{\\frac{5}{13}}-\\frac{8}{13}\\log_2{\\frac{8}{13}} \\approx 0.96$. The right group has 7 balls, 1 blue and 6 yellow. The entropy of the right group is $S_2 = -\\frac{1}{7}\\log_2{\\frac{1}{7}}-\\frac{6}{7}\\log_2{\\frac{6}{7}} \\approx 0.6$. As you can see, entropy has decreased in both groups, more so in the right group. Since entropy is, in fact, the degree of chaos (or uncertainty) in the system, the reduction in entropy is called information gain. Formally, the information gain (IG) for a split based on the variable $Q$ (in this example it's a variable \"$x \\leq 12$\") is defined as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\\Large IG(Q) = S_O - \\sum_{i=1}^{q}\\frac{N_i}{N}S_i,$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "where $q$ is the number of groups after the split, $N_i$ is number of objects from the sample in which variable $Q$ is equal to the $i$-th value. In our example, our split yielded two groups ($q = 2$), one with 13 elements ($N_1 = 13$), the other with 7 ($N_2 = 7$). Therefore, we can compute the information gain as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\\Large IG(x \\leq 12) = S_0 - \\frac{13}{20}S_1 - \\frac{7}{20}S_2 \\approx 0.16.$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It turns out that dividing the balls into two groups by splitting on \"coordinate is less than or equal to 12\" gave us a more ordered system. Let's continue to divide them into groups until the balls in each group are all of the same color." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For the right group, we can easily see that we only need one extra partition using \"coordinate less than or equal to 18\". But, for the left group, we need three more. Note that the entropy of a group where all of the balls are the same color is equal to 0 ($\\log_2{1} = 0$).\n", "\n", "We have successfully constructed a decision tree that predicts ball color based on its position. This decision tree may not work well if we add any balls because it has perfectly fit to the training set (initial 20 balls). If we wanted to do well in that case, a tree with fewer \"questions\" or splits would be more accurate, even if it does not perfectly fit the training set. We will discuss the problem of overfitting later. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Tree-building Algorithm" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can make sure that the tree built in the previous example is optimal: it took only 5 \"questions\" (conditioned on the variable $x$) to perfectly fit a decision tree to the training set. Under other split conditions, the resulting tree would be deeper, i.e. take more \"questions\" to reach an answer.\n", " \n", "At the heart of the popular algorithms for decision tree construction, such as ID3 or C4.5, lies the principle of greedy maximization of information gain: at each step, the algorithm chooses the variable that gives the greatest information gain upon splitting. Then the procedure is repeated recursively until the entropy is zero (or some small value to account for overfitting). Different algorithms use different heuristics for \"early stopping\" or \"cut-off\" to avoid constructing an overfitted tree. \n", "\n", "python\n", "def build(L):\n", " create node t\n", " if the stopping criterion is True:\n", " assign a predictive model to t\n", " else:\n", " Find the best binary split L = L_left + L_right\n", " t.left = build(L_left)\n", " t.right = build(L_right)\n", " return t \n", "" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Other Quality Criteria for Splits in Classification Problems" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We discussed how entropy allows us to formalize partitions in a tree. But this is only one heuristic; there exists others:\n", "\n", "- Gini uncertainty (Gini impurity): $G = 1 - \\sum\\limits_k (p_k)^2$. Maximizing this criterion can be interpreted as the maximization of the number of pairs of objects of the same class that are in the same subtree (not to be confused with the Gini index).\n", "- Misclassification error: $E = 1 - \\max\\limits_k p_k$\n", "\n", "In practice, misclassification error is almost never used, and Gini uncertainty and information gain work similarly.\n", " \n", "For binary classification, entropy and Gini uncertainty take the following form:\n", "\n", "$S = -p_+ \\log_2{p_+} -p_- \\log_2{p_-} = -p_+ \\log_2{p_+} -(1 - p_{+}) \\log_2{(1 - p_{+})};$\n", "\n", "$G = 1 - p_+^2 - p_-^2 = 1 - p_+^2 - (1 - p_+)^2 = 2p_+(1-p_+).$\n", "\n", "where ($p_+$ is the probability of an object having a label +).\n", "\n", "If we plot these two functions against the argument $p_+$, we will see that the entropy plot is very close to the plot of Gini uncertainty, doubled. Therefore, in practice, these two criteria are almost identical." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# we don't like warnings\n", "# you can comment the following 2 lines if you'd like to\n", "import warnings\n", "warnings.filterwarnings('ignore')\n", "import numpy as np\n", "import pandas as pd\n", "import seaborn as sns; sns.set()\n", "from matplotlib import pyplot as plt\n", "%config InlineBackend.figure_format = 'retina'" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyUAAAI1CAYAAADINVWwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXV8XNeZsJ8hMRlkmS2ZjiFmiOOA7SQOQx3YtE3BKUOalGm72+52v5QZ0m3apmmyTdMkDZNDDjmJOeZjllGybMliaeh+f5w7IxxpRprRjKT38U+/8dy58N574J73nBcclmUhCIIgCIIgCIKQLJzJFkAQBEEQBEEQhMGNKCWCIAiCIAiCICQVUUoEQRAEQRAEQUgqopQIgiAIgiAIgpBURCkRBEEQBEEQBCGpiFIiCIIgCIIgCEJSEaVEEARBEARBEISkIkqJIAiCIAiCIAhJRZQSQRAEQRAEQRCSiiglgiAIgiAIgiAkFVFKBEEQBEEQBEFIKqKUCIIgCIIgCIKQVEQpEQRBEARBEAQhqbiTLYAQG0qpYuAQgNbakVxpOkcptRq4F3hNa708udJEh1IqDfgG8EGgBEiH1H3GvUUp9T3gu8B9WuvV7X47DEwAVmit1/axaIOeQVgXlwOvAqVa6+LkStM3KKU+ANwBnAPk2JsHbHtTSv0/4NvAx7TW97bavppevCuUUpb93xKt9eHeSzr46OpdkMp0NxZSSjmAzwOfAKYCmfZPJfZnSo+j2pNqdV0p9Ufgk8C1Wuun43VeUUoSgFIqC/gocBUwBxgOWMApYBPwOPCo1roxztddDiwHtmqtH4/nuQcBv8N0XgD1wNkkypKS2C+B1cBZrfUvkyvNgGbA1EV70FkMPK613ppcaVIDpdStwAP2Vx9Qbv/fmxyJEotSahTwReAwcH9ypREGEd8G/sf+fxMt7SwAuJIiUSf043HbD4GPAf9PKfWs1joYj5OKUhJnlFLXAn8ERrbaXA8EMS/nYuBG4EdKqQ9rrV+J8RI+QEf4bTn2jAdG8UkW1RgZjyRRhqhRSuVjBtsAN2qt/5VEcVKBA5hOvKHd9mJM/SoFRClJAAOwLq4GlmEGpJGUkgZMf3G8b0RKOl+0P38BfF1r7U+mMH3AfwJZwI8ScK+hd6EvzucVUp+uxkIAd9qfXwZ+qbUOrTSglBrTzbF9yXKiG7elVF3XWh9USj0IfAj4APB/8TivKCVxxJ4V/DPGV0djtPTntNZn7N/zgUuB2zEV8SIgJqVEa30cmBY3oROA1vox4LFkyxEDCtMWzgyAQWCv0VpfkmwZBjGDri5qrdeT4n1anJlpf/4lVRSSVmZUcTXhUUoNwSimjbSsDsUNrfVgqjdCK7oaCymlRgCF9td7Wisk3R2bqqRoXf8TRin5MqKUpBZKqTnAHzAKybPATe3Ns7TW1cCjwKNKqVuAsX0uqNAZIVvTuqRKIQhSFwcDg6mMPwRkAA9rrQfD/QqpQaiNIfUuobyBWeGer5SaGw8TXVFK4sf/YBxSjwMf7M5fRGv9kO2IBXR02lJKLQG+CpwPjAB+o7X+YmfOXa232XxUKfXRdpfs4Bxlm5p9AjgXGIqxXX8X+K3W+oX2Mrd3SrRtoz+FcdYcCqzSWj/elfOiUmo48G/A5ZhZ4TEYRa4UeB74qdb6ROQn1zVKqUnA14GVwGjMDN124G/AvVrrQCf3E2JCK2cygNu01n+N4dq3Al/APA8vxlzlZ1rrZyI5jyul/orxP/ovrfX3Ipx3LcYEpoM8SqmLMOaAS4BxGP+ls8Bm4E9a60eilb/VOTvI2mobdHxOALcBa4GDgAOYpbXeEeH8OUAZkA1crrVeE6VcY4H3Y1YbJ2Hqjh9jbvYk8Autdaf+F0qpEky9uATznCygAtNuXsDMpp2ORg77fFNtWZZjHCdHYUze9gAPA7+PxWcs2roYjVNqpDrV3qFcKXU+8C1M3ckG9gL3AL9rP7PY7vxXYPqNJZjZyCqMedbTtlxHO7mfe5VSrb+HndqjcXRXSq3AtK2lmL6mEngb0y92utrc2jEUYz77H8CVtswnMBNE/621rol0r12hlMrDzBCuwtRHMPX/MeDn9iRUaN9i2vbRAIeUUqH/R7VC0br8Mfbcd2JWIiZj6t9bwP/Yq0+pwG325z+j2dl+b30WmIFpoxuBn2itn4+wf6fOv+3biX3ez7U67ybgLq31ixHO26N+tXXbA36AeYffgqmDOZiJyN1ALl04CNtjg4MYk9lPa63/2Nl+kVBKTcfUjYvta3qBo5h2dp/WelOU5+mzPlcp5QQ+gnl+s4E8zDM/hRmX/LN1PYgwFlpu32NrOVr3Zf+ltf5eNAGDlFLDMMEorrHvPQ04hqkD/2jv/xFrnYl13Nado3ssY59Wx6zFHlsAD2ECrHwAGA/UYix5/kNrva/jEwKtdVAp9Qimrt1Gi8lcj5GQwHHAtk+82v7669Yvo66I9OK3V1HewFTwTIxjVlcEME5c9fb3kFNX67/Wg3GPUuoBTKdyHVCEqcCFmAb4vFLqR11dUCn1a8xy/AWYQWi0Tk7fxDjyXodp6F6MMjcd+BKwVSk1O8pztZfpGmAHRlEqwTyHbOBCzGDreaVUdqtDGjHPpsr+HqTtM4tlUPlbzPM4F1NmDsyA9Wml1B09uZ8orpkDvIbpOBdjXnqhcrwceFgp9b9xulwFkZ9TOdBod5Qv2fvc1v4ErbgFUy5HWu0fDb8EfoK5t/GYe80G5mLs1jfaL9E2KKXmA+8BnwGmYJwcm+1zLAPuAhbGIAfA3zEDjxUY/7F6zEv0XOCnwOtKqdwYzhe3uhgNttLwGiYYhxszmz0b+A3G16GzY9KUUvcDz2H6pjG2XDmY+/4+8PF29xOyf65pdz8VMcj6P5iX4yrMBE29/fk+4GWl1A+6OcUcYAtGkcrDvPeKga/Yx3uilaWVTJOBbZiB72xMe3cAszB1cZtSakqrQ0J9dHmrbadbbYvqndEKB/AI8HPMQNuHUdauBdbZ75CkYk9AzbO/vhXF/r8A/goswjyvXMyg+jml1Fd7Icef7PMuwLSrXEzf/LxS6sZO9o9Hv5oBvI6ZrJxGy/u3HviH/f+u+siLMXW0odX+UaGU+gJmMPppTH8XxCgE52AU+5/FcLq+7HPvx0xkLMfU5VCfOgPzrL4XhbxeTHtqPcHUut+JatVEKXUhxgT/P4H5mHd6IzAR8/56rN3+PakzMY3bupE31rFPe/IwbfS7mMlHy5b9FuAdW+GJRKhtXxaNrN0hSkl8WI55SYAZ6PeWPwFPYDTiAoyTYETHYq31Ua31SMxgCOAhrfXIdn9HWx3yY+BWYD9m1SJHa52PqZifw2jIX1cmbGVnLMD4xXwXGKa1HgoMAdZFcW9HMFExZgOZWuthGKVkIWb2pBD4e+tVpGiwG80/MC+D14Bp9rPLxXTOzZjZnl+FjtFaP2Q/txvsTUfbPbOHorz2rZjQg2DKYJjWeghm9vxv9rbCCIf3hiBmYLLKvmaeXY5DMOVTB3xKKXVzby+ktV5E5OfU+ln9yf78kFIq0kps6GV8X4wRO3ZjOv2ptNSdDEz724BRcjsbLPwUUw/eBeZrrdPs8snGDIB+SeyDwncxg9xirXVIlkyMsr0XU59/GO3J4lUXo6QQ85zuBkbZ7WQIRiEBuEMpNbOT436BMccJYBSykVrrAq11DuZl/TXMCkTr+wn1CXe2u59F0QiqlHo/8O/2198CI+yyK2wl7zeVUh/q4jR/xaxaztJa52EGDB/H9AkLMWEto0aZkM2PYl7eRzEv4xz771JMHzceeEwpFQrnHC7PVqda1Op5xDrDeD2mrn0ZyLPLcDLwImYAeG83A4m+4Hz786TW+mQ3+87DBAD4ETDULuMxtNip/1gpdUEPZLge8677LOY55WPq6uuY8c9vOumn4tGvfh7TT70f834twCgZ9bT0kdfailtnhPrIR2NZybNl+jWmDjwCzNBa59jPcxim/Ua1SmLTJ32uvcrwQUzf8iVa6nQGZtZ/NfBmd8JqrdfZbWxRq22t+52fdnF4SJZJmFXfYZh+42Igy773XEx7b+/vF3Od6cG4rSt5Yxr7dMJ/2bJegSmjHIzP8zGMgtjVxM9G+3OaUqrX4xwx34oP0+3PZuIT0eE94N9CAzZtnCEPx+G82LN3d2JmKi9uXem11rXA3UqpKuBBzGDgwU5OkwP8QGv9362OrcHMhnaJ1vrXnWwLAJuUUtdjljpnYhrEazHc2rcxjekAcJXWusE+dzPwR9tM4n+Bjymlfqi13h/DuSNiK0//ZX+9T2v9tdBvWutye0Z6NKZTiCv2PXZ4MdrL6b9TStVglKLPYUyK+oLHMbNUIzCrh0+0/tE2ezofMxNzb4eju0Br/R+dbPMBr9kmRXuAK5VSxe2Wt5fYn3dqrbe0OrYB06FuJEa01p/vZFsz8JRSagdGMVmtlPpaqC6mEFkYc4IvhDbYdeYO2/xhFmYlZGfod1tJ+az99XO6nTmJ1voQLS/XuGC3re/bX//RTt4ztrzDMeYG31dK/T2Cknsc0yc028c2A39RSs3DDBhuAn4fg2i3YCZVfPZ5W5spvqyUugqzMjMTMyD+SwznjpZ84Dta6/Cqltb6gFLqOsxASmFM8z4R4fi+YLH9uS2KffMwdfKboQ1a65NKqQ9j+s8VmJnyWPvRAuBDWuuwE67W+pA94XYIM3G0FKOkhH6PR7+aQzvTVK11qf3f9UqpbZg6dCvtBovKBMQJTU5EXXfsFb9QfXhQa/3BdvJXYpS8qB2S+7DPDe3/om4Vbl4ba5KTGHPFvuIHmPq4F7jIHheF5GnEKP5tzP6S/C6Ox9gnHVjZ7rc3lFJfxChb1yml0rTWHcKW2+2pFqMELQae6c3NyEpJfBhmf1bpLmyxY+BnMc4gx8JHMKs6D3WhhT+CUbBmKhNjvj0BjNlAXLEbUaixn9/Vvq2xBy+hZfhfRBgE/gkzOHFgBiHxYi4t9uQdZhPs+nBXHK8XC0/Zn0uUUn0Sl93utP5mf/1YJ7uEZgDX2gPZeF23EjMr78AMMloTUpY7q8txx76vnZjB/9y+uGYPiDTzFVIiz2m3/cOYZ7unvUKSQOZiZv+hJd9Ae0ITAsW0DILb8/OQQtKOkE14+3vtjlD/8YTuxG9Ka70T04eCWYlOBA10snqutW6ixTznxlhXnONMqL1F66vVoZ+0+89QXb1YKTU0RhmOYEwt25/3BBDyu4m1/KPpV7fprn3lQqslnZlwvR+z6nqA2CbmLsGsLgUwq5YJJc59bmj/EbZvSVKwzbBW2V//s7VC0ksS8i6O49jnkQjKypOYCcR0Wvrizgi18V6/Y2WlJDV5O4HnDnUeH+1m+TlkZz0OM1PRmv06Bqfg9iilpmFmKC/CDCZyaDF/CzE6hlNOxMwcQjsntxDaOGStxcxMzY/h3N0ROle51jrSKtk6jHNg3NubbXrwUcwszRzMUmtau90yMEuzPS6zGPkTxqzkKqVUkda63JbVhVGKwYTOjhml1GKMnfJSjANnZ3ay7evOs5iX/9+UUr/HDEY32TN+PUYptRKjeC3GdMaZnewWSz3uKyq11gcj/BbKFTKk3fbQTOaziRGpU0Jtq8Ie6HdAa62VUscxg7H5wDud7LYhwvkj3Wu0cnXa19i8glnBiWdf05qNWuv6CL+FBrIFGPvycFkrpTZg+vT2hOruLfYMeGcsisacpBUh06SqLvcyHOlikuJNWhLezSW2MPobu5gojFj+cehXu3uHP4Axo56jlJqvtd7c6rfQZM69MU5yhtroe9qEvI0LfdTnvozxB5kPrFUmW/gruhdBb3rIQsx72sIE3omaJL2L4zX26bSP1Fr7lFKnMH7HXfWTVZi+JpI5YtTISkl8OGN/DonTzFTUTqA9IKTJ5mIqWqS/UN3Iiqd8to34NozN7SxMB1dNi2NX6EXblVNWe1rbMXbVGR/rZP/eEjpXxM7TnqWNu0LQyrnuTxhnupGYl3cFHZ1qY3mevUJrvRujiLkxNswhrsC8vKrpaJPbLbaz6zuYl53CdPBVtNxrk71r+3v9mi1PLia6yNtAjVLqFaXUZ5VSnSkT3cnya2ANZlZzIuZeK1vJEnr59tlzj4GuZv9Cz7C983eR/dmXCVFDbau7AVZ37TrS/YbuNdbJgmjkCsk0LEGrFV1du/Vv7Z9JIZ3393n27xkRfi8i9izY6fZnNJnqI96PbTITUmxi7btjrutx6le7fEdqrato6QPDqyW2meRijI9CrCZLcW+jfdXnahPd6bMY5/ALMU7vx5VSh5RSd9umln1B6BlW6ygDFkFS38XxGvv05J3Q2T4xv0vbIysl8WG3/ZmOabh7enMy3UnotjgSUja+1Np2M0Z6JJ/tBHUPpnI/hInqsa317IlS6vvAd+i4chItGcTutNxf+Q/M7NVpTCSh57XWp0I/2isToeRsfW3GcY8t2220mJOEXr4P6hjC5UL4Zf0jzH38FuOkrXXbEM/3Y5SgNveqtT5jO8legolOdCFmJmuF/fdVpdQyrfUxokApdSUmik0A4/PwAHBQt80Y/AYtkemE3pGRbAEikKpyRURHDrm8mvgnT6y0PwvidL6+Ih79ajTvyHswzt0fVEp91Z68CvWRa6LtjxJFX/e5Wuu/KKWewUz0rMD0n8WYVZpPK6W+o7VOlil0d6TCuziZY5/QKsqZLveKAlFK4sNrmOU+ByYiSq+UkgRTjlGcxifh2ldiTLV2YXK5dOY3U9TJtu5oPSs1nrazEq0JhS6M50pU6FwRzXTsaD2RljVDHVVXA5z8CNtD5ndf0Fp3FjayJ88yXvwT48A5Uym1CONUeq39W08cf2/EKNQvtHZ4bkfE+7UVhpfsv1Cm6Zsx9uoTMQ6i0UYpC+33J631f0XYJ1HPvjf1pTeUY0KbTuhuxzgSaludmRu1JhHtuisq7Gt21YeGZDoTJz/D9nRlFtj6t756Jp0RWh2Oxjyuq/4zZPICfXM/fdKvaq3XKqX2Y2z1r1NKPUbLynJP+sjQey9ebbTP+1zb1PdXwK/sFcaFmIANqzDBLJ7WWkcTOKGnhJ5hvlIqP4bVkmS9i5M59mlNqH322iJEzLfigK3th2ytv6BMUq1uScCyfmiQ39V5Q7aukeyGE0moYWzrTCGxn8fFPTjvQUySIjAzLB2wneeW2183d7ZPDwmdq8iOLNUZS4k8ARCSu0OsdwBlYotP7+y3VsdsifB7vCN+RVO/gHA0klDkto9h7FnTgB1a60g2/l3R5b3az2lJZ79FkK/Kdtj+tr1pWRxlmUDXToG9obv64sCE7I43IV+NK2M8Luo60wmhtpVt27V3wG5zY9rtn2hC1+m0r7EJ9WOJkmmhUqoz01poqctn6ZiwsS8J+diVRLHvBGWSyXXGBRjTMQsTWSzR9GW/GvKt+xgmWmERZrb5iYhHRCbURmcrkzuttyS1z9VaW/a74maM+ZETUxcSyUbMxI+D2Pq63tSZ3vSRyRz7hM6fRYtZWK8n5EUpiR/fwUSsGovJs9Hl0r5S6t8wzsDxJBTBoqvl8r9hOvfpSqlPd3Uye2YjnoRmHc6JoJB9kpZIVlFjz8iE7HPvjPCy/gRm8GIR35B8WzH5XsDYzrbBvs9vtt/eiu3252UR6syXaLHNbk/oec7q5Lo5tOR3iBeh+hXtTPw99uf7ackF0SMHd7q4V5t/x9gvt0Ep5VSR86VAS1LCSM+4J7LcReKW6EP1ZVGEyHi30v3KQk+4H9N2pnXXb7Qjmj4pEq3b1rcj7PM9+/MwLdGUEk0ostaVndm622YvoSg3UWUy7wHZdJI9WZm8KKH3yiMJWqWJllBStZndvQ9tvtV+Q7v+82U74lOi6ct+9a+YQfBltNznA52FXo2ClzF+BS6MaXRv6bM+17Ym6BTbXCxk4h1LPx0zWus6WhIj/peKPgFub+pMj/vIJI99QszH1LlaTDqLXiFKSZzQWm/FOG9bmBmPLUqpD7UOYaiUyldK3aCUehXjUxFLxudoCEWouUC1zSbcWs5dtMQy/71S6geqVUZWpVSuUuoyZTK+x7sCv0RLZtlfK6UK7GvmKaW+hsn03lObxLswTvKjgWeUMsG5lVLpSqlPYhJKAfxZa32gF/fQBrtT+J799WNKqR+1uq8izDL8xZgQnp3xFC2ZX/+mlBphH5uvlPp3+9yRlpBD4ZN/rpRaFlL0bHOpl2kJVR0v9mFeDvmqk0zI7dFab8IMLAswORu8GP+LnhC616uVUt8Kdb5KqUKl1E8wA5rO6k4esF8p9e9KqVm2bW/oxXkJ8P/s/V7ogSyfVkp9LPRCVUqNV0rdh4m6FE3EoZ7wFiaoQhrwoFKqxL52lq0s3JOIa9vRr0JJ0n6nlPpeqK7a1y+xt32m3aGhPukGZfIvxHJNCzPZA3C9Uuo3Sqlh9vWGKRNsIJTg9TsJDKPenodoyb3xuFLq0lZt7xLMqrkHc+9R54SIkWqMOcudynYaVkpNxMywT8c4nkadvDNBbMMMuDx0Hxq7BpNc7q5QPVFKjcQ4e1+CeW9EMpWMN33Wr2qtyzCJ+py0rDr0KK+N7Zv5FfvrB5RS/1Qm0iUASqmhSqlP2u0mGvqyz71LKfWIUup97cZMRba8JZg60CY/SIL4NmaAPRV4XSm1wl5tQCmVqZS6WinVPgphb+pMt+O2bkjK2KcVoUSV6+LhDy1KSRzRWv8Zk/ToFMb++n7gjFKqVpnkOWcxmYCXA6XEFtowGtZiYpsPBbRS6pRS6rD919rc4+sYpzUnZnbmqFKqWil1FvOyewEz4xrX3BZ2yNyQc/3tQJUyiRqrMOERXwb+0MNzH8AMUJowz3ePfe5a4I+YGZaXMVmD44o2ibl+Z3/9OnBaKVWJCaW8GvgqEWw57Zm/0AzZzUC5LXclJjfDfxPZZOE7GBvOcZiyb1BK1WFmjGdhnCjjhh2CNGSS9YhS6myr+hUp/vmfWv3/qZ6GkrZj/odmhO4C6uxnXI55vn/GvNw7YwLmWW4DGpVSZzAK0kuYlc2DxLZq+VeMqYTbvm6DXWalmJDH3yW6hHExo00i1dsxS/7LgINKqWpMu/0DJifDk4m4Nqbt/BPTL3wXu67ade6gvW1ku2PuxzzrCzDt4rhdX7rNzgwmMzwtg5jbgVN2uZ/CBBsA+KFulRwv0diz2Ddiyns8ZkBSp5Sqx9Sp8ZgISDdEyI8SD57AlPMvgWq7/h3ARP4JALclaAASNfYA5VH769Xd7L4Fcy/fwrwzKzHK94ft37+utY6qzsSBPu1XadtHbuqNz4TdXr6C6R9uBnbb448qjALxR0zSxmjO1Zd9rhvTph7DlH+1PWYqo6Wdf6ezvEDxxs7XcT1mvBYKQd2glDqNGU88TUfTrt7UmbVEN26LJG/Sxj42obb9UDxOJkpJnNFaP45x4vo8ZsbsGKbBuTEmBo9gKqjSWr8e4TQ9vbYPM6t0P2YZdwimc5hAK58GrXVAa/05zEDhAczLNR3jPHsE87ILZTqOK1rrLwOfwryEmjEDnC2YBnM1LY68PTn3U5gO4B7Ms87CrFC8aV/z8i5i+/cKrfXtGCfFdzH35cAEQLhGd5LFvt2xv8ZkiX7HlteJmRFfpbX+7y6OO4gJH/kAZpDmwnSk/4fJKdBV8q6e8hmMo+IeTJ0J1a+cCPu3Dv3b28zWt2AUuN2YFRsH5jl9VGsdKXN1DXANZsCzHqMc5mJmljZgltXnxhLpxh6UXoqZiT6IGQD4MYPTa7XW3+/i8F6jtX4MY+7xKubF48Iorh/XWn88gddt1lrfgnlhP4UZnGTbMryDeZb3tDtmD7ASE/O/GqO0TCCCT0yE634H0689gXnx52AGWE8Cl2qtO5j9JBp74DIHM2nQeqC0AxORbbbWem8CRbAwg84vY9pDGmZy52lgaQRn22QQMte8pbsdtdZfwkSf2oR5X9Vh6viVWuufJkzCjnL0db/6PC0r6b3tI9Fa/xyYh4mmdhizUmVhFIRfYUyCo6Wv+txfAHdg2vhe+zrpwFHMYPeivoy8pbV+FRMQ6EeYNu3HjI8OYCbmrmu3f4/rTLTjtm7kTcrYx7YGWY55B8TFVNVhWck0ORWEwYFS6jCmk1mhtV6bVGH6EKXUrZiO+jgwIR7Lu4IwWFFKfQ+zIhXP0L0JRSm1A2O+uUhrvTHZ8qQaSqnzMYPHJmCU1vpsN4cIQkqglPoCxjzsj1rrWHwNIyIrJYIgJJKQj8FfRCERhEHJd+3PryZVitQl1Ec+LAqJ0F+wfYW+iLEMidsqliglgiAkBKXUxzEmgs300FdIEIT+jdb6UYxZ680qctj0QYlS6nJagjX8KpmyCEKMfBDjqvAHrXVpvE4qyRMFQYgbtmPemxgb4lAUlR9rrU8kTypBEJLMZzG+SKMxPgODGtucNxMIRbC7345WKAj9hVBEvN91t2MsiFIiCEI8cWN8Z4KYxG33YJwFBUEYpGittxA5sdxgZAJmUHcM48j9H8kVRxBiQ2vd0/D+XSKO7oIgCIIgCIIgJBXxKREEQRAEQRAEIamIUiIIgiAIgiAIQlIRpUQQBEEQBEEQhKQiSokgCIIgCIIgCElFlBJBEARBEARBEJKKhAROPbYAJUAdsD/JsgiCIAiCIAgDk8lADiaE/7wkyyIhgVOQs0B+soUQBEEQBEEQBgXVQEGyhZCVktSjDsgPBi38/kCfXTQtzVQFr9ffZ9cU+h4p58GBlPPAR8p4cCDlPDhIVjm73S6cTgeYsWfSEaUk9dgPjPH7A1RXN/bZRQsLcwH69JpC3yPlPDiQch74SBkPDqScBwfJKuf8/MyQQpQS7gLi6C4IgiAIgiAIQlIRpUQQBEEQBEEQhKQiSokgCIIgCIIgCElFlBJBEARBEARBEJKKKCWCIAiCIAiCICQVUUoEQRAEQRAEQUgqopQIgiAIgiAIgpBURCkRBEEQBEEQBCGpiFIiCIIgCIIgCEJSGRAZ3ZVSCrgCWAQsBKYCDuBmrfUjvTjvB4HPArMBF7AHuBe4W2sd7K3cgiAIgiAIgiAMEKUEozjcGc8TKqV+B3wOaAJeBnzAJcBvgUuUUjeJYiIIgiAIgiAIvWegmG9Uf3ynAAAgAElEQVTtAH4C3AJMBl7rzcmUUjdiFJIyYLbW+hqt9SpgCrAbWAV8oVcSC4IgCIIgCIIADJCVEq31n1p/N9ZcveJb9uc3tNb7Wl2nXCn1WWAt8E2l1G9ktUQQBEEQBEEQesdAWSmJG0qpscACwAs83P53rfVrwHFgJLCkb6UTBEEQBEEQhIGHKCUdmWd/7tRaN0bYZ0O7fQVBEIQ+IGgFY/4TBEEQUp8BYb4VZ0rsz9Iu9jnSbt+4k5bmprAwN1Gnj0gyrin0PVLOg4NUL2ev30t1cy21zXXUNNdTU19JdW0FNXVnqGk8S21THbXeBuoCTdQH/dQ7gvgcjpivkxa0yMZJttNDjjuDvLQsctJzycsqIC9nGAV5heRlDSE3PYfc9Gzy03PxuDwJuOP4k+plLMQHKefBwWAvZ1FKOpJjf9Z3sU+d/Tm4a48gCEI3BK0glY1nOVFTzonaco5Xn+TYmVJO1p2i0h9pMboTnGAivceO1+nAi0UVXvB7wV8DDWVQ1fn+DmCYJ4sxuSMZM2wCo/NGMiZvJKNziyjIyMPRA8VIEARB6BpRSlIUr9dPdXUML+xeEtLOKypq++yaQt8j5Tw4SEY5+4J+yurLKa8/RXlDRfjvVMMpvEF/3K7jsKyYj7FiVCIs4LSvgdOVB3mv8mCb3zJcaRRljWBE1giKsgopyi6kKKuQkVkjcDldMcvWU6QtDw6knAcHySrn/PxM0tJSRxVIHUlSh9AqSHYX+4RWU6SXEARhUFLnq+dQdSkHzh7mYPVhSmuP4Y9R+XBaFjmBINmBIFkBi+ygRbYzjWx3JtmebLLTc8nNLCAnaxg5OSPIzRtJetYQHI7o3SGtYJDG+tPU1pZRX1dBXcMZahurqW+uod7XQH2gkfqgj3qngwaXk3qXgzqXM6Ii0xTwUlp7jNLaY222p7nSKM4bz6T8CUzML6YkfwKZ7oyYnocgCMJgRpSSjhy2Pyd0sc+4dvsKgiAMWCzL4lTjaQ7aCsiB6lLKG05FfXxWIEih189wX4BCb4ARrkxG5o+jsHAKaUPG4sgeijN7CKRnx900ygFkp40le8jYiPtYVhCrqQ6rvgqrvpKmM0c5dXof5TXHOGU1U+FxcTrNTYXHRZOrc4XIG/Cyt2o/e6v229d1MDpnJBPzi5mUX8zE/GKGZhSI6ZcgCEIERCnpyBb7c6ZSKjNCBK5F7fYVBEEYMAStIEdqj7H/7CEOnj3MgerD1Pm6crMzDPUFKGr2M8LnZ7g3QKEvQCEe8oZPxDWiBNeISTgLS3Bm5ffBXUSPw+HEkZkHmXkwfAI5E+aRA5RYFlZ9FYGKgwRPHcR/6gDVlUeocPipSHNR4XFzOs3FyTQ31Z62plsWFsfrTnK87iRvHH8bgIL0fCbaKylTCiYyJmeUKCmCIAg2opS0Q2t9VCm1GZgP3Az8rfXvSqllwFhMtve3+15CQRCE+OML+NBV+9l2eifbT++mxtu1darLshjd7GdCo4/iJi8TmnzkWk6cwyfgGjkR14iJuAon4sgv6rcDb4fDgSNnKM6coVCykHQgKxik6OxJghUHCZwyf8Gyo1Q74XCmh8MZHkozPJxMd3cwATvbXM3mU9vYfGobAEMzhjB7+AxmD5/J5IKSPvVJEQRBSDUGrVKilPoBsAp4TGv9rXY//wCTOPFHSql1Wuv99jEjgN/b+/xQsrkLgtCfqfPVs/P0Hrad3smuyr14A96I+2YGgkxo8pm/Rh/jmn14LMCdjnv8XNzF83GPn4MjLTNh8lqWhbc5ENMxDgekpcfvVedwOnENHYNr6Bg86kIjV1MdGaVbGHZ4M3OObYdAHc0OB0cy3JRmeCjNTKM0w43X2db0q7KpirXH3mLtsbfIdGdyzrBpzC6cyfShU8UfRRCEQceAUEqUUvNpURYAZtifdymlvhraqLVunYF9FKDszzZorR9RSt0NfBbYrpR6CfABlwB5wOPAb+N6E4IgCH3A6cZKtp3eybaKnRyoPhwxuWB2IMjU+mZKbCWk0BcIZ9t1pOfgmrIET8kCXGNm4HCnJVzu5iYfT/1jOxVlsccXGVtcwJU3zcLtTky+YEdGDh51IR51IZavCf/R7bgPbWLKkfeYUtUAVQ0EgbI0d3g1ZW92Ok3OlpWURn8jG8q3sKF8C26Hi6lDJjO7cAazhs+gID21zN0EQRASwYBQSjCKwrmdbJ/S0xNqrT+nlHoT+DywDHABe4C/AHfLKokgCP2FsvpyNpRvZVvFTk7Ul0Xcb3jQxYzqGmbUexnf5KP1EN6RPdSshpQswDVyKo4+NDWyLIuXn9rTI4UE4Njhs7z54n6WXzk1zpJ1xOHJwDNxEZ6Ji7ACPgLHd+M/vAn/4c2MbqpltNfP0upG/MChTA+7cjLYnZfDWUfLCpDfCrCrUrOrUvMP/RgTcscxu3AGC4vmMTxzaMLvQRAEIRk4rB7EfBcSylpgmeQpERKBlPPgoLAwlyZfEy/sWse6E+s5VFMacd8J7jymV1Uzo7KSQl+gTXpCR14RnokLcRcvwFlYkjTfkE3rSln/+uHw97T06BWi1uZeK65WTJs1Mp6iRY0VDBIo34f/0Cb8hzZi1Ve2/AacSHOze/hwdudlc9wfuX1OGzKF80Yv4pLpS0hzeaQtD3Ckzx4cpECekteA5X168U4QpST1WIsoJUKCkHIe2FiWxeGaI2yu3MK6o5to8jd32MftdKNyxjKjromphzW53vb7OHBPmItn5qXGNCvJTurHDlfx9EPbCL2q5iwey9KLJ0V1rGVZvPTUHvbvMuGLXW4nN35kHsNG5HRzZGKxgkH8R7bi2/kSgeO7OvxemZnF3mLFrgwX++uOdWpil52WxUUTzmXekLmMyelghSwMEKTPHhyIUmIYKOZbgiAIg5Zabx3ryzaz7uQGyurLO/zucriYNWw68xy5TDq8G/fe9R1Pkp6NR11E2oyLceYV9oHU3VNX28yLT+4OKySjxuazZPnEqI93OBwsv2IqZ8rrqDrTQMAf5IXHdnHjR+eTnpG815/D6cRTPB9P8XwCVcfx7XwZ3963wFYihzY2sGT3FpbgoHncTPaPn8Im32l2V+7FwjyMem8Dz+17led4lfG5Y1k6ejELi+aQ6U5coAFBEIREIislqcdaZKVESBBSzgOHoBVkT+U+1p1Yz7bTuwhYHaNSjcwawXkjFzCvup70Ha+0MRkK4Rw2Ds/MS/FMXoLDnd4XokdFIBDkyQffo+xYDQCZ2R5uvm0B2Tmxy1h1up5H7tuM32dWHEqmDufyVclfBWqN5W3Ap9/Eu+tlrOqOiqUjv4iGcy5mY6aDd8o2caapqsM+HqeH+SNms3T0YiblF6fU/Qk9Q/rswYGslBhEKUk91iJKiZAgpJz7P3Xeel4/vo51JzZQ1Xy2w+9prjTOH7+Qi0uWkLNnL97NT2DVnWm7k8OJu2QhnpmXGKf1FBy8vvXyfrZtOA6YsL7Xvn8OYyYU9Ph8+3ef4sUndoe/n7diInPPHddrOeONZQUJHNuBd8dLBI5uB9q+o50Fo3AvvIEzE0bx6qF1rD+6BX8nCumIrOFcMHoJ549eTIaEF+63SJ89OBClxCBKSeqxFlFKhAQh5dx/qWyq4pUjb/DWiXfxBn0dfi/JG895oxcxv3AOw2oOUvna3/GdPtZmH0dmHp5py/DMuBhn9pC+Ej1mDuypYM3jLb4WS5aXMG/J+F6f980X97N9U4uic90H5jB6fM8VnUQTrC7Hu+sVfPp18LZ9H6SPnsLQFbdSllbIhrItvH1yA8frTnY4R6Y7k2Vjl7J87PnkpiXXl0aIHemzBweilBhEKUk91iJKiZAgpJz7Hyfry3mxdC0byrd0cHjO8WSzeOR8zhu1iNE5I/Gf2E3zuw8TrDjYZj9HRi5p86/DM305DpenL8WPmbOVDTzy1834vGb2v3jyMK64cWZcVnMCgSBP/N9Wyk+Y+p+VncbNty0gKyfxeVZ6g+VtxLvjRbzvPQu+pja/ucbMJH3xTTiHF3Ok9hjrTqxnY/l7NAXa7udxejhv1CIuHX8RwySscL9B+uzBgSglBlFKUo+1iFIiJAgp5/7DoepS1pSuZdvpnR1+G5MzipXjlzNvxCzcTjeBisM0r3+YwPF2+3oySJt9JWmzLktopvV44fMG+Nf9W6isqAcgryCDm1YviKtTel1NEw/fu5mmRrPaNHpcPtd+YA5OZ+qZsLUn2FSLd+sz+Ha+BAF/m9/cJQtJW3QDroLReANeNpRt4aUjr3Gq8XSb/ZwOJwtGzGHlhOUStasfIH324ECUEoMoJanHWkQpERKElHNqY1kWuyr38mLpq+w7e7DD71MKJrJywgpmDDV+IMGzJ2ne+C/8Bze02c/h8pC38Ar86jKcGbl9JX6vsCyLV57W7N1pnLxdLgerPjyPwpHxl//ooUqefmh7+Pu8JeNiiuqVbIJ1Z3Dueo7a916B1qtnDgeeqReStuB6nDnDCFpBtlbsYE3pqxytPd7hPOcMm8bKCSuYXFDSh9ILsSB99uBAlBKDKCWpx1pEKREShJRzahIIBthSsZ01pa926hcwe/hMVk5YzsT8CQAE6yrxbn4cn36zk0HpBYxaeSvu/MJ+Vc47t5zg9Rf2hb8vv3Iq0+ckbiZ/45uH2fBmS1LJK26cScmU4Qm7XrwpLMzFe/oYZWvux39oY9sfXW48My4hbd41ODNysSwLXbWfNaWvoqv2dzjXxPxiLpuwnHOGTU/JoAeDGemzBweilBhEKUk91iJKiZAgpJxTi6AVZEPZFp499CKnm9qG63U6nCwqmsfKCcsZlV0EgBUM4Nu+huaNj0HA22Z/d8lC0hbegGvI6H5XzqdO1vLYA1sIBsz7aNqskay4WiX0mpZl8czD2zl60ITWTUt3cdPqBeQPSX0zN2jblgMVh2he/0hH8720LNKX3IJHXRRWNkprjrKm9FXeq9gZznkSYnT2SK6ZeDmzh6dWuOTBTH9ry0LPEKXEIEpJ6rEWUUqEBCHlnDrsqdzHY/uf4VjdiTbb05wezh99LhePv5ChGS0RsgKnD9P0+r0ET5e22d81Zibpi27ENaLF/Kg/lXNTo49H7t1EbY1JHDhsRDY3fHgebo+rT6798L2bqLOvPXxEDqs+PLdPrt1bOitj//FdNK9/mGDFoTb7ukZNI+Oi1TjzR4a3ldWf4qUjr7G+bHOHHDeT8ku4YcrVFOf1PuKZ0Dv6U1sWeo4oJQZRSlKPtYhSIiQIKefkc7zuJI/vf5ZdlbrN9mx3FsvGLmXZ2PPJScsOb7f8zTRvfAzf9jVtTLWcQ8eSvuQDuMfO7HCN/lLOlmXx7CM7OHLArBIlY7Wi/EQNjz+wlWDQXqWZPZIVVyV2lSYeRCpjy7LwH95M8zv/wKqtaPnB5SZt/vWkzbkSh7MlcEBV01lePfomb5x4B2+71bcFI+Zw3aQrGJ45LHE3InRJf2nLQu8QpcQQv5AmgiAIQkTONlfz9ME1vHNyYxuzGY/TwyXjL+LS8cvIbJfkzn9sB01v3NducOkhbcH1pM2+os3gsj+yed2RsEICcPHV0/rcfKpodB7nXzqJN9YYX4s928oYNTafabNHdnNkauJwOPCULMA97hyaNz6Ob/sLRpkN+PFueBT/gXfJuOg2XCMmATAko4AbplzDZRNW8Nzhl3j9+Nvh0NObTr3H1oodLBu7lCuKLyHbk5XMWxMEYYDTv99ogiAIKU6Tv4kXj7zGy0dex9cq6aEDB0tGLeSaiZdRkJ7f5phgUy3Nbz+If9+6Nttdo6eTceFH25jh9FeOHa5i/RuHw9/nnjuWkqnJcTSfOW80Zcdq2LfrFACvr9nH8KIchhf132SDDnc6GUtuwTN5CU2v/yVs9hesPEbD4/+D55xLSV94QzhUdE5aNjdPvZ5lY5fyxIHn2VphopMFrACvHH2Dt09u5Irii1k2ZimeFM91IwhC/0TMt1KPtYj5lpAgpJz7jkAwwFsn1vPsoRep9dW1+W360Kmsmnx1hzwRlmXh3/82zW8/iNXUqozSs8lY8n7cUy+IygE51cu5rqaZh+/dFM4VMmpcPtclOVeIzxvg0b9tpup0A5CYHCnxJJYytoIBfDvsAAn+FhMtR/ZQMi78CO7xczscc7D6MP/a9wyHatr6MA3NGMJ1E69gQdEcnA5nL+9C6I5Ub8tCfBDzLYMoJanHWkQpERKElHPisSyLbad38cSBZylvqGjz25icUayafDXTh07tcFywpoKmN+8jcGxHm+3uSeeSft4HcWbldzgmEqlczoFAkCf+/h7lx2sAyMz2cPNtC8jOSU+yZFB1poFH72vJJl8yZRiX3xCfbPLxpidlHLGOTVxM+tJbO9Qxy7LYWrGDJw48S0XjmTa/jc8dy6rJVzN1yKQe3oEQDancloX4IUqJwfW9730v2TIIbVkNFAcCQZqb/d3tGzeys82AoKHB282eQn9GyjmxlDdU8OcdD7DmyKvU+xrC2wvS87l56vXcolYxIqutiZIJ8/sCjS/+Dqu6JUeJI2cYmRd/hvR51+DwtPU16Y5ULud1rxzgoDZZxh0OuOqmWQwrTA0zqcwsD3kFGWH5zlY24k5zMWps9AphX9GTMnakZ+OefB7O/CICZXvDqybBquP49ryOIyMH57AJYSXM4XAwKruIC8YsIdeTQ2nt0bAJYrW3hnfLNnG89gQT84s7+EMJ8SGV27IQP5JVzhkZHlwuJ0Ap8Nc+vXgnpOa6tCAIQj/CH/TzYulrPF/6Mv5gy2RChiudyyasYMW4C0nrxA4/WHeGplf+1wwQwziMvf+iG2NWRlKd/btPsX1jS2bxc5eVMHp8QRIl6sjk6SMoO1bD9k1GznfXHqRoVG7KydlTHA4HnilLcY2bRfPb/8C/7y3zg7eB5tfvxX94C5nLP4Ejo0VRdDvdLB93PueOms+a0rW8evQNfHY9f+/0TnTVfq6bdCUXjlkiJl2CIPQYWSlJPVYjKyVCgpByjj+Hqkv5w7a/sunUe+GoRU6HkwvHnMcnZ32EGcMULmfHvBf+0q00PPczrOqy8Dbn0LFkXv5F0qYtw+Hq+ZxRKpZz1ZkGnntkRzhBYvGUYVywcnJKmkaNKS7gWOlZ6mtN/pKjB6uYMnNEyMwhJehtGTvc6XhKFuAqmkygbB94zcqeVV2Gb/87OEdMxJnTNhSwx+lh2tApLB45n3pfA8frzMqe3wqw88we9lTuozhvPLlpqbHyNRBIxbYsxB9ZKTGIUpJ6rEaUEiFBSDnHj0Z/E//a9zT/0I+1cWQfnzuGz8y+jaWjF5PuSutwnBXw0/zuQzSv+z8I2NG4HA7SFqwi4+JPdRgI9oRUK2efN8BTD22jvtbIk1eQwdX/NjtlkxQ6nQ7GlQxl745y/P4gPl+AipO1TD2nKGWUqHiVsTNvBJ7py7B8zQRPHTQbfY34974FTheukR0Vx0x3JnMLz2FqwSQO1ZSGTRXPNlez7sR6AlaAkrwJnSrjQmykWlsWEoMoJQZRSlKP1YhSIiQIKef4sK1iJ3dvuxddtT+8Lc3p4X2TruKD026iIKNzH4RgTQWNz/+CwKGN4W2O7CFmdWTq+TjiZPqSSuVsWRZrn9McLz0LgMvt5NpbZpNXkNqmaWnpboYXZbN3pwkTXFvTTDAQZGzxkCRLZohnGTucbtzjZuMaNgH/sR22smwROLGLwKkDuMaeg8PTMRDBsMwhLB21GIfDwaHqI1j2v/1nD7GlYjujs0cxLDM1nld/JZXaspA4RCkxiFKSeqxGlBIhQUg5947q5hru3/1Pnjm0hqZAc3j7jKGKz835GDOHT4toU+87uIHG53/eJhGia/wcMq/6Cq4ho+MqZyqV866tJ9n89tHw92WXT2HCpP6RITx/SCYOh4MTR4xCVXashuFFOQwZlvwkgokoY2fBKDyTlxA4dRCr3iS1tGpO4d+3DmdhMc7cwg7HuJwupg6ZzJzCczhWe4KzzdUA1PsaeKdsI9XN1UzKL5HcJj0kldqykDhEKTGIUpJ6rEaUEiFBSDn3jKAV5K0T7/LH7fdxrO5EeHuOJ5tbp93E9ZOuJCtCtmvL76V53d/xvvsQBOw27XCRvuQW0pd+CGcnM9C9JVXK+dTJWtY8votQ5Plps0ey6MLipMoUK6PG5XPqZC3VVSZE+5GDlUyaVkhGZnIH2YkqY0daFp6pSyEYbAnA4G/Gv3cdWBaukapTE7bctByWjFpIXloOB84ewm+ZsMpHa4/zbtkmhmYMYWTWiJQxf+svpEpbFhKLKCUGUUpSj9WIUiIkCCnn2CmrP8U92+/n9eNvt4mstWTUQj4z+zaK88dHHGgFq8tofO5nBI5sDW9z5A4n68qv4Jm4KGEDtFQo56ZGH089+B7NTeaZDR+Rw+WrZuB09a/oTA6Hg/ETh7J/9ym8zQECAYuTR6tR5xQl9V4SWcYOhxP3mBm4RkwyOU3s0MGBk5rASY1r7MxwJvi2xzmYkDeOxSPnc7qxMpynpzngZcupbRytO86k/BIJHxwDqdCWhcQjSolBlJLUYzWilAgJQso5eoJWkFeOvsGfd9zPmabK8PbCzGF84pwPc/H4zsP8hvDtf5vGF36FVdeSdM5dvICsK7+MM78oobInu5wty2LNY7uoKDMBANLSXVz7gTlkZXd0/O8PuD0uRo3NQ+8ox7Kgod5LQ72XkinDuz84QfRFGTvzi3BPWUrwdClWrcndYtWdNuZcQ8dFrMeZ7gwWFs1lTPZIDpw9RHPAyHiq4TRvnXiX/PQ8xuSMklWTKEh2Wxb6BlFKDKKUpB6rEaVESBBSztFR3VzLn3c8wBvH3yaIsT1yOpysnLCcj828laLsjrb1ISx/M81v/A3vxn9BaGXF6SZ96a2kL7kFhzvxA/Nkl/PmdUfY9V5LIsiV189gZAomIIyF7Nx0MrM8lB4wCurp8jpy8zIYXpSc8Ld9VcYOTwbuyUvB4SRQps1Gvxf//rfB78U1WkUM0DAyu4iloxfT4G/iSO0xAAJWgG2nd3Kq8TTThk7G4xRfk65IdlsW+gZRSgypE3RdEAQhBdh5Zg/37/pnhzC/H5r+b4zJGdXlscHaChpf+BXBymPhbY78IjIv+Ryu4RMSJnMqcexwFevfOBz+PvfccZRMTd6KQjyZMXcUZceqwxG5Xl+zj+FFOUlTTPoKh9NJ+oLrcY2aStMr/4vVYBz/ve89S6B8Pxkrb8eZmdfpsZnuTD6gbmBR0Tz+b8/DnGowKy4by7dyqLqU22Z+kJL8wdE2BEHomv5l3CsIgpAgfEE/j+x7kt+/95c2CsnK8cv5yoLPd6uQBMr30/D499soJO7JS8he9b1Bo5DU1TTz4hO7w99Hj8vn3GUlSZQovjgcDi66fCpDhpugBgF/kBce2xn2mxnouEdPJ+vG/8Y1blZ4W6BsLw2Pf59A1YkujoTJBSV8c9EXWTpqUXjbmaYqfr75bp4//HI48aggCIMXUUoEQRj0lNWf4qcbf8urR98Mb8tPy+ULcz/J+yZfhdvZ9aKyb/87NDz9Q6zGGrPB6Sb9otvIWPHpTh2CByKBQJA1T+yiqdEkhMzKTmPl9TNwOgeW34AnzcXlq2biSTOJAWvONvHqM3uwQiHGBjjOzDwyr/gSaYtvAkzZWrUVNDzxffzHdnZ5bLorjVun38zHZt4adnYPWkGeOvgCv97yR6qaziZafEEQUhhRSgRBGLRYlsVbJ97lRxt+1SbU7znDpvOtxV9i2tAp3R7fvOkJml75QzjcryMjl8xrvk7atGWDypH37VcPUn7cKGUOB6y8fjpZOf3Tsb07hgzLYsVVKvz90L4zbF1/rIsjBhYOh5P0udeQedkd4LZDWnsbaXzuZ3h3vdrt8QuK5vCtRV9iYn5xeNu+swe5a/0v2FqxI0FSC4KQ6ohSIgjCoKTB18CfdzzA3/c8ijdoZvfdTjc3T72ez8xeTW5a134CVsBH06t/xLvpsfA2Z8Eost73H7hHTk2o7KnG/t2n2L7xePj7ucsnMnp8QRIlSjyTphUye+GY8Pd31x4MJ1kcLLiL55F13bdxZNtZ260gzW/eR9PbD2IFuzbHGpY5hC/O+zRXFV+Kw15xafA3cs/2v/HgnkfxBsSxWxAGG6KUCIIw6Nh/9hB3rf8lWyq2h7eNzC7i6wu/wPKx53e7whFsrKHx6R+bCEQ2rjEzyLr+OzjzRiRM7lSk6kwDa5/bG/5eMmUYcxePTaJEfceSFRMZOcY4eFsWvPjEburrmpMsVd/iGj6BrPf9J87hxeFtvu0v0Ljm11i+pq6Pdbq4euJlfHH+ZxiS3qLEvnniXX608TccrzvZxdGCIAw0RCkRBGHQEAgGeObQi/xy8x+oam6Z1b5gzBK+sfAL3TqzAwTOnjCOveX7wts805aTeeWXcaRnJ0TuVMXnDfDCYzvxeU327ryCDFZcPW3QmK25XE5Wvm8GGVkmrG1DvZcXn9hNMDg4/EtCOLOHkHXtt3AXzw9vCxzZSsOTdxGsq+ziSMPkghK+vfiLzCtscaAvqy/nxxt/w9qjbw0afx1BGOyIUiIIwqCg1lvHb7bew7OHXsSyc49ku7P45KyP8AF1A2mu7v0f/Md20vD497FqK+wtDtKXvJ/0Cz+Koxtn+IGGZVm89sJeqk43AOByO7l81UzSMwbXc8jJTWflddMJ6WEnj1bz7muHkitUEnB40slYeTtpc64KbwueOULD4/9NoOJwt8dnebL4+Dkf4tZpN5Fm5y7xB/08vO8J7tn+N5r8Xa+6CILQ/xGlRBCEAc/R2uP8aMOv2Xf2YHjblIKJfGvxF5lbeE5U5/DuXkvjcz8Db6PZ4E4j87I7SJt9xaBZGWjNzi0n2Wfn6wC46LIpAz5fRyTGFg9h0YXF4e9b3z3Kob2nkydQknA4nKSf+2+kX3QbOEx0MqvhLA1P3oXv0MYojnewdKvzZn0AACAASURBVPRivrHoTsbmjA5vf+/0Tn666XdUNJxJmOyCICQfUUoEQRjQbCrfys82/T5sruXAwTUll3HHvE8xJKN7Z2wrGKTpnX/Q/MZfwc6l4MgeQtZ1/467eF4iRU9ZTp2s4a2X94e/T5s9kmmzRyZRouQz/7zxTJg0NPz9lWf2UF3VmESJkkfatGVkXv1VCJkzBrw0vfhbmrc+G5Up1sjsEXx14e0sH3t+eNvJ+nJ+vPHX7K7c28WRgiD0Z0QpEQRhQBK0gjxx4Dn+svPv+OzoWpnuDD4zezVXllyK09F992f5mml68Tf4tj0f3uYcZhx7B0tCxPY0Nfp44bFdBANmcDl8RA4XrpycZKmSj8Ph4OJrppGbb/JveJuNv43fF0iyZMnBPXo62dd/B0erwA/e9f+k+fW/YAW7TzbpsSPhfWT6LeE8QQ3+Rn639c+8cuR18TMRhAGIKCWCIAw4Gv2N/O+2v7KmtCVnQlFWIV9bcDvnDJ8e1Tms5noanv0J/tIt4W3u4vlkXfdtnKEQqIMMy7J4+ak91NWYCFNp6W4uv2EGbo8ryZKlBhmZHi573wycLmPOd+ZUPW+s2d/NUQMXZ8Eost/3n7hGteR08ek3aFzzWyx/dCF/zx21gC/P/yz5aXaUMywe3f809+/+J76ALyFyC4KQHEQpEQRhQFFef4qfbPwtO87sCW+bOWwaX1t4O0XZ0YXrDTbV0vDMjwmWtwwoPbOvJGPl7Tg86XGXub+wad0RjhxsiaZ0yTWKvILBkbE+WkaMyuWCS1tWjvZsL2P3e4M3tK0jI4fMq76Ke2qLKVbgyFYaX/glli+68MkT8sbxjUV3UJLXsjr5btkmfrHlD5xtro67zIIgJAdRSgRBGDDsPLOHn2z6LeUNFeFtl01YwWdmrybTHd3gOdhwlsanfkjwdGl4W/rSW8lYcguOKEy+BipHD1Wy4Y3D4e/zloyjeMrw5AmUwsyYO4qpM4vC399Ys4+KstokSpRcHC4PGcs+Qdrca8LbAsd30fjsT7G8DVGdIz89jzvnf5rzRi0KbyutOcqPN/yaQ9WlXRwpCEJ/YfC+YQVBGDBYlsWLpWu5+717abRDh3qcHm6b+UGun3RlVP4jAMG6MzQ8+QOCVaHs5A7SL7qNtHNWJkjy/kFdTRMvPdmy8jR6fAGLLypJokSpjcPh4KIrpjC00Dh6BwIWax7fRXNT974UAxWHw0H64ptIW3RjeFugfB8NT/8Yq6kuqnN4nG5unXYTN0+9Ptymq721/HLzH3j7xIaEyC0IQt8hSokgCP0ab8DLX3c9yOMHng3nHxmSXsCXF3yWhUVzoz5PsLqMhifvwqopNxscTjIu/jRp05YlQux+QyAQZM3ju2hqNPb7WTlprLx+Ok7n4AuDHAsej4vLV83Ak2b8bWrONvHK03sGvYN2+rxrST/vA+HvwdOHaXjqhwQbznZxVAsOh4PlY8/n9jmfINuTBYDfCvDAnod5ZO+TBIKDM7CAIAwERCkRBKHfUtlUxc83383G8q3hbZPyS/jGojsYnzs26vMEKo/T8OQPsOrsPAhONxkrb8czeUm8Re53vP3KQcpPGNMjhwNWXj+drOzuE00KUDA0ixVXtTh5H95/hq3vHk2iRKlB2qzLSb9wNWAU22DVMRqe+gHBuujzkKihk/n6wjsYnd0SivrVY2/y2/f+TJ2vPs4SC4LQF4hSIghCv+RwzRF+vOE3HK09Ht52wZgl3DHvk+SmRZ/EL3D6MI1P/QCr0XaYdaWRefmdeIrnx1vkfsf+3afYvqnl+S5ZPpHR47rP7SK0MGlaIbMXjQl/f/e1QxwvjW5VYCCTNn05GSs+CbYZllVdTsOTdxGsOdXNkS0MzxzKVxZ8nrmFs8Lb9lbt58cbfkN5ffTnEQQhNRClRBCEfseuM5pfbfkjtT5ji+50OHm/WsUH1A3hnAbRECjbR8NTP8Jqtm3aPRlkXvUV3ONmdX3gIKDqTANrn2tJVFcydThzFke/+iS0sGT5REaOtUPaWvDik7uor4su8tRAxjNlKRmXfh6cdvb3ujM0PHkXgarj3RzZQoY7nY+fcyvXlFwW3namqZKfb76bwzVH4i6zIAiJQ5QSQRD6FevLNnP3tnvxBkyeg2xPFnfO+zQXjjkvpvP4j++i4dmfgs/Oup2eTdbVX8fdKqfCYMXnNYn/fF5jn58/JJMVVykcDvEj6Qkul5OV188gM8sDQGO9jzWP7yIQCCZZsuTjKVlA5uV3gss8G8uOfhc4HX1ELafDyZUll/KpWR8lzWnOU+er51db/siuMzohcguCEH9EKREEod/w8pHXuW/XPwhaZjA3JL2Ar8z/HJMLYosE5T+ylcbnfw5+M1vtyMwj65pv4hoxMe4y9zcsy2Lt83upOm1CtbrdTi5fNYP0jOhXoISO5OSmc+l10wnpdWXHanj3tUPJFSpFcI+bTeaVXwFPBgBWUy0NT/+QQHlsiSfnFM7kjnmfDjvAewNe7t52L+vLNsddZkEQ4o8oJYIgpDyWZfHY/mf41/6nw9tGZ4/kqws/H3VCxBC+g+tpfOE3EDDhWR3ZQ8i89pu4ho2Lq8z9lZ2bT7B/V4s9/oWXT2HYiOh9dITIjC0ewqILi8Pf31t/jIP6dPIESiHco6eRdfXXIM0oFHgbaXjmJ/hP7I7pPCX54/ny/M8xJN34PgWtIPft+gcvH3k93iILghBnRCkRBCGlCQQD3L/7n7x05LXwtkn5xXxp/mcoSM+P6Vy+vW/R9PLdYBmzJEduIVnXfhtXwei4ytxfKT9Rw1svHwh/nz5nFNNmjeziCCFW5p83ngmThoa/v/rsHs5WRpdAcKDjGjGJrGu/iSMj12zwN9P43M/xH9kW03lGZo/gqws/3yYy17/2P81j+58Z9CGZBSGVEaVEEISUpTng5X+338e7ZZvC22YPn8ntcz9Jlm2iES2+A+tpWvsn42kMOPNHknXtt3DmFcZV5v5KY4PxcwgGzfMZXpTDBSsnJ1mqgYfD4eCSa6eRm29MlbzNAdY8tgufT/JrALiGjSfz2m/hyLKjvAX+P3v3HR/VfSb6/3OmadSFCojeBEcSvWPA9OZCtR3HLU6cOHbabrL729/uvXf3t3t372/L3bvZEnvtOPY6tmMndrDBYGOqAVON6aByKKJ3JNSnz7l/nNEREBBIc+SRZp7366WXeEZzHj1opJl5zvmWAJ71/9HqKyZZSZn8bPSLDMzsZ9624cwW3in7QPYyEaKDkqZECNEh1Qca+MX+1yipbN5JfFL38Xxv6NO4IpNi71XwzEG8n/8SIpsr2rJ7k7zwv2NLy275wAQRDutsXFVGfa0xx8aV5GDekmIcDnmJaA9JbifzlhRjsxsTTCqvNrB13TE5ix9h79KDlIX/HSU917ghFMSz5t8IXTnR8oG3SHGm8OORzzMst9i87ctLe/nl4bfwRRbKEEJ0HPKKI4TocKq81/n53lc4ecOSnvP7zeLJwkewR5YPvVfBC+V41r9kDtmyZXUn+aE/w5acYWnNndneHac5e/K6Gc9aUEhGVnIMK4p/efnp3H/DlSjt8GXKDl2KYUUdiy2jKykP/XnzFZOgj8bPfk6osnWbT7rsTp4f+gyTuo83byupLOc/9r8mmywK0cFIUyKE6FAu1F/iX/b+J5cbjcnWCgqPDV7EggHzWr0kbehKBZ61/wahgJErPY/kh/5faUhucKaiij3bmpdfHXVfb/oV5MSwosRRNKI7g4d2M+Nt645x9VJdDCvqWGwZeSQ/9GfNc0x8DXhW/zPhmtY1b3abnScLH2F+v1nmbadqz/Dzva9Q5b3ewpFCiK+TNCVCiA7jRPUpfr7vFap9xu7qdsXOd4Y8yfRek1udK1R1jsbP/gUCXgCUlCxSHvozbKldLK25M6ur8bJxVfNY/R59shh/f+uWVxZtpygKU+cNIjsvFYBQSGft8lJ83kCMK+s47F16kvzgn4LTuHKne2pp/PSfCddXtiqPoigsGDCPxwYtQsE4uXG58Qr/svc/uVAvV6iE6AikKRFCdAiHr5XyiwOv4Qkamxm67Un8cMRzjOk2otW5wjWX8Xz6z+AzhmcoSWkkP/hn2DJat3xwPAuFwqz7uBSvx1gaOSXNxZxFRdhsskHi18nptDNvSTFOlzEssa7Gy8ZPNJlfcgN7bj+SH/gZ2F1AZOf3T/+ZcGNNq3NN7z2Z7wx5Erti/LyrfTX8fN8rVNScsrJkIUQbSFMihIi5w9dK+dXhdwiEjTfI6c40/nj0CxRmD2p1rnB9FY2f/m90T+QNi9NN8oN/ij27p5Uld3o7Np7gygVjqJDNpjB3cTEpqa4YV5WYsrJTmPmQasanj1eyf1fr5k7EO0f+YJLn/gQic8r0mkt4Vv8fdF/r54WM6TaCH454jqRIk+MJenjpwOucqD5lZclCiFaSpkQIEVNNDUkoMhE9153Nn475EX3Se7U6V9hTi2f1P6M3De2wO0me/zPseTIk6UbHSq9wZN8FM544fQDde7VuzxdhrQFqHiPGNf/O7/7iJOdPy3yHGzl6D8M96wcQmVsWrjpL42c/R48M0WyNwuxB/HT0i6Q7jY1BfSE/Lx98Xa6YCBFD0pQIIWLmDxqS5Bx+OvpF8lJaP9Fa9zXgWf1/CFdfNG6w2Ume8xMc3dWWD0wwVdca2PyZZsYD1FyGj5OrSB3BhOn9ye9lLMKg67D+4zIa6nwxrqpjcfYfi3vad804fOUEnnX/gR5s/RK/fdJ78cejX7i5MTnwBhU1p+9ypBCiPUhTIoSIiSPXynj9liskPx31Al3cWa3OpQd8NK75V8KVkSWEFQX3zBdw9BluZcmdXsBvbNQXDIQByMxOZsaDaqtXNRPtw263MXdRMckpxj48nsYA6z4uJRQKx7iyjsU5eApJk54249D5UrwbX0GPDP9sje6p3fijUd8nzWksNuAN+Xj5wOuclMZEiK+dNCVCiK/dkWtl/Orw2wRvbEhGv9i2hiQUwLPuPwhfPm7e5p76HM4B41s4KvHous7mzzSuVzYC4HDYmLe4GFeSI8aViRulpicxZ1FR0wglLp2r5cvNJ2NbVAfkGjob17hHzDh4ej/eza+j661v4Hqk5fPHo164qTF56cAbnKw5c5cjhRBWkqZECPG1Kqksv6khyXFn88ej23iFJBzCu/FVQudLzNuS7nsSp3q/ZfXGiyP7LnC87KoZT50/mJyuaTGsSNxJz75dGD+1eR7Uwa/OcaL8agtHJCbXyIdxjXjQjIPHd+Hb9k6bVi77w8bEy0sHXpfGRIivkTQlQoivTUmlxmu3NCQ/Hf0C2e7W7x2i62G8W94geGqveZtr7BJcw+ZaVm+8uHS+lh0bT5hx8cjuqDds2ic6nlETe9N3YLYZb1qtUV3VGMOKOh5FUXCNfwxn0QzztkDZJnxffmBpY3KqVhoTIb4OcdWUqKr6pKqqW1VVrVFVtV5V1T2qqv5IVdVW/z9VVe2iqurfq6p6WFXVBlVVfaqqnlZV9R1VVUe2R/1CxLPSSo3XDr9FMDLuO8fdhT8e1baGBMC/exnBYzvM2Dl8Pq5RCy2pNZ54GgOs/7iUcNh4k5aXn8bk2QUxrkrcjaIozFpQSHqmGzDmA61dXkogEIpxZR2LoigkTXkGR8F95m2BQ58ROLKuTfl6pOXfMsfEaExO18oSzUK0t7hpSlRVfRl4FxgLbAXWA4OBl4BlrWlMVFXtAxwA/huQD2wCVgEB4GngK1VVH7lzBiHEjcoqj/LLP2hIXiQnuY0NSdlm/AdXm7GzcBpJEx6XCdu3CId1Nq4qo77WWMEpye1g7uIhOBxx89Qf15LcTuYtKcZuN36vq6428MXaY7Kx4i0UxYZ7+ndx9B1l3ubb+TuCp/a3KV/PtO780ajvk+pMAcAT9PKLA7+SxkSIdhYXr0yRBuGHwCVguKZpD2uatgQYBJQBS4CftCLlPwJ9gNVA30i+RzGanP8JOIBfqqrqtPC/IURcKqs6yi8P/9psSLIjV0ja2pAEzx3Bt+1tM7b3GUnSlGelIbmNvdtPc/Zk814Xsx4uJCPLHcOKRGvl5aczZW7zJqJHj1ym7ODFGFbUMSk2B+5ZP8DWrekqoI7n81cIXT3Vpnw907rzRyNvbUxe50ztOWsKFkL8gbhoSjCuaAD8uaZpx5pu1DTtMvCDSPgXrbha0jRA9X9pmmYO4tU0LQz8HeABcjCaHiHEHZRXHeOXh35t7tTeJSmLn456gZzk7LsceXuhqnN41r8MkRV2bLl9SZ71IootXp7KrHO8/Ap7tjcvazp6Uh/6FrR+/xcRe0XD81GHNc8B2rr+OBfOVsewoo5JcbhInvtHKOl5xg1BP561/0a4aTPVVuqV3sNoTBxNjYmH/zjwK2lMhGgnnf6VXFXVXsAYwA/8/tava5q2BTiPMQxr4j2mvdtuVU3Xzq/dYz4hEk551TFePfTmzQ3J6Bfb3JCEG6vxrPlXCHgAUFKzSZ73UxSnnPm/Vc11D8vfbR660rNvFuOm9ItdQSIqiqJw/9xB5OQZ8xzCIZ1lb+/F09j6DQPjnS05g+QHfgYuo5HQG6vxrPk3dL+nTfl6pffgJ6Nubkx+ceBXnKmTxkQIq3X6pgRoGkRaomnanZ51vrrlvnezJvL5L1VVTWm6UVVVBfgrIAVYqWnaldYWK0QiOFF9ildvvUIy+gVy29iQ6EEfnrX/jt50xtPpJnn+T7Gltm0IWDwLBcP8/u29eBoDAKSmu5i9sAibTYa3dWZOp515S4fgSrIDUF3lYcV7B2R+yW3Ys3qQPPcnoBg/q3DVWTwbX0EPt22RgN7pPfjJqOdJcSQD0Bj08Iv9v+JC/SXLahZCGHMjOrumxdxb2n61aT2//i3c50Z/idHAPAicVlV1F8bVkxFAX+A3GHNY2o3L5SAvL709v8VtxeJ7iq9fez7OZ2su8MvDbxIIG2+Kc1K68Dczfka3tLw25dP1MFc+epXw1cgGcoqN/KV/QkrBEKtKjiuffXSYC2eMoT02m8I3nh1L735tawZFx5KXl87iJ0bywa+NZbCPlV2hV78u3D9bRhL/gbzx1PEiVz95GYDQ2UPY9v+enHnfa9P8s7y8Qv66y8/4283/RoO/kcagh1cPv8nfzf5/yE1p/78veW1ODIn+OMfDlZKm3b8aWrhPfeTzPT3amqZdA2YCbwG5wMPAI0ABUAFs0TStrk3VChHHrjVW8fdbXqIhMsQqMymdv57+0zY3JABVm96loXyXGefMfY6UgjFR1xqPDu87z1c3zCOZvaCI3v2lIYknhcO6c9/0AWa8eY1GxVEZSXw76SNmkjVpqRnX7l1D7Veftjlf/y69+ctpf4TbkQRApec6f7/lJep9Lb39EELcq3i4UmI5VVULgZUYTcwzwAaMye1jgH8GfqWq6iRN055rrxr8/iA1NW0bA9sWTd351avSa8Wz9nycGwKN/Hzvf1LpMVZ7SrK7eHH4d7B7k7nqbdv385dtxrdzhRk7h87F33eK/J7eRtXVBlZ9cNCMi4Z3Z0Bhrvys4tDw8b04f6aaMxVV6Dose2cvj31nDGnpSbEurcPRhzyM49I5ghW7Aahc/2salQwc/e51NPfNMsjme0Of4ZWDbxLSQ5yrvcj/2vQSPxn5PC679QtyymtzYojV45yZmYzL1XFagXi4UtJ0FSS1hfs0XU2566OtqqoD+BDjqshSTdN+o2naJU3TajRN+xyYA1wGvqOq6oyWcgmRKPwhP68eepNLjcY0K7ti5/vDnqVPeq8257x16V9H31EkTfxm1LXGI78vyNrlJQQDxqpkOXmpLHx8uCyTHKdsNoVHnhlNaqQJ8UY2yAyFwjGurOMx9jD53h8uFXztVJtzFmUP5ltF3zDjippT/FfJu4TaOGdFCGGIh6bkVORz3xbu0/uW+7ZkAlAMnNQ0beetX9Q0rQr4LBLOvrcShYhfoXCI/yp5l4qa5mFD3yp+nMLsto9zv93Sv+6ZL8jSv7eh6zqbPztKdZVxZdXhsPHos2NIcss2SvEsPcPNI0+PoqnvvHSull2bK2JbVAd126WC1/wb4fqqNuccmz+KRwoeNuPD10p5/+hyWXhAiCjEwyt807qXQ1RVTb7Dfcbdct+W9Il8rmnhPk0LxMtgbZHQdF3nd9pHHL5WZt726KCFjO02ss05Zenf1jm89zwnyq+a8dT5g+nWPSOGFYmvS7+CXCZMa16/5dBXN/8uiGa3XSp47b+2ealggJl9pjK7zzQz3n5hN5+eXB91rUIkqk7flGiadhbYB7iAx279uqqq04BeGLu9/8GVj9u4EPlcqKpq1h3u07TfycnWVStEfPnk5Dp2XPzKjOf0mc6M3lPanE+W/m2dS+dr2Pl589nx4pHdUYd2a+EIEW9GTuhNvxs2xdy0WqO6qrGFIxLXHywVXBndUsEAiwY+wPj80Wb82akNbD1/L281hBC36vRNScQ/RD7/k6qqTQNHUVW1K/CfkfAfIzuyN33tx6qqlquq+jY324nRmCQDb6iqmnHDMTZVVf8SoykJYsw9ESIhfXFuB2tObTTjCfljWDTwgTbn0/Uw3k2/umHpX4XkWT/AntOn5QMTlKfRz7oVZYTDxnCRvPw0Js8uuMtRIt4oisLMhwvJyDKuJAb8IdYuLyXgl/kNt+PoUYR76rfNOHT2EL4d77V52JVNsfF04WMUZ6vmbe9rKzhw5XC0pQqRcOKiKdE0bRnwCsau7YdVVV2lqupHwDGM+SErgJduOSwXUGkertWUyw98G2O1raVAhaqqn0XyHQf+DggDP9U07US7/aeE6MD2XTnEB0c/NuMhOYU8VfhoVBOr/buXETy5x4yTJj2Fo8+IqOqMV+GwzoaV5TTU+QBIcjuYu3gIDkdcPKWLVjIe/2LsduPvr+pqA1+sPSbzG+7Aqd6Pa2TzfJBA6UYCJRvanM9us/PdoU/TN92Yvqqj82bpbzl2Xd4iCNEacfMKpmnaD4GnMIZyTQPmYTQRPwYe0TTtnk8baZq2HmOjxFeBSmA68BDGEsq/AyZrmvaylfUL0VkcvX6Ct0p+i47xhqdfRh++O/Rp7DZ7m3MGKnbjP7jajJ1D5+IaIutI3Mme7ac5d+q6Gc+64Uy5SEx5+elMmdu8uMTRksuUHrgYw4o6Nte4pTgGjDdj387fEryotTmf25HED0Z8h67JuQAEw0F+efgtztfLYyDEvVLkTEqHsxmYJvuUiPYQ7eN8ru4C/7rvVbwhLwDdUvL4k9E/JM3V0orcLQtdP0/j8r+FoHHW395nBMlz/1hW2rqDMxVVfPpB89CQ0ZP6MGFq/5vuI3/P8e92j7Gu62xaraEdvgyAza6w5OlRdO2e2LtE34ke9NO46h8JXzXmZSnJGaQs/Z9RzWG75qniX/a+TK3feFwyXRn86ZgfkZPctpzyt5wYOsA+JVswTsDHlLzqCyHuSaWnipcPvmE2JJmudH404ntRNSS634Nn3S/MhkTJ6EryjO9LQ3IHdTVeNqxsXumsZ98sxk3pF7uCRIeiKAr3zx1ETp7xNxkO6axbXoLXE4hxZR2T4nCRPOfHKG7jDaHuqcWz4WX0ULDNOXOTs/nRiO/ithtXLmv8tbx88HXq/bLruxB3I6/8Qoi7qvPX89LB182zf8kONz8a+b02n/0D46yud/Pr6DWXjBscLpLn/AQlqe1NTjwLBcOsXV6Kz2u8YUpNdzF7YRE2m2yQKJo5nXbmLR2CK8kYTllX62PjJ+Uyv+QObGnZuGf/kKYNX8KXj+Pb+duocvZK78ELw5/FEVnl63LjVV459Ca+kD/qeoWIZ9KUCCFaFAgHee3w21xpvAaAw+bghWHP0jOte1R5/Qc/JXhqrxm7pz6HPad3C0cktu0bT3D1ktEU2mwKcxcVk5LqinFVoiPK7JLMjAcLzfjMiSr27TwTw4o6NkePIpLGN+/QHijdSODo9qhyDu4ykGeHPIGC0eycqj3DW6W/I6yH73KkEIlLmhIhxB3pus772nIqak4BoKDw7eInGNRlYFR5g+dK8H/VvKK2c+gcnAUTWzgisR0tuUzJ/gtmPHHGAPJ7ZcawItHRDVBzGTG+lxl/tfXUTYsjiJs5h8/HMWCcGXu3/prQtdNR5RzddTiPDV5kxgevHmH1ybav8iVEvJOmRAhxR5vPbWfnDZsjLi54kFFdh0WVM1x3De/GVyAynMSeP5ikiY9HlTOeVV1tYMuao2Y8sDCP4WN7xrAi0VlMnD6A7r2N5lXXYf3KMuojy0iLmymKgnvad7F16WHcEArgWf8Surc+qrzTek1iZu/7zfizUxvYd+VQVDmFiFfSlAghbqus6igfHltlxhPyxzCr99SocupBv/FC7zNe6JWULNyzf4hic0SVN175fUHWLi8hGDCGfGRmJzP9gcFR7QcjEofNpjBnURHJqU4AvI0B1q8oJRSSIUS3ozjdJM/5CTiNSep63VU8m36JHo7u57V44IMUZQ8247dL3+ds3fmocgoRj6QpEUL8gSuNV3njyLs37UXyhLo0qjfDuq7j2/4O4WunjBsUO8mzf4QtJcuCiuOPruts/uwo1VXG0uAOp415S4bgSpIGTty71LQk5i4qbprHzaXztezaVBHbojowW1Z33DOeN+PQ2cP4962IKqfdZue5IU+ae5gEwgF+eegtc+EQIYRBmhIhxE08QQ+vHnoLT9B4M5zpyuD7w76F0+6MKm+gfAsBbasZJ933BPb8QS0ckdgO7znPifKrZjxt3mBzqVchWqNHnywmTGvey+bQLb9b4mbOfmNu2vHdv28lwdP7o8qZ4kzhheHfNpcKvu6r5leH3yYQbvvyw0LEG2lKhBCmsB7mzZLfcrnxCgBOm4MXhj9LZlJGVHlDVyrwbf+NGTsK7sM5ZFZUOePZpXM17LzhbHbxqO4MHtothhWJzm7khN70oIEBNwAAIABJREFUG5RjxptWa1yvbIxhRR2ba+xS7D2HmLFn02uEay5HlTM/tSvPDX3SXJGrouY072vLZblmISKkKRFCmFaeWENJZbkZP134GH0zolumN+ypxbP+JYicEbTl9MY99dsyL+IOGhv8rPu4lHDYeKOSl5/OlFkFMa5KdHaKojDzoUIysowz9QF/iLXLSwj4QzGurGNSbDbcs15ESYs0cpGNXvVAdAsFDMkpZHHBg2a88+JXbD4X3fLDQsQLaUqEEADsvrSP9Wc2m/HcvjMYmz8qqpx6OIR34yvoDVXGDUmpxgaJjqSo8sarcFhnw8oyGuqMTdaS3A7mLi7G7pCnahG9JLeDeUuGmL9P16818sXao3Km/g5s7nRj4rvdmMcVvn4O7xdvRv3zmtV7KhPyx5jxh8dWUVZ5tIUjhEgM8konhOBU7RneLV9mxsNyi1gwYF7UeX27lxG6UBaJFJJnvIAto2vUeePVnm2nOH+62oxnLWg+sy2EFXK7pXH/nOYrb0dLrlB64GIMK+rY7Hn9cE/+lhkHT+wicGRdVDkVReEJdSn9MvoAoKPzRsm7XGmUeT4isUlTIkSCq/bV8NqhtwhGhlflp3bj2eInsCnRPT0EKnYTOPSZGbvGLMbRZ3hUOePZ6ROV7N3RvOv2mEl96Dswp4UjhGibohHdKRyeb8bbNhznykVZCepOnIVTcRZON2PfrvcJXtSiy2l38v1h3yLTZczXu3WBESESkTQlQiQwfyjAa4fepiayNGWqI4UXh32bZEd0Z+fD1Rfxbn7DjO19RuAavSCqnPGsttrLxlXNc3l69cti7JR+sStIxL375xSQ2zUNgHBIZ93yEryeQIyr6riSJj+FLW+AEehhvBteJtxY3fJBd5GZlMELw5/FGdmn6XLjFd4s+S1hXfaREYlJmhIhEpSu67xXvozTdWcBsCk2vjv0afJSojs7r4cCeDa+AkFjQqiS0ZXkGd9HifLKS7wKBcOsW1GKz2tcqUpNdzF7YRE2mywEINqPw2ln7pJiXEl2AOpqfWxcVS7zS+5AsTtJnvMjFHc6ALqnFu/m19GjbCD6ZvTm6cLHzLikspyPT3zWwhFCxC95lyBEgtpwZgtfXW5ee//RQQtRs6Nf5cm3exnhysgwJJuD5Nk/QkmS/TXuZNvG41y9ZFypstkU5i4uJjnFFeOqRCLI7JLMzIcKzfhMRRX7bhhCKG5mS8vBPfNFiCzpGzp3hMDhtVHnHZs/irl9Z5jxhjNb+PLi3qjzCtHZSFMiRAI6cq3sprNxk3tMYGrP+6LOGzxz8KYX6aSJj2PP7Rt13nh19MhlSvc3TzK+b8YA8ntmxrAikWj6D85l5ITmZb93bz3FuVPXY1hRx+boNQTXiAfM2Ld7GaGrJ6POu2DAPIblFpnxe9qHnKyRBlEkFmlKhEgwl+qMccs6xjCNgZn9+cbgRVHvGxJurMa7+XUztvcZgXPI7KhyxrPKqw1sWdO8DOjAwjyGje0Zw4pEopowrT89ejc3w+s/LqO+Nrr9OOKZa9zS5vkl4RCeja+i+6OboG5TbDxb/AT5qcYmqcFwkF8dfosab2205QrRaUhTIkQC8YcC/OuO1/GGvABku7vw/LBncEQmWraVrofxbvoVutcYhqSkZOGe/j3ZIPEO/L4ga5eXEAwa49GzclKY/sBg+XmJmLDZFOYsKiYlzRg26PUEWLeihFBIJlzfjmJzkDzrRXAaC4LotZfx7vhN1HmTHW5eHPZtUhzJANT463jpy1/LxHeRMKQpESKBvHPgQ05WGxPbHYqd54c+Q7orLeq8gUNrCJ0viUQK7hnfxxaZECpupus6m1Zr1FQZZ1YdThvzFhfjSoquMRQiGilpLuYsKqKpL758oY6dn1fEtqgOzJbRFfeUG/YvObqdwLEdUefNS8nh20OeNOODl8pYURb9vBUhOgNpSoRIEPuuHGLt8S1mvHTQAvpk9Io6b+hKBb7dH5qxa+RDOHoWR503Xh3ac54K7ZoZT5s/mOw8WQhAxF6P3llMnD7AjA/vPc/xsisxrKhjcw6ahGPQZDP2bnubcG30P68hOepNE9/fP7KKY9elQRTxT5oSIRLA1cZK3i37vRmPyhtmycR23e/B8/mroIcAsHUdgGvs4qjzxquL52rYtan5zcWQ0T0YPKRbDCsS4mYjxvei/+BcM9782VGuVzbGsKKOzT35aZSMyN9wwGvML4lsRBuNh/vPZWBmP8C4uvpmyXvU+eujzitERyZNiRBxLhAO8kbJb/CGjImr3VJzearoUUvmL3i3v4PedGbQ6SZ55osoUc5PiVeNDX7WryglHDYWGOjaPZ3JMwfGuCohbqYoCjMeVMnsYsxrCPhDrF1eQsAfinFlHZPiSjbmlyjGfi/hqxX49yyPOq/dZuc7Q54k3WVcRa3x1/JW6e9kfomIa9KUCBHnlh//hLN15wFw2Bz8bNL3SI5MpIxG4NgOgjeMoXbf/yy2jK5R541H4bDOhpVlNNT7AUhyO5i7uBi7Q56CRcdz6+/n9WuNbFlzVDZWvAN7Xn+Sxj9ixv4DqwmeL406bxd3Fj+e+G0zLqs6yobTW+58gBCdnLwiChHH9l85zJZzzY3DMyOWMiA7+n1DwrVX8G5724wdgyfjLIh+OFi8+mrrKc6frjbj2QuLSM90x7AiIVqW2y2NqXMHmfGx0iuU7L8Qw4o6Nufw+dh7DolEOt5NrxH2RL+c76juQ1lUONeMV51cy/Hq6PdFEaIjkqZEiDh1zVPJb26YRzIybyjzB02POq8eCuLZ+AoEjGWFlcxuuCc9HXXeeHX6eCX7djZvgjZmcl/6DMiOYUVC3JvC4fkUjcg34+0bTnD5guybcTuKYsM943mUyKqDemM13i1vWHJ16fFhCxkQmV8S1sO8WfIe9f6GqPMK0dFIUyJEHAqEg7xx5DfmfiQ57myeKnzMknkk/j0fEW7awdhmJ3nmD1Bc0Q8Hi0e11V42flJuxr37d2HsZNnhXnQeU+YMIrebsWx4OKyzbkUpXk8gxlV1TLaULNzTnzfj0JmDBEo2RJ3XYbPz3JAnSXWmAFDtq+GtMplfIuKPNCVCxKEVxz/lTGQeiV2x892hT5HijL5xCJ4rwX9wtRknjX8Ue16/qPPGo2AwzLoVJfi8xko8qelJzFpQhM0mGySKzsPhsDFvSfM+OvW1PjasKpP5JXfg6DMc57B5Zuzb9T6hyjMtHHFvuriz+FbR42ZcWqmx4YzMLxHxRZoSIeLMgSuH2XxuuxkvKXiIvhm9o84b9tTi3fSaGdt7Db3pxVfcbPuG41y9ZCzhabMpzF1cTHKKM8ZVCdF6GVnJzHpYNeOzFdfZu/10DCvq2JLGP4otJ3JFNBzEu/EV9IAv6rxDc4uY02e6Ga+qWMuJ6lNR5xWio5CmRIg4cs1TyW/Km+eRjMgbyvRek1s44t7oum6Mj/bUAKAkZ+Ce/jyKIk8ht6MduUzpgYtmPGnmQPJ7ZsSwIiGi029QLqMmNp/c+Grbac6erIphRR2XYncaywQ7XACEqy/i2/muJbkXDJjHgEyj4QnrYf6r5F3qAzK/RMQHeUchRJwIhoP815H38ASb5pF04elCa/YjCZRsIHTmoBm7p38PW0pm1HnjUeWVer5Yc9SMC4ryGDqmRwwrEsIa46f2p0efLDPesLKM+lpvDCvquGxZ3XFPfsaMA+VfEKj4Kuq8TfuXpDqa55e8U/q+zC8RcUGaEiHixIrjqzlddxYw5pE8N/QpUiITI6MRrr6E78sPzNg5fD6O3sOjzhuP/L4ga5eXEgwabxCyclKY/oBqSWMoRKzZbApzFhWRkmZcAfB6gqxdUUooJG+Ib8cxeAqOgRPM2Lf1LcKNNVHnzXZ34Znib5jxkcpyNp75Iuq8QsSaNCVCxIGDV4+w6dw2M15c8CD9MvpEnVcPh/FseR1Cxmo7tpzeJI17NOq88UjXdTat1qi57gHA4TQmCDtd9hhXJoR1UlJdzFlURFOffeVCHTs/r4htUR2Uoii4738WJdVYAlz31ePb9rYliwQMyy1mVp+pZryyYg0VNaeizitELElTIkQnV+mp4p0b9iMZnjuEGb2mWJI7cHgN4cvHjUCxG/NI7A5LcsebQ1+dp0K7ZsbTH1DJzk2NYUVCtI8evbOYOH2AGR/ee55jpVdiWFHHpbhScE97zoyDp/YSPL7TktyLBjxA/8jJp7Ae5r+OvCfzS0SnJk2JEJ1YWA/zVun7eILG2flsdxeeKbJmP5LQ9fP49nxkxq4xC7HnRH/1JR5dPFfDrs3NZ4uHju7BoOKuMaxIiPY1Ynwv+g/ONePNn2lcvyZviG/H0WsozqIZZuzd8S7hhutR57XbIsN0HcZy79d91byvLY86rxCxIk2JEJ3Y52e3cqLG2MjQpth4bsiTlswj0cMhvJtfh5Cxx4Yttx+ukQ9FnTceNTb4Wb+ilHDYGJLRtXs6k2YOjHFVQrQvRVGY8aBKZhfjDXEwEGbt8lIC/lCMK+uYkiZ8AyU90sT5GvBu/bUlw7iME1HN80v2XTnEnssHos4rRCxIUyJEJ3Wh/hKrKtaa8by+M+mfac1u4f6Dq2/Ytd1hDNuyybCtW4XDOus/LqOh3g+AO9nB3MXF2B3y1CriX5LbwbwlxTgiv+/XKxvZvOaobKx4G4orGfe075px6MxBgke3tXDEvRueN4RJ3ceZ8fvacqp90U+oF+LrJq+cQnRCoXCIt8veJxg2rmT0Tu/JA/1mWZO78iz+vSvM2DV2Cfbsnpbkjje7t57kwplqM561oIj0THcMKxLi65XTNY375w0y4+OlVyjZdyGGFXVcjh5FOIfMNmPvjvcI11uz18vSQQvIdncBoDHo4d3yZdIcik5HmhIhOqE1pzZytu48AA6bg28VPY7dFv0qT3o4iHfzryBsDMGwdR2Aa/j8qPPGo1PHrrF/51kzHju5L30GZMewIiFio3BYPkUjupvx9o0nuHyhNoYVdVxJ4x9DyehmBAEP3i/+y5LmIdnhvmkYV2mlxo4Lu6POK8TXSZoSITqZ07VnWXP6czNeMGAePdLyLcnt3/8J4cozRmB34p7+PRQLmp14U1vtYeMnmhn37t+FMZOtGTonRGc0ZU4Bud3SAGNY47oVpXgaAzGuquNRnEm4p38XMBYjCZ07QqB8iyW5B3cZyIzezSsvfnh8Fdc81lyJEeLrIE2JEJ2IPxTg7Rt27x2Y2Z+Zve+3JHfo2in8+1aZcdK4R7BnyU7ktwoGjQm9fp8xdC4tI4lZC4qw2WSDRJG4HA5jXx5XkjH3rL7Wx8ZVZeYCEKKZI38wzmFzzdi363eE6661cMS9WzjgAbqlGCv/+UJ+3imT3d5F5yFNiRCdyKqKNVxqNPYDcNldfKv4G9iU6P+M9VDAWG1LN4Zt2bsNwjl07l2OSkzb1h/n2uV6wNjheu7iYpJTnDGuSojYy8hKZtaCQjM+e/I6e7efjmFFHVfSuEewZUaucAe8eLe8gW5B8+CyO3m2+HHzdeF49Uk2nbVmQr0Q7U2aEiE6iWPXK256cVla8DC5yTmW5Pbv/Zhw1TkjsLsiw7bk6eFW5YcvUXbwohlPnjWQbj0yYliREB1Lv4IcRt3X24z3bD/NmQoZQnQrxWE8zxLZUyp0oYxA6SZLcvfN6M28vs37oqysWMPFhsuW5BaiPcm7DiE6AW/QyztlH6BjDIUozlaZ0mOCJblDVyrwH/zUjJMmPIYts5slueNJ5ZV6vlh7zIwLirsyZLQMbxPiVuPv70+PPllmvGFlGXU13hhW1DHZuxXgGv6AGfu+fJ9w7RVLcs/vN4veacbzUzAc5O3S3xEKyx4yomOTpkSITuCj459S6TXONiY7knmq6FFLdm3Xg/7IsC2j2bF3L8Q5xJqlheOJzxtk7fJSQkFjeEWXnBSmzx9syWMgRLyx2RTmLCoiJc0FGH8/61Y0//2IZq6xS7B1iSy5HvRbNozLYXPwreJv4lCMhUrO1J2/aYEUIToiaUqE6OBKKsvZfuFLM/7G4EVkJWVaktu3Zznh6sieAo4k3NO+i2LBHJV4ous6m1Zr1Fz3AOBwGhN6nS5ZlUyIO0lJdTF3UXHT6CSuXKxjx+cnYltUB6TYnbinPw+R593QRY3AkQ2W5O6Rls/DA+aZ8ZpTGzlTe86S3EK0B3n3IUQH1hBo5N2y35vxyLxhjOs2ypLcoUvHCBxaY8ZJEx/HlpFnSe54cnD3OU4ebV4ZZ8aDKl1yU2NYkRCdQ/femdw3Y4AZH9l3gaMlMrfhVva8frhGPWzGvt3LCFdfsiT3rD5TGZDZD4CwHuatsvcJhGSpZtExSVMiRAf2wdEV1PjrAEh3pvFNdYlFw7Z8eLa8DpE5KvaeQ3AWzWj5oAR04Ww1uzZXmPGwMT0pKOoaw4qE6FyGj+vFADXXjLesOUrVtYYYVtQxuUYtxJYTWSAg5Mez5XX0cPTDuGyKjWeKvoHLZqwQeKnhMqsq1kadV4j2IE2JEB3UviuH2HP5gBk/WfgI6a40S3L7dn+IXhM5Y+l04572nMyPuEVjvZ/1H5c1TbehW4907ps5oOWDhBA3URSFGQ+qZHZJBiAYuHmfH2FQ7I7IMC5jWGj48nECh61pHrqm5LKkoPlKzOdnt3LsekULRwgRG9KUCNEB1fjq+J32kRlPzB/L8LwhluT2ntMIHFlvxkn3PYEtzZqlheNFOKyzfmUpjfV+ANzJDuYuLsZul6dMIVrLleRg3pJiHA7j76e6spEta46i67Kx4o3sOX1wjVloxr49HxKoumBJ7vt7TqQoezAAOjrvlH2ANygroomORV5hhehgdF3nvfJlNAQaAeiSlMWjgxdYkzsU5OrqVzGHbfUehlOdaknueLL7i5NcOFNjxrMXFpGW4Y5hRUJ0bjld05g6b5AZHy+7ypG91rzhjieukQ9hy+1nBKEgVz97zZLmTVEUnip8lGSH8TxW6a1i+fFP73KUEF8vaUqE6GB2XdzDkcoyM36m6BskO5ItyV29ayWBq2eMwOHCPeVZGbZ1i5PHrrF/11kzHjelL737Z8ewIiHigzosn+KR3c14x+cnuHS+NoYVdTyKzYF76nfM1bi8pw5Tf3iLJbm7uLP4xuDFZrztwpeUVGqW5BbCCtKUCNGBVPtqWHZslRlP6zUZNbvAktzh2itUb2teyStp7FJs6bktHJF4aqs9fP5JuRn3HtCFMZP7xrAiIeLL5NkF5OUbc+PCYZ11K0rxNPpjXFXHYs/ti3PYXDOu3PBrwt46S3KP6zaKkXlDzfi98mUyjEt0GNKUCNGBLDu2Cm/IeIHIS85h8cAH7nLEvdF1He/Wt9CDxou/LacvzqFzLMkdL4LBpgm4xq7HaRlJzF5QJFeShLCQw2Fj7uJiktwOABrqfGxYWU44LPNLbpQ0ZjFKZK5f2FOHb9fvLMmrKArfVJeS5jSWNa/21fDJyXWW5BYiWtKUCNFBHLlWxv4rh8z4ycJHcNldluQOHt9J6HyJESg23FO/jWKTzf9utG39Ma5drgeMHannLi7GneyMcVVCxJ+MrGRmPVxoxudOXWfP9tMxrKjjUZxu3FOeMePg0e0Ez5dakjvdlcYjg5rnKW4+u102VRQdgjQlQnQA/pCfD46uMOMJ+WMY3MWaYVu6tx7fzt+accbYB7Dn9bckd7woP3SJsoPNm5VNnj2Qbj0yYliREPGtb0EOo+/rY8Z7t5/mTEVVDCvqeBx9RpJadJ8Ze7c1X+2O1rhuoyjsYiw8oKPzW+1Dwnr0+6IIEQ1pSoToAFaf3ECl9zoAqY4UlhQ8ZFlu35fvo0fGI9vTc8ie9oRluePBtcv1fLHumBkPKu7KkFE9YliREIlh3P396Nk3y4w3rCyjrkbmN9woZ853sSWlAKDXXMa/f9Vdjrg3iqLwuLoYh80YRnem7jxbzu2wJLcQbSVNiRAxdr7+IhvPfmHGSwoesmyTxOCFcgLaVjPOnf88tiRrVvKKBz5vkHUrSgkFjTOEXXJTmDZ/sMwjEeJrYLMpzF5YRGqaMUz11r9HAY70LmTPeNqM/QdXE7p+3pLcXVPymN93lhmvqljDdW+1JbmFaAtpSoSIobAe5rflzZfNC7L6M7H7WEty66EAvq2/NmNHvzGkDh5nSe54oOs6mz4tp+a6BwCny868JUNwumSujRBfl5RUF3MWF2OzGScCrlysY/vnJ2JcVceSPnoOtm6R4bzhEL4vfo1u0VCr2X2n0S2lKwC+kJ9lx1ZakleItpCmRIgY2n5hNydrjX1D7IqdJ9Sllp2l9+//hHBNZJ6E003S5KdbPiDBHNx9jpPHKs14+gOD6ZKTEsOKhEhM3XtlMnH6ADMu2XeBoyWXY1hRx6IoNtz3fxsU44RJ6PIxAuVftHzQPXLaHDyhLjXjA1ePcPiaNRPqhWgtaUqEiJEaXx0fn1htxnP6Tic/tZsluUPVF/AfaN6tN2n8o9hSu1iSOx5cOFPNrs0VZjxsTE8KirrGsCIhEtvwcT0ZoDbvm7RlzVGqrjbEsKKOxZ7dC9eI5iXifV++T7jRmqFWg7oMuOkK/fvaCrxBnyW5hWgNaUqEiJGPjq/CE2zek2Re35mW5NX1ML6tb0E4CICt6wCcRdbkjgeN9X7Wf1yGHtkWoVvPDO6bOaDlg4QQ7UpRFGY8qJKZbcx5CwbCrF1egt8XjHFlHYdr9EKUjMiJK78H3473LMu9pOAhc++S675qVp9cb1luIe5VXDUlqqo+qarqVlVVa1RVrVdVdY+qqj9SVbVN/09VVe2qqr6oquoXqqpWqqrqVVX1rKqqq1RVXXD3DELcXmmlxp7LB8z4m+pSXHZr9sQIaFsJXdSMQLHhvv87KLa4+lNvs3BYZ/3HpTQ2GMtqupOdzF1UjN0uPx8hYs2V5GDekiE4nMbfY3WVh82fHUXXZWNFAMXhwj3lW2YcrNhN8MyhFo64d2nOVJYWPGzGm85t42zdBUtyC3Gv4uaVWFXVl4F3gbHAVmA9MBh4CVjW2sZEVdUcYCfwCjAk8u+PgbPAbGCRZcWLhOIPBXhfW27G47qNojB7kCW5w55afF9+YMau4fOx5/S2JHc82P3FSS6crTHj2QsLSctIimFFQogb5eSlMm3eYDM+UX6Vw3utWW0qHjh6DcFRcMveJQFrhlqNzx/N4KyBQGQRFtm7RHzNHO2ZXFXVXsBQoAvQ4mlgTdPejuL7PAL8ELgETNU07Vjk9m7AJmAJ8BPg3+8xnw1YCYyLHPMXmqZ5b/h6OtCvrfWKxLbm1EaueY1NwlIcyTftrBst3873wGeMw1bS83CNkd65yclj19i/66wZj7u/H737Z8ewIiHE7Qwe2o2L52so3X8RgJ2fV9C1ezr5PTNjXFnHkHTfEwTPHgJfA3p9Jb69K3BPfDzqvIqi8E11CX+/+18J6iFO155l6/ldTOs1yYKqhbi7drlSoqrqBFVVdwGngU+B3wBv3uUjGv8t8vnPmxoSAE3TLgM/iIR/0YqrJc8Dk4BPNE376Y0NSSRvnaZph6OsWSSgC/WXWH9msxkvHvigdXuSnD1M8PguM3ZP+RaKQ64CANRc9/D5J+Vm3GdANmMm9WnhCCFELE2ZVUBefjpgDLtct6IMT6M1u5l3drbkDNwTv2nGgcNrCV07bUnubqldmdt3hhmvPLGGal9NC0cIYR3LmxJVVccAn2NcZVCA88Bu4Iu7fLT1+/UCxgB+4Pe3fl3TtC2RGvKBifeY9seRzz9va11C3Cqsh/md9pF5OXxAZj/u62HNviF60Id3W/PFRsfAiTh6D7Mkd2cXDIRYt7wUvy8EQFpGErMWFMoGiUJ0YHaHjbmLi0lyGwM6Gup8bFhZRjgs80sAHIOnYO9eaAR6GO/WX6OHrRlqNbfvDLqmGCuheUNelh2zZhd5Ie6mPYZv/Q2QDBwGvqNp2r52+B43GhX5XKJpmucO9/kK6Bm5746Wkqmq2h1jyFkI2Kmq6mDgcaAXUAVsAdZqmibPjKJVdl78ihM1pwCwKTaeUJdiU6w5L+DftxK97qoRuFJIuu8JS/LGg63rj3PtSj0ANrvCvCXFuJOtWVRACNF+MrLczFpQyOrfHwHg3Klq9mw7xfip/WNcWewpioL7/mdpWPZXEA4SvnqSQOlGXEPnRJ3baXfyhLqUf9//GgD7rxziyLUyhuYWRZ1biJa0x/CtSYAOPPU1NCQATc9OLV27PHPLfVvSdHq5EmPoVwnwt8D3gb8APgO2qaoqmxqIe1bnr2fF8eY9SWb3mUaPtHxLcoeqzuI/uMaMkyY+ji1Fxl4DlB+6RPmhS2Y8eVYBXbtnxLAiIURr9B2Yc9NQy707znD6RGULRyQOW1Z3XKOa5yT6vvqQcH2VJbkHdylgQv4YM/7g6Ar8IRk+J9pXe1wpcQP1mqYdaYfct9M0IL+lXZbqI5/T7yFf9g2ffw78Fvg74BzGyl4vYzRevwemtbbYe+VyOcjLu5dyrRWL75kIfrdrGY1B40Jet9Rcnhm7mCSHK+q8uq5z8bP3QDeGJrl7F9F9yoMod7kCkwiP86XzNWxdZ04xY9jonkyfOzihhm0lwuOc6BLhMX5gyTCqrjZy8tg1ADZ9qvH8z+4nKzslxpV9fe70OOuzH+fcqd0EKs9DwAv7l5G39E8t+Z7PT3icks/Kqfc3UOm9zubLX/DUiCWW5Ba3lwh/zy1pjyslx4EkVVXbdWWvdtT0M3EA2zRNe1LTtLLI5PZNwFzAA0xVVXXGHbMIEXHoUhlbT+824++OecKShgSgoWQb3rNlRmCzk/vAC3dtSBKB1xPg92/tJRg0xljn5afz0KPDEqohESJe2GwKS58eRXqmGwBPY4Blb+8lGAzFuLLYUxxOch98wYwbynbgOWXNOjwZ7nSeHrHUjD/RNnCmWpZnFu2nPRqHNzGuMCwCPmyH/LdqugqS2sKevuHMAAAgAElEQVR9mq6m1N1Dvhvv86tbv6hp2jlVVT8FHgVmYCw5bDm/P0hNzZ2myFivqTu/evVefkTiXgVCAX65+10zHtN1BD0dvS35OesBLw3rf23GzqFzqCELWsidCI+zruus+aiE65WNADhddmYtKKSm9uv7e4q1RHicE10iPsazFxby8bsHCYd1Lpyt4ePfHWTqPGv2eOqo7ulxTu6DY+BEgieM1Rcvr36dlEf+J4rNHvX3H5o2lIKs/hyvPklID/Pyznf4kzE/sGw+pDDE6u85MzMZl6vjXENoj9+q/wDWAa+qqnrf3e5sgVORz31buE/T7nGnWrhPk5N3+Pft7mPNpAARtzac+YKrHmP8c7LDzSODFlqW279/FXpjNQBKciZJo2VPEoADX57l1LHmMeczHlTpkpM4wzyEiFf5PTO5b8YAMy7Zf4GjJZdjWFHHkTTxcYgsAR++fo5A6eeW5FUUhSfUpdgVo8E5WXuaXRf3WpJbiFu1R3v0lxhLAI/HmBC+FWP1qxbbP03T/raN329/5PMQVVWT77AC17hb7ttiKRjzU1KBnDvcJzfyuf4OXxeCal8N6043vzAsHPAAmUnWjBcN11zCf+iGye0TvoHiSrYkd2d24Uw1X25pPpcwbGxPBhbmxbAiIYSVho3tyaXztZwoN1Yb3LLmKLld08jOa2mwRPyzpXbBNXoB/t3LAPDtWY5j4ARsydEv7JGf2o05faaxJvJ6tqpiDaO7DsPtcEedW4gbtceVkr8B/geQhbFPyVTgT4C/vsPH30Q+t4mmaWeBfYALeOzWr6uqOg1jOd9LwM57yBcAPomEs26Tz4nxfwLY07aqRSJYdWIt/nAAgB6p+UzpOcGy3N4d70HYGE9t61aAY9DXcVGyY2uo97Hu41L0yGLd3Xpm3HRWVQjR+SmKwvQHBpOVbZyECQbCrFlegt8XjHFlsecaNg8lo5sR+Bvxf7XMstxz+80k02U0OLX+Otaf3mxZbiGatEdT8nbk460bPt5u4aPp69H4h8jnf1JVtaDpxsiyvf8ZCf9R07TwDV/7saqq5aqq3u57/wMQBr6vquq8G46xA/8EDMTYkHF5lHWLOHWm9hxfXmq+xP3IoAWWjcENnj5A6OyhSKTgnvR0wk9uD4d11n9chqfBaALdyU7mLirGbk/sn4sQ8ciV5GDekiE4nMbfd02Vh82fHUXXE3v7MMXuxD2peY+qQPlWQlfvNAq9dZLsLhYNfMCMN579gkrPdUtyC9HE8uFbmqZ92+qc9/A9l6mq+grGviKHVVXdAAQwrnRkACuAl245LBdQMa6g3JrvoKqqPwX+HfhMVdXdGEsCjwIGADXAYy1s1igSmK7rLDu2Ch3jBXJYbhGF2dZMxtSDfrw73zNjZ+FU7Hn9LMndmX25pYKLZ2vMeM6iItIykmJYkRCiPWXnpTJt/mA2rioH4ET5VfJ7ZjB8XK8YVxZbjj4jsfcZQejMQUDHu/03pCz6H5acuBqXP4rN57Zzpu4cgXCQj0+s5rmhT0VftBARcXMaUdO0HwJPYQzlmgbMw1ie+MfAI5qmtWrtQE3TfgHMBFYDBcBCjCbuNWCkpml3HQomEtOBq0c4UWOcnbIpNpYUPGxZbv/htei1V4zAlYJr3COW5e6sTh69xoEvz5nx+Pv70atflxhWJIT4Ogwe0o0ho3qY8c5NFVw6V9PCEYnBfd+TYDPOOYevnCB4bIcleW2KjUcGNW/WuPfKQSpqWtq3WojW6TjrgFlA07T3gPfuekfjvn+DMZ+lpftsBjZHWZZIIIFwkOXHPzXjaT0n0S3FmonW4foq/PtXmXHS2KWWTGLszGque/j803Iz7jMwm9E37P4shIhvk2cN5OqlOq5crCMc1ln3cSmPfnsMKanW7AXVGdkyu+EaPh//AWN6rO/LD3D0G43iin4VwoKs/ozqOpz9V4whxB8eW8WfjvmhLBEsLNGuv0Wqqk5XVfU/VVXdparqicjHrsht09vzewsRC5vPbqPSWwVAqiOFB/rPtiy378v3IegHwJbdC2dxYu/dGQyEWLu8BL/PuAianulm1sOFskGiEAnE7rAxd3ExSW7jHGtDnZ8NK8sIhxN7folr1MMoqcYVY91Ti2/vx5blXjzwQRyRJYJP1Z5hz+UDluUWia1dmhJVVXNVVV0LbARewFgeuH/kY3zkto2qqq5RVTX3zpmE6Dxq/XWsObXRjB/sP4dUpzX7YwQvlBM88aUZJ0162pKNsTqzreuOU3mlAQCbXWHu4mLcyc4YVyWE+LqlZ7qZtaDQjM+frmbPtlOxK6gDUJxukiY8bsaBIxsIXb9gSe7c5Gxm9L7fjD8+8Rn+kN+S3CKxWd6UqKrqAtYDszGWBN4F/P8Yk9B/EPn3rsjX5gDrIscI0al9UrEOb8gHQLeUrtzfc6IlefVwCN+O35ixY8B4HD0KWzgi/pUdvEj54eY1KqbMLqBrd2v2gBFCdD59B+Yw5oahm3t3nOH08coWjoh/joETsHdXjUAP4dvxrmUrlM3rN5N0Zxpg7Mm14cwWS/KKxNYeV0p+DIwArgPzNE2brGnaX2ma9svIx19pmjYZmA9UR+77o3aoQ4ivzfn6i+y4sNuMlxY8hN2iKxmB0k2EqyITuR0ukiZ+05K8ndXVS3VsXXfMjAcP6UbxyO4xrEgI0RGMnXLzIhcbPymnttobw4piS1EUkiY9BZEhraHzJQRP7bMkd7LDzYIB5o4JrD+9mWqfLDIgotMeTcnjgA58X9O09Xe6k6Zp64DvY1wxSex3WaJT03WdD29YArgoezBDcqy5khH21OLb85EZu0YtwJaWbUnuzsjnDbJuRSmhkPGzzs5LZer8QTKPRAiBzaYwe2EhqenGcuDG80UJwWD4LkfGL3tOH5xFM83Yt+u36EFrhlrd12McPdOME0L+cICVJ9ZYklckrvZoSlTAy71tLLg8ct/EHosiOrUjlWVo148DoKCwtOBhy94k+7/6CPyNRu6MrriGz7ckb2ek6zqf33Dm0+myM29JMU5nYs+tEUI0S05xMXdxETab8Rx89VI92zccj3FVsZU0dglKkjHUSq+7hv/gakvy2hQbjxQ0LxH85aW9nK49a0lukZjaoylxAgFN0+46cDGyw3qAOFuaWCSOYDjIR8c/MeMpPSfSIy3fktyhq6cIlDeP03Xf9ySKPXEnch/48iynbhgjPuNBlaxsaxYSEELEj/yemdw3c4AZlx64iHbkcgwrii3FnYZr/KNm7D/wKeG6a5bkVrMLGJZbbMYfHltl2bwVkXjaoyk5A6Srqjr6bndUVXUMkB45RohOZ+v5XVxpNJ7ckx1uHuo/x5K8uh7Gu+M3EBkSZu89HEffkZbk7ozOn67myy0nzXj4uJ4MLLRm/xchRPwZNubm54gv1hyl8kp9DCuKLac6FVtuXyMIBfDt+p1luZcWPIQ9skTwiZpT7L962LLcIrG0R1OyGmOeyBuqqt7xXYOqqt2ANzDedX16p/sJ0VHVBxr49GTztKn5/WaR7kqzJHfw2E7ClyNDDmx23JOetCRvZ9RQ72P9ylKaTr7l98pg4vQBLR8khEhoiqIw/YHBZOUYV1ODwTBrl5fi9wVjXFlsKDYb7klPm3Hw5B6C50styd01JY9pvSaZ8YrjnxIIBSzJLRJLezQl/wRUAcOBclVV/1FV1fmqqg5TVXWcqqqPqKr6EnAicp/rwP9uhzqEaFerT27AE/QAkJucw7Reky3Jq/s9xkaJEa5h87BlWjMkrLMJhcKsX1GGp8F4gUtOcTJnUTF2u+weLIRomSvJwbzFxTicxvNFzXUPm1ZrCTu8yJ4/CMeg5ubBt/036GFrmrQH+s0y9+Wq9F5n07ltluQVicXyV3ZN064ADwKXgS7An2FcCTmAsT/JBxj7laQAF4EHIscI0WlcarjM1vM7zXhJwUM4bdZMjfLt+xjdUwuAkpKFa/RCS/J2Rl9uOcnFc8Yyk4oCsxcWkRZZWUcIIe4mOy+VafMHm3GFdo1DX52PYUWxlTThG+B0AxCuvkDgyMa7HHFvUpwpPNR/rhmvPfU5tf46S3KLxNEupxs1TdsNFAN/DRzGGKKlRD70yG3/HzBE07Sv2qMGIdrTR8c/Jawby0wOyhrAiNwhluQN11wicLh5SFjSxMdRIi8giaZCu8bB3efMeNz9N+9BIIQQ92LwkG4MGd3DjHdtrjBPdiQaW0oWSaMXmbFv3wrCXmuahyk9JpCf0hUAb8jHJxVrLckrEke7jYHQNK1a07S/0zRtJJAMdI98JGuaNlLTtP+laVp1e31/IdpLaaVGSWU5YCwB/MighZYtAezbvQz0EAD2boNwDLRmV/jOprqqkU2ry82478BsRt/Xp4UjhBDizibPHEjX7ukAhMM661eU0thgzX4dnY1z6ByUpiHBfg/+fSstyWu32Vk6qHmJ4B0XvuJc3QVLcovE8LUMzNY0LaBp2uXIh8x+Ep1WKBziwxuWAJ7YfSy903u0cMS9C146RvDkHjNOuu+bCbkpYCAQYt3yUvw+ozlLz3Qza0FhQv4shBDWsDtszF1cTJLbGGbbUO9nw8oywuHEm1+i2B3GMK6IQMnnhGsuWZJ7SI5KcbYKgI7Oh8c/Sdg5PKL1ZLaoEK2w/cJuLjUY690n2V0sGDDPkry6ruPb9VszdgycgL3rQEtydya6rrN13TEqrzYAYLMrzFtSTJI7cfdnEUJYIz3TzeyFRWZ8/nQ1X209FbuCYsjRdxT27kbzwP9l773D47jOQ/13tqL33gvBIUCwgGAVq9hFsYiiZEkuEiXH8Y3tJD8n8bUSX/nKthwncfxLbhLH9pWtZlmWJUokJaqw9wYSYAWIAUj03ju2z/1jgAUhiXUX2MVi3ufBszhnZ7/9gJ2dOd/5mmzHfPZdt8l+NGsjGkFZXpZ1XudKm3uqfKn4Pi5l5oqiuGzo1wFJks5/Zu6ekCTpmCu6qKiMNWa7hY9vKgG8NnUlocYQt8i2VZzD0VKhDDQ6jPMeu/0LfJRrl5uQrow0OVu6ZgrRccEe1EhFRcWXSMmIIH9xKoUnqwEoOl1DbGIIaVMiPazZ+CIIAsYFTzCw68cA2KoKsTWVoYubeodX3pn4wFiWJCzkWP0pAHbf+ITcqGynoaKicitcLRd0BCVxXUJJbL957l6Q3aCLisqYcrTuJL1WpflWmDGUlclL3SJXtlsxF4zsUulzV6MJmXyNAVubejmxr9w5npobS/aseA9qpKKi4ovMXZxKS0MPtZWdABz8sJTHn51DSJi/hzUbX7QxGeimLMR2/QwA5jNvo93ygltCZR9OX0NBUxEmu4mmgRbONV1gQXy+y3JVfBtXzdaaoZ+GL5i7l59aF/VQURlTBm2D7K8+4hxvSFuNQeuekCJr8SHk3lZlYAzEmLfp9i/wQcwmK3t3lmC3K/sZEdGBLFuXpeaRqKiouB2NRmDVpmwCh8qLW8w29u4swWZzeFiz8cc4bxtolT1hR0sFtgr3FEQNMgSyMmVk4+7jyv3YHXa3yFbxXVzyTkiSlHY3cyoqE51DtScYGG6U6BfBwvi5bpErm/owXxipfGKcswXBGOgW2RMFWZY5uEeit9sEgN6gZd3WHPR6rYc1U1FR8VX8A/SsfSSH3X+4iMMh09bcx8kD10f1NJkMaIKjMeSuxXLpYwDMBe+iS8tDcMOm28rkJRytPUm/bYA2UwdnGs+zOHGBy3JVfBc1wE9F5Q70Wfs5VHPcOd6Qvgatxj0LZvOFD8GsJHULITHoc1a6Re5E4sKZWqqvtzvHKx8WCYsI8KBGKioqk4G4xBAeWDlSUKTkYiPSFfdUoZpIGGY/jGAMAkDubcVa7J6Giv46f1anLneOP646gNWuFmBVuTVuN0pEUbwgimKhKIoZ7patouIJDtYcw2RXdvFjA2KYF5fnFrmOnhasxQecY+P8xxG0kyu1qr66k4Jjlc7xrHlJZIiTL59GRUXFM+TmJzAle+Sac2xvOe0tfR7UaPwRjIEY8m9uqPgBssk9/4PlSYsJ1isGT5e5m5MNBW6Rq+KbjIWnJBvIkiSpYgxkq6iMKz2WXo7UnnCON2asdVsFEXPBDhiKsdXETkGX7p6QsIlCf6+Z/buvMVzCPi4phAUr0j2rlIqKyqRCEARWPCQSFql4Z202B3t3lmA22Tys2fiiz34QITRWGVgGFC++GzBqDaxLG4kA+LT6IBb75GxaqXJnxsIoqQfU7FQVn2Bf9WEsDsXdnBgUz+zoXLfItTdfx1YxsmPkt3ByNUq02x3s213C4IDyv/UP0LN2Sw5arRpRqqKiMr4M57Hp9Mr1p7tzkMMfS5Oq6Z+g1WGcf3NDxQM4elrcIntJwgLCjKEA9Fr6OFp3yi1yVXyPsVgB7AUCRFFUs5lUJjSdpi6O159xjjdlrHOLl0SWZUxn3naOdRnz0cZOcVnuROLs0Uqa6noAEARYs2WkEo6KiorKeBMRFciKh0TnuLKsjcvn6jyo0fijS5uDdrhPicM+qlS9K+i1etanrXKO99ccYdBmcotsFd9iLIySl4B24NeiKEaNgXwVlXHh0+pD2ByKCz81JJncyOw7vOLusFWex9F8XRlotBjnT65GiRVSK5cKRm7285elk5ga7kGNVFRUVCArJ4bcOQnO8enDFTTWdntQo/FFEASMC59wjm0V57AP36tcZFH8XCL9IgDotw6MCotWURlmLLJqpwA/AH4BSKIovgGcBlqBWxapVju6q3gTbYMdnLopIW9Txjq3hFfJdtvoRonTV6MJiXFZ7kShq2OAwx9LznFqZgR5C5M9qJGKiorKCA+syqSlqZeWhl5kGfbtLuHxZ/MJCDR4WrVxQRuTiS5zAbYbZwEwnXmbgM0/cPn+p9Po2JC+mt9feweAAzXHWJb0AIF6tdKiyghj4Sk5AvwaCATCgb8C/ggcAA7f4ufQGOihonLffFJ5AIesNNKaEpbOtPAst8i1lhxCHo7TnWSNEq1WO3t3lmAxK3sTwaF+rNo0bVLl0qioqHg3Wq2GtVty8PNX9mwH+izs330Nh2Py5JcY5z0GmqGGis3XsVWed4vcebF5xAYolc5MdhMHa9S9aJXRjIVRcnOn9mrUju4qE4zm/hbONhU6xxvT3eQlMfdjLtrtHBvzNiP4BbksdyIgyzLH95bT0ar0ZNFqBdZtzcHo53qDLhUVFRV3Ehzqx+rNI+G6DTVdFByvvM0rfAtNSDT63NXOsfnsO8h216uRaTVaHk5f4xwfrjtBr2VylV9WuT1uD99SO7qrTHQ+qtyPjLIrlh0xlaxw97TcGdUoMTga/fTJ0yjx2qUmpKvNzvGSNVlExwV7UCMVb8dmd2Cy2DFZbJjMdgYtNkwWOxar455lGfUa/Iw6/Axa/A06/I1a/Aw6NBrVS6fyxSSnRzB3SSrnT1QDcOF0LXEJIaRlTY5UWWPeJqzScTD3Kw0VSw5imLHOZbl5MTNJqDpEQ38TFruFfdWH2ZY1eSIGVG7P5OrUpqJyB+r7GilsueQcb8xY6xa5jp5WrFdvapS44HEE7eTwErQ29XJif7lzLObGkj0rzoMaqYw3doeDnn4rnb1mOnvNdPWZ6eg10dVrYcBkxWQZMTpMZhuDFjtW270bH/eKQa/Bz6DD36DFzzj0aNAR6K8jLMhIeLCR8CAj4SHKY3CgAY0abjhpmLs4leb6HmorOwE4uEfi8WcDCQnz97BmY49gDMQ4ZzPm038ElIaK+qlLEIyBLsnVCBo2Zqzj/155HYDj9adZlbLMWTJYZXKjGiUqKjfxUcU+5+8zonJIC0lxi1zzuR0wVMlLE5OJLn2eW+R6O6ZBK3t3lmC3K56nyOhAlq7LUvNIfIwBk5WG9gFaOgcUo6PXohgdfYoR0t1vwRtbPlisDixWCz39d3e8ViMQGmQgPMhI2LDBEqz8xEYEEBcRgL9Rva36CoIgsGpTNjteK6Svx4zFbGPvzhK2fi0Pnc73eyrpc1ZhKT6o5EGa+zFf+BC/hU+6LHdmVA4pwUnU9NZhddjYW3WIJ8StbtBYZaIzZldPURQFYCuwBkgG/CVJWnXT84FAPiBLknR8rPRQUblbqntqudRW7BxvTHePl8TecsNZyQQmT6NEWZY5tKeU3m6lHr3BqGXt1hz0eq2HNVO5H2RZprPXTGPHAI1t/TS2D9DYrjx297u/Q7MggL9Bh59RCbnyG/JmGO5jMWi22hVvjNk2KiTsXu0ku0Omo8dMR4/5lseEBxtJiAwgPjKQ+OHHqEBCAvST4nvva/gH6Fn7SA673ryIwyHT1tzHif3XWfHQVE+rNuYoDRUfx3TglwBYrx7AkLPS5YqRgiCwKWMdv7z0OwBONhSwOmU5kf4RLuusMrEZE6NEFMUs4H0gh5Hu7p+9/puA3wEZoigulyRJLVqt4lH23OQlmRMzk6TghNscfXfIsoz5zJ+cY136XLRx7qnk5e0Una6h+kaHc/zgBpGwCLX840Sgu99CZUMP9W19o4wPk+WWVd3vSHCAfpRnYdjTEBSgV0KovsD4+Owi3tLagunGde7J7aLR4j9VRB8+uheOLMufN1aGQsf6Bq109Ax7eixDYWcm+k13TvYdDlErruocNR/opyNuyEhJiAwkKTqQtPgQgvwnRxjnRCY2IYTFqzI5vl/p2XHtUiNxSSFMm+H7Yai69LloYqcovbUcNswFO/Bf/S2X5WZHTCUzNI0b3VXYZTufVB3kq9mPu0FjlYmM240SURTDUcr/JgOXgR3A3wGjslolSbKLovgr4F+BbYBqlKh4jOtdlZR0KP0zBIRRFUJcwVZdhL2pTBlotBjnT46Lbl1VJ+eOVznHs+YnkSFGe04hlVtittipbu6loqGHisYeKht6aO+5t27LOq2GuAh/4iICiAjxcxoewzkZoUFG9C6EuzisFto/2E3n3k/Ace+5JoJeT+TmrYSvXYegVTx1giDgZ9DhZ1DyR+4Gi9XuDEnrHH7sNdPebaKpY4CWzkHstygd22+ycaO+hxv1PaPmY8L9yYgPIT0hhIz4EFJig9DrVG+itzF9TgKN9T1cL1FKuh/fW050bBCRMb5dQVEQBPwWPsnA7pcAsFUUYG9ZhzYm02W5mzLW8e8XfgPA2aZC1qSucJYMVpmcjIWn5G9RDJK9wCZJkmyiKH6bzxglQ3yAYpQ8MAZ6qKjcFbIss6dir3M8P24OcYGxrst1OLCce8851uesRBPqulxvp6/XzP4Prjk3s+OSQliwPN2zSqkASsJ5Q9sAlY09ihEy5A25W8dDgFFHfNTo0KSEyACiQv3HrJLVYHkZTa+9grW56b5lyFYrbe+9Q+/5AuK2P4cx+f5yxQx6LTHhAcSEf7HHz2Z30No16PQuNbQN0NTRT0P7AOZbeJlaOgdp6RzkTIlSnU6rEUiOCXIaKRkJIcRGBKgJ9h5GEARWrJ9Ke3Mfne0D2GwO9u4sYdszczD6+XYekTZ2CrqMedgqzgFgPvceAQ//T5flZoVnMi08i9LOchyyg48r9/Ps9C+7LFdl4jIW36QtKKFafytJ0m193ZIkXRdF0YLSBV5FxSNIndcp76oAlMogD6WtvsMr7g7b9dM4OhuUgd4Pw5zNbpHrzdjtDvbvLsE0YAXAP1DP2i05aLW+nxTqjdjsDioaeiip6qC0povqpl7M1juHYOl1GlLjgkmNDR7JjxjnvAiHaZDW93bQffjgqHm/9Az0sXdv3Jtra7HU1ym/V1dR/dKPiHhoAxEPb0ajd2/olE6rGTLYAoGRHd/P5uM0tA9Q3dRDTXPf5zwrdodMVVMvVU29HKYeAH+jlvT4EKalhJOTFkGaWk7bI+gNWtY9Op33Xi/CarHT3TnI4Y8l1m3N8fl8IePcbdgqC0F2YK8vwVZfgi4xx2W5GzPWUlqoVGcsbL7EutSVJAT5flicyhczFkZJOmCSJKnkLo/vBdRacCoe4bNekkXx84gOiHRdrt2GuXCXc2yYsQ6Nn+8vJM4cqaCpTglPEQRYszmHwOC7C41RcR2HLFPf2s/JkmYulrVy9Ub7HY0QAUiIChy1M58QFYjOg4Zk/9UrNL/xGraOduecxs+PqMefIHTpcgTN3esm22x07vuU9g92IdtsYLfTsedD+goLid3+HP6ZY78nJggCESF+RIT4MT1tJJnXanNQ29JHRUO34r1q7KW5Y+Bzrx802ymp6qSkqpP3j1Xgb9QxKyuK2VnRJEcpVb98fVHsLYRHBrDioans330NgMqyNi4V1DF7QbKHNRtbNGFx6MUlWEuVLuzmczvQJrzg8nmXHppKbmQ2V9uvISPzUeU+vjHjaXeorDIBGQujRAbuKiBWFEUdEAL03OlYFZWxoLi9lMqeGgB0gpaH0lbd4RV3h1U6htzbqgyMgRhmrneLXG/mRmkrl8/VO8cLlqeTmBrmQY0mB23dg1yr6qSkupNrVR30DHmpbkV4sHFUDkNqXLDXlLG19/XR+qc/0nP65Kj5wJmziPnqM+gj7r06j6DTEbFhI0Fz8ml+/VUGy5UcL0tjA7X/9FPCVq0mautjaIzjbzzrdRoyEhRDcJi+QStVTUpuz3CeT+9nPtNBs40zV5s4c1UJaQsPNpKTpnhRclLDCb3LHBmV+2NKdgxNdT1cKVSud2eOVBCTEExCsm9f7wxztmAtOwUOG46WCuzVF9Gl5bksd2PGWq62K0bexdar1PTUkRKS5LJclYnHWNyJKoHpoihmSJJUcYdjVwF64NoY6KGiclscsmOUl2Rp4iLC/Vy/qcg2M5aiD5xj4+yNCAbfbrbV1THA4Y8l5zhtSqTP7xx6CrPVTnFlB1crOyip6qClc/C2x0eH+ZGTFkF2ajhZSWGEe6nnqvf8OVr+8HvsvSN7VJqgIGKe+grB8xe6vCNriIsn6XvP033kEK3v7UA2m0CW6Tqwn76LF4h9+lkCc6a7+me4TI645jYAACAASURBVJC/ntz0SHLTFY+tLMu095goq+3iWlUnxVUddPWNLsHc2Wvm5JUmTl5RjJTEqECy08KZkRFJdmq4R71evsqilRm0NPXSXN+DLMP+3dd4fHs+AUEGT6s2ZmiCItHnrMR6ValUaT73HtrUWQiCa+dXcnAiedEzuNB6BYA9lfv41qznXNZXZeIxFkbJR0Au8F3gL2910FCfkp+jeFZ2j4EeKiq35UrbNWr7lJwPg0bPmtQH3SLXWnwQeaALACEgDP1093hfvBWrxc7enSVYhxJ5Q8L8WLlxmhpO4kYGTFYuXW+nqKyVKxXtWG7T7TzIX8/sqdHMnhpNUmQAMV7efdrW1UXLW7+nr6hw1Hzw/AVEP/UVdMEht3jlvSNoNIStXE3grNk0v/EaA8VXFR3a2qj//39OyJKlRH/pSbQBrnWtdieCIBAV6k9UqD8P5MYjyzJNHQPUtA1wsayVy9dbGTSPDtGrb+unvq2fA+frlFCvzEjmTI1mRkYkRoNa2csdaLUa1m7J4d1XCzENWhnos7D/gxI2PTlrzIo+eAOGvI1YS4+CzYyjsw7bjbPopyxyWe7DGWu52HoVGZni9lKqe2pJDVE3tiYbY2GU/AL4c+Bboih2A/9285OiKAYD64EfAyJQD/xqDPRQUbklsiyzv/qIc7w0aRGhRtdzPmTLAOaLHznHhjmbEXS+u3MmyzLH9pbT0aq0xNZqBdY+kuPz1WjGg+4+M0XlbRSVtVJa3XnLUrMGnYapyWFkp4WTkxpBcmwQsTHKQr61tXc8Vb4nZFmm5+QJWt/5I46BkTwKbVgYsV99hqDZroeF3Ap9ZBSJ/9/f0nPqJK1/+iOOAeX87TlxnP4rV4j96tcIyssfs/d3BUEQiI8MZOa0ODYuyaCpuZuqxl5Kqjooqerken33qHNl0GzjTEkzZ0qa0es05KZHMGdqNLOmRKk9UlwkKMTI6s3T2PMnZYe/oaabgmOVLFyR4WHNxg6NfwiGGWuxXPgQAPP5negy5iFoXLvmxwfGkh87i/PNFwHYV32Eb8z4msv6qkws3L5ykCSpTRTFLcCHwN8D32eogaIoih0oOSTC0E8H8IgkSf3u1kNF5Xbc6K6isqcaUHJJViUvc4tcy+W9YFZOZyE4Gr3oHrneSsnFRsqKm53jpWuziFYrA903LV2DFEmtFJW1cqO++5Ydx+MjA8jLiiY3PYLMxFCXeoB4Amtrq+KpuFY8aj502XKiHnsCbcDYN9kUBIHQxUsIzM2l5a036Ss8D4C9u4uGX/4nQXPnEfPUV9GFencdFq1GQ2ZiKJmJoWxanI7ZYqe8rosrFR1cKG+lrXuk54zV5uBCeRsXytvQCAJiShj5YjR5WdFeG9bn7SSnRzBvaZqzL9OFM7XEJoaQnhXlWcXGEMPM9VhKDoG5H7mnBWvpcQw5rkcarE190GmUXGq9SvNAq9q3ZJIxJtuZkiSdEEVxFvCPwGPA8FbxcMC+DXgPeF6SpOqx0EFF5Xbsrz7s/H1+XD6hRtdDRByDPViujOSoGOduRdD6rsegpbGXEweuO8fTZsSRPSvegxpNTJo7Bzhb3ExhWSu1LX23PC4tLph8MZo5U6OHSs5OPGSHg65DB2l7/11ky0hehD46mtinnyUg2/USo/eKLjSMhL/4Dr2F52n5wxvYe5Sclr7z5xgoKSHmyS8TvOiBCROOaDRoyc2IJDcjkidXTaG2pY9CqZWi8lbqW0f2/xyyzLXqTq5Vd/LmvjIyE0KYI0azIDuWiBA/D/4FE4/8B1Joru+hpqIDgEN7Snn82XxCvDx08n4RjIEYZm3AUvAuAJai3einLnY5KiAxKJ6cSJGSdgkZmYM1R/nytMfcobLKBGHMVkySJNUAXxVF8RtAPhAPaIBm4LwkSbe++6qojCENfU1cbS8FlO7tq1OXu0Wu5eJHYFV2JTXhSegyF7pFrjdiGrSyb2cxDruylx8ZE8jStWq7obtlwGSloLSFU1eauF7f/YXHCAKIyWHkTY1mTlY0kaETe6Fobmig+fVXMN0YMWQRBMJXryXykUc9Uv3qZoLz5xIwLZvWd96m5+RxABwD/TS98jI9BWeI/dp29JGulwsfTwRBICU2mJTYYLYuy6C5Y4CislYKy1qpaBhd9PJGQw83GnrYcfgG2WnhLM6NZ87UaDUH5S4QBIFVm6bx7quF9PWYsZiVPLutX8tDN8G8mHeLIXc11iv7kAe7kQe6sJYcxDDzIZflrk1ZQUm7UjTlbGMhD6evdcumocrEYMy3cSVJGgROjPX7qKjcLftrjjh/nxU93S3uYUdfB9aSkSZvhnmP3lMvhYmELMsc3FNKb48ZAINRy7qt09Hp1cXL7bA7HBRXdnLqaiNFZW3Y7J9PVtdpBaanDcX8Z0UREjDx85Fkm42OTz+mY88HSp+QIQwJiUqfkIxMD2o3Gm1gIHHPfp3g+Qto/v1r2NraABi4eoWqH/6A6G2PEbpi5YT9bsdGBPDQwlQeWphKZ6+ZojIlVFCq6cIhKxsMMjh7ohgNWuaJMSyeEUdWcpjaVf42+PnrWbc1h51vXsRhl2lr7uPE/nJWPCR6WrUxQdAZMczZjPnk7wGwXPgI/bQVLleanBKWQVpIClU9NdhkO4drT/DIlA3uUFllAuB2o0QUxVeALkmS/uYuj/8XIFKSpK+7WxcVlc/SPtjpjFkFWJO6wi1yLUW7wa4suDTRGehSxy5J19MUna6h5kaHc7zy4WmEhvtmmII7qGvt49SVJk4XN9Hdb/nc81qNwIyMSBZOj2VGRqTX9AxxB6aqKppe+x2WutqRSa2WiA0biXx4E4LOO//WwOm5pL34Em0736Pr0AGQZWSziZa33qT3XAGxzzyLIW5ihyqGBxtZlZ/Eqvwk+gatXCxv40xJE9eqOp25TGaLnRNXGjlxpZGoUD8eyI3jgdw4YsLHPudnIhITH8LiVVM4vk/pUH7tUhNxiaFMm+mbHcr105ZjufwJcm8bsrkPy5W9GPMfcUmmIAisSV3By1feAOB4/RnWpT2Iv069x0wGxuKOsB1oAu7KKAEeB1IA1ShRGXMO1R7DISs71FlDOzKu4uhuwiodd46N8x+bMPHn90pdVaczoRNg9oIk0qf6bkLn/dIzYOFsSTOnrjRR3fzFFbBSYoNYnBvPgpxYQgInvkfkZhwWC+0f7KJz36fgGPEIGdPSidv+HMYk7y/1qfHzU3qkzJtP82uvYGlqBGCwvIzqF18gcvMjhK97CEE78T2EQf56lsyMZ8nMeDp6TJwuVnqeNN3UXb6t28QHJ6v44GQVWUmhLJ4Rz1wxhgC10t4opufF01TfTXlxCwDH9pUTFRtEVGyQhzVzP4JWhzF/K6YjLwNgufwp+umr0Pi5VuxkZlQOsQHRNA+0YrKbOF5/hrVuKtmv4t14w9VEgFsWmVFRcRt91n5ONRQ4x+7qS2I+vwuGDB1tQja6xPFP1h0P+nrN7P/gGkNRHsQnh7Jgue+WvrxXZFlGquniYFEdF8vbvrCEb0iggUXTY1mcG09SjO8tUgAGyiSaX38Fa/NIVTbBYCDqkUcJW712woU++U/JIuV//4iOPR/S8enHYLcj22y0vb+D3vPniN3+HH4pqZ5W021EhPjx8KI0NixMpaKxh1NXmii41ky/aST0rryum/K6bv6wv4x502JYlZ9Eerwa9w/KTv/ydVNpa+6js20Au83Bvl0lbHtmjk+WStdNWYTm4kc4uhrAasJy8SP8Fj7pkkyNoGF1ygr+UKok0h+uPcGDSUvQa9US1r6OR78hoihqgBhALQmsMuYcrTuFxWEFhqp8REx1Waa9vQbbjTPOsXHeNpdleiN2u4P9u0owDSj/P/9APWu2ZPt0k7C7xWyxc7q4iYNFdaOqGw2j02rIy4pi8Yw4pqdHoJ1gi/K7xT44SNt779J95NCoef9p2cQ+/SyGmBgPaeY6Gr2BqK3bCMqfS/Nrr2CuUYpGmmuqqXnpR0Ss30DEps1o9L7j8RIEgcyEUDITQnlyVRaXrrdx8kojVyo6nPknVpuDU1ebOHW1iYyEEFblJzFXjJlwJardjd6g5Nm993oRVoud7s5BDn9UyrpHp/ucF13QaDDMexTT/v8ClObBhhnr0ASGuyR3Xlweeyr20m3pocfSS0FTEYsTF7hDZRUvxmWjRBTFEEZK/Q6jFUUxmaH+JF+AMPSapwE/4JKreqio3A6z3cLRupPO8ZqUFW65OZjPve/8XZeahzbWNytQnTlcQVO9Uq1HEGDtlhwCgyZ3X4OWzgEOFdVz/HIjg2bb557PTAxhcW4887JjCPTz7R2+vsuXaHnzdWwdI7lGGn9/oh5/gtCly31mIeaXkkrKD35I575Pad+9U0ncdzjo+HgPfUWFSuL+lCxPq+l29DoNc6fFMHdaDN39Fs4WN3HyatOoEtYVDT1UNJTwp4PlLJ+dyIq8xEnd+yQ8MoAHN4js21UCQGV5O5cK6pi9wPtDF+8VXVo+mqg0HG1VYLdiKdqN39LtLsnUa3SsTFnKzutKM+IDNUdZlDAPjTC5DV5fxx2eku8CP/zMXBRQdQ8yXnaDHioqt+R0wzn6rUp8dKRfOHNiZros0958HXvNcNK8gGHuoy7L9EZulLZy+Xy9c7xgeToJKZ/dh5gcOGSZ4soODhbWceVG++fiTg16DQ/kxrNqTiKJ0b4ZnnUz9t5eWv70Fr1nTo+aD5w1m5ivPoM+3LXdUm9E0GqJeOhhgvLyaX79FQbLywCwNDVS+8//SNiDq4h69DE0fhO7hPOtCA00sHZ+Cmvnp1DZ2MOB83WcK23GNlQevGfAyoenqvj4TDVzpkazKj+JrKRQnzFM74XMadHMmJvIlaHr55kjFcTEB/vc9VMQBIzzH2Pw438FUJopznwITWisS3IXJyzg06qDDNpMtAy2cam1mLyYGe5QWcVLcYdRMtydfRiZW3tIbj6mBygGfitJ0mtu0ENF5QuxO+wcrD3mHK9KWY5W41pyqizLmAt2OMe6KQvQRvreDlhn+wCHP5ac47SsSJ/c6bsTAyYbJ680cqiojubOwc89HxPuz8o5SSyZEUeAj3tFQDn/+86fo+Wt32PvHUnk1wYFE/3UVwiev8DnF6GGuDiSvvc83UcP07rjXWSzCWSZrkMH6Lt0gdinnyVweq6n1RxT0uND+MamHJ5YOYWjlxo4cqGezl6lVLjdIXOutIVzpS0kxwSxKj+JBTmxGCdZ6fBFD2bQ0thLc30Psgz7d1/j8WfzCQjynVA/AG3idLTxIvZGCWQ75sJd+K/8pksy/XV+LE1cxL6hZsf7q48wOzrX568tkxlBlt2bYy6KogNokiQpwa2CJw9HgOUWi43u7s8vfsaK6GilWkZr6xdXCprIFDQV8XrJ2wAE6QP5yQN/j0Hr2g3BVlfM4Mc/VwaChsAv/czlXaHx4F4+Z6vFzntvFNHZpniYQsL8eGx7vk8ma96Klq5B9hbUcOpKE2ar/XPPz8iIZFV+ErkZEV7Vw2Esv8+2rk6a33yD/osXRs0HL1hIzJNfQRvsWuWdiYi1vZ3m37/OwNXLo+ZDHlhC9BNPoQ0MdPt7euM122Z3cLG8jQOFdZTVdn3u+UA/HctmJbB6bvKkCu3q6zHz7quFmAaVnLyE5FA2PTXrrnLyvPFzvhW2pnIGP/jp0Egg4LEfo41wbROrx9LLC6d+hs2hhMj+dd6fMzXc98KkPfU5h4b6YzDoAI4CK8b1zb+AsVhdvAF8/mqkouIBZFnmQM1R53hF0mKXDRJZljGfG/GS6MVlE8IguRdkWebY3jKnQaLVaVi3dfqkMUjqWvv4+Ew1Z0ua+ey+jb9Ry5IZCazMTyR2EvVrkGWZnhPHaH3nbRyDIxsmuvBwYr76DEGzZntQO8+ij4wk8a+/S++Z07S8/Qcc/UrBg55TJ+gvvkLMl79GcP5cD2s59ui0I7knNc29HCqq50xxExabUp2w32Tjk7M17D9fy5IZ8axfmEpMmO/3nwgKMbJmSzYfvq0YrQ213RQcq2ThCt+qXqiLy0KbMgt7zSVAxnLuffzX/bVLMkMMwSyMy+dEw1kA9lUf8UmjREXB7SsMSZK2u1umisr9UtIhUd+n9BcwaA0sS3rAZZm26iIcrZXKQKvDMGezyzK9jZKLjZQN1dkHWLpmik/W2f8sFQ09fHS6igvlbZ97LiEqkFX5SSyaHoufYXIYZ8NYWltofv1VBkuvjZoPXb6CqG1fQhsweYyzWyEIAiGLHiBgei4tb71J33ml/Li9u5vGX/0XvflzifnyV9GF+lY+wa1IiQ1m+0PTeGxFJicuK6GPbd0mAGx2mSMXGzh2qZEFOTFsWJjq8zlYSWnhzF+aRsFQn6cLZ2qJTQwhPcu3+jwZ5z7KQI1Su8hWfQF7yw20MZkuyVyVspyTDQXIyFzrKKO2t4HkYDUYxxfRvvjii57WQWU024E0u92B+Qsq+owVgYGKK31g4PMdpycyb5XuoMPUCcCypEXMjnYtxlt2ODAd+G9kk+Ji1c9Yiz5jnst6jhd38zm3NPayb1eJ00MwbWYc85amjYN2nkGWZUprunj901LeO1oxqmEcQE5aOE+vn8YTD04hPT4Endb7q7+46/ssOxx0HdhH469+OarviD46hoRvfYfwVWvQ6H0/h+Ze0BiNBM+dhzE5mYGyMiXXBLA0NtB94jjakFCMyckux8VPlGu2Qa9lSlIoq/KTSI0Npq3b5Mw7kYG61n4OX6intqWP6DB/nw7rik8OpaWpl+6hvLSaig4yp0Xj53/r79BE+ZyH0QSE4ehqxNGpJPc7etvQT13sksxAfQAN/c009SvXIJPd5HMJ7576nP389GiVe1o18Nq4vvkX4NJ2nyiKw1W32iRJ+u/PzN0TkiT92BVdVFQ+S2V3DeVdFYDSjGlV8jKXZdpunHFebNH7YZj9sMsyvQnToJV9O4txDFXSiYoJYuka33SVy7LMpevtfHS6ihsNPZ97Pi8riocXpZGRMDmbwpnr62l+/XeYKipGJgWB8LXridz8CBqj7y4e3UFQXj7+4jRa3/kTPSeUQhuOgX6aX/0tvQVniH16O/pI39olvx0ajUDe1GhmZ0VRWt3JntPVXKvudD5fVNZKUVkr09PCeXhRGmJKmM8lNAuCwKqN09jxaiG9PWYsZjv7dpaw9Wuz0flQAQBj/lZsFedAdmCvL8FWX+JyU+G1KSu40KKEvxU2X2JTxnqi/CPcoa6KF+FqDMKLKJsdEvDfn5m7W4Y7uqtGiYpb2V9zxPn7vNg8wv1cC5uQHUpFkWEMM9ah8fOdpF5Zljn4YSm9PcoupsGoZe3WHJ+6WQI4hqoCfXS6mrrWvlHPCQIsyIllw8JUknw8nORWyDYbHZ98RPueD8A+ktxvSEwi7tmv45eW7kHtJhbagEDitj9HyIKFNL/+Kta2VgAGiq9S9cMfELXtccJWrJxwXe5dQRAEstMiyE6L4EZDNx+frh4VLllc1UlxVSdTEkN5eFEqMzMjfco48fPXs3brdHa+eQGHXaatpY/j+6/z4AbR06q5DU1YHHpxCdZSxRg3n3sPbUK2S59jSkgS08KzKO0sR0bmYM0xnhAfcZfKKl6Cq0bJGygGReMXzKmoeIym/hYutxY7x6tTlrss01Z+CrlnKM/CGIhh5nqXZXoTRadqqKkYaX638uFphIb7ThKqwyFzuriJD09V0fKZsr46raAk3i5IIWYSJa9/FlNlBU2vvYKlvm5kUqslcuNmIh56GEE3uXJp3EVAdg6pP3qJtp3v0XVwP8gystlM61tv0ltwlrjtz2GIi/e0muNOZkIof7ltJnUtQ4Ulro0Ulrhe383/2XGZpOggtixJY87UaJ8xTmLig1myegrH9pYDUHq5ibjEELJn+c45YJizBWvZKXDYcLTcwF5fjC7JtfDpNakrKO1U/menGwvYkL6aYMPk3DzyVVy6w3xRUrua6K7iDRyoOYo8ZBvnRmaTEBTnkjzZYcd84UPn2DBjHYLBdxbsdVWdzgRMgLyFyaRP9Y3QElmWKSprY+fxChra+kc9Z9BrWDE7kXXzU3w6lv1OOMxm2j/YRee+T7m53JhfRgaxz3wdY2KiB7XzDTRGIzFPfpngefNpfv0VLA0NAJiul1P94gtEbn6E8LXrJ6XhlxQTxJ9vns4jS9P55GwNJ680Opsx1rX28cudV0mPD+ax5Zlkp/lGyE7O7Hia6rqdBUWO779OdFywzxQU0QRFop+2DGvJIQDMhbvQJk53ybAUw6eQHJxIbW89VoeNI3Un2ZSxzl0qq3gBbr/6iaI4HIDdL0nS5wv7q6iMMV3mbgqaipzjNakrXJZpu35mtJckd43LMr2Fvh4z+3ePVFVKSAll/jLfCNG5Vt3JjiM3qGwcnTMSYNSxem4Sq+cmE3SbJNPJwIBUqoQWtYwksgsGA1FbtxG2as2kCi0aD/wzp5Dywo/o+OhDOj75COx2ZJuNtvd30HuugNhnv45fSqqn1fQIMeEBPLN+GpsXp7O3oIYjF+uxWJVywpWNvfz87YvkpIWzbXkm6fETO9dLEASWrZtKa3MfnW0D2G0O9u4s9qleUIbZD2MtPQoOO47m69jrS9AlTb9veYIgsCZlBa8U/wGAY3WnWJOyAj/d5N1Q8jXG4szvAhxAOlA7BvJVVG7Lodrj2GXFHs4ITWVKmGsLbMVL8oFzbJix1me8JHa7g327S5xNvQKCDKzZnHNXTb28maqmHt47WkFxZceoeT+DlvXzU1gzLxl/o2/c+O8X++AgbTveofvo4VHzAdk5xDy9HUN0jIc08300ej1RjzxKcP48ml77HebqKgDMtTXUvPQjwtc9ROTmLWj0vtX1+24JDzby5KosHl6UysdnqjlYWI/NrhgnJVWdlFSdZ64YzdZlGcRHur8x5XihN2hZt3U6771ehNVip6fLxKGPSln/qGseBW9BExSJXlyK9doRACxFu9Em5rj0t+XFzCCqIpK2wXYGbIOcajjLyhTXi9ioeAdjcVfuA2ySJI27QSKK4peBvwBmAlqgFHgV+JUkSQ4XZf858Juh4S8lSfqOK/JUxoYB6yAn6886x2tSVrgs03bjLHL30C6yIcCnvCSnD1fQXK94EQQB1mzJJiBo4i6EGtv72Xm8kvOlLaPmdVoNK+ck8vCiVIIDJu7f5y76Ll+k5fdvYOscMdo0/v5Ef+lJQpYs84kF0UTAmJxMyj+8QOf+vbTv3olstYLDQecnH9FXVEjc9ufwz5rqaTU9RnCAgSdWZrFmbjIfnKzk+OVGZ3TheamVwrJWlsyIZ8uSdCJC/Dyr7H0SHhnAgxtE9u0qAaCqvJ2LZ2vJW5jiYc3cg2H2RqzScXDYsTeVYW+45lIlLo2gYXXKMt6WdgJwsPY4y5IeQKeZ3JtMvsJY+OUrgQBRFMf1DBFF8ZfAH4C5wHFgPzAV+C9ghyiK9/23iqKYCvwragK/13O8/jQmu1I9Ki4wltyobJfkyQ4HlqLPekl8IxH6+rUWrpyvd44XrsggIXliNnbr6DHx2ielvPDbglEGiSDAkpnx/OzPF/LkqqxJb5DYe3tpfPk3NPzHv48ySAJn55H2k38kdOly1SAZZwStloj1G0h98Sf4Tx2pwGRtbqL2n/+R5j/8Hodp8DYSfJ+IED+2P5TNS3+2gLlitHNeluH45Uae/80Z/nSonL4hj+9EI3NaNDPnjuRtnT1aSUNNlwc1ch+a4Cj0U5c4x5ai3S7LXBA3l2C9knvTZe7mfPNFl2WqeAdjYZS8A+iBcavVJoriNuBbQBMwU5KkjZIkbQWygGvAVuAv71O2APwO5X/1hns0VhkLrHYrh+tOOMerU5ajEVw7xW0VZ3F0NykDg7/PeEk62wc48kmZc5w+NYpZ85M8qNH90Tdo5Z1D13n+N2c4dqkBx01J2vliND/5+gKe25BNZOjE3EV1F7Is01NwhqoX/oHes6ed89rgYOK/+S0Svv1X6MLCPaihiiE2jqS/+z4xX30ajd/I+dp9+CBVP/xf9F+94kHtvIP4yEC+tXUGLzwzl+lpI+erze5gb0Et3//1KT44WYnJMn6Nh93FwgcziEtU8mRkGfbtLqG/z+xhrdyDIW8jCEppeXujhK3h2h1ecQd5Wj0rkkcMnf01R3HILgXDqHgJY2GU/Bw4D/xGFMVVYyD/i/j7ocfvS5JUPjwpSVIzSjgXwPP36S35H8CqofeockVJlbHlTFMhvRal70SYMZR5sbNdkvc5L0nuWgTjxI1fHsZitrF3ZzFWi5J3Exruz4MbxAm1Q26zO9hXUMP3f32aTwtqnPHmANmp4fyvp+fy7a0zSIia+J+Xq1g7O2n45X/Q9H9/jb2v1zkfvHARaT/5GcHz5k+oz96XETQawlasJPXHPyVwxkznvK2jnfp//wVNv3sZe1/fbSRMDtLjQ/jbJ/P4uydnkx4/0itq0Gxn1/FKnv/NGY5fHr1J4e1otRrWPJKDX4BSeGOw38r+Xddw2Cf+YlsTHD2qq7ul0HVvybLERfhplQT3pv5mittLXZap4nnGIsTqeeAQkA3sE0XxMnAaaAVuWY3rfju6i6KYBOQDFuDdL5B7VBTFeiARWAicugfZ6cC/ACdQwsD+9/3oqDL2yLLMkdoRL8mq5KUux5jaKgpwdA214NH7Y5ix1iV53oAsy+x59zKdbQMAaHUa1j6SM6GqvVytbOePB8ppbB8YNZ8WF8y2FZlM95GSoa4iyzJdx47Q9u6fcAyOhP/owiOI+dozBM2c5UHtVG6HPiKShL/6Lr1nT9Py9ls4hgyRntMn6b96hZivfI3oh1Z6WEvPk5MWQXZqOEVlrbx/rMJ5Tejpt/Dqx6UcuVDPl1dPJTMx1MOa3h1BwUbWbM5mz58uI8vQWNfNwY9LWbPJtW7o3oAhbyPWshNKl/fGUmyNErr4+28Y/a6owAAAIABJREFUGaD3Z3HiAg7WKA0aD9WeYEbUxP8/TXbGYiXyIkruxfDW2yyUxPNb4WpH97yhx2JJkm4VeHsOxSjJ4y6NkqGwrVdQ/kdflyRJFkXf6bjqa5R33aBpQMkl8NMaeSBhvkvyZNmB5eaKW7mrfcJLcv5UNVcvNDjHy9ZmTZi6+C2dA7x98DoXr7eNmo8N92fb8kzyRd9pruYqg41N3Pjlr+i+cnXUfOiKlURtexytv29Uj/NlBEEgZOEDBOTk0vrHN+k9VwCAvbeHxl//EvPF82R+8xuMzW184iAIAvliDLOzojh1tYldxyvp7FXCniobe/np7wt5IDeOx1ZkEhbk/aVjk9LCmbc0jYJjVQCcPlJBcloEkXET+/6jCYlBl7UYW9lxACyFu9Bt/L5LMh9MWsKhmuPIyJR1Xqepv5m4wFh3qKviIcbiajbeHd2H671W3+aYms8cezd8B1gBPC9JUtkdjlXxMMfqRuLk58fl46dzLYfAVnEeR+fQ4l3vh2HGxG/Q1NzQw97dI13us2fFMW2ma00lxwOTxcZHp6vZW1DjbKgGSnnfzYvTWT03CZ1W7aUBSshh14F9XN/1Pg6LxTmvj40l9pnnCJiqbqxMNHQhIcR/81sEL1hE85uvY+9SEqA7zpyl+8pVoh5/kpDFSya9Qa7VaFg6M4H502L56Ew1n54dCes8dbWJwrJWNj2Qxpq5yeh13n29mLMoheb6HqpvKMUodr99kW3PzCE0fGJvJhjnbMJWflLxljRcw9ZUhi7u/qvLhfuFMTN6Opdalc2X4/VneHzqFnepq+IB3G6UeKCj+/A2b/9tjhkOwg2+zTFORFHMBP4JJTfmX+9ftfvHYNARHX1X6roVT7ynq3QMdHGpbWSxvWXGKqJD7//vkGUHdTtHureHzdtARHK8Szp6moF+Cwc/LMUxtKiPSwxh61N56PRaD2t2a2RZ5mhRHa/uKaGjxzTqudXzUnh6QzbhE7QM6FjQX13D9f/8b/rKy0cmNRoSH9lM8pNfQmv0/l1ilVsTvWYZyYvyqXr9DZr3HQDA3t9P82u/w3ThHFO+/T/wi1V3iQG+uS2MLSum8MqHxZy+ooTgmi12dhy5wcmrTXxjSy7zcrx7Q+ZL2+fy8r8dp6tjELPJxsEPS3nurxaj9+Jr9h2JDqZlxjL6Lh9Rxlf2ED3Dtaj4TTkruXRUMUrONhfy3PzH8NNP3PvCRFyDuRPv3i7wADeFbelRwrbUrvRezoGKE87KGznRWSSHJrgkr7/0LNZWpc2OYPAjdMFml3X0JLJDZudbF+juVKIb/fz1PP5MvlcbJNdru/j+f53gF28VjTJIxNRwfvHXy/jrJ/NUg2QIh9VKzdvvcOlvvjfKIAlIS2Xmv/yMtGe+phokPoIuKJAp3/4Lpv/kRfziRgyQ7kuXufCX36Xhw4+Q7eotCyAuMpB/2D6fl775AClxIwu9xrZ+fvy7s7z48mnqWnpvI8Gz+AcYeOzpfLRDXuDmhh4+ee/qHV7l/YQv3gZDVTEHKy9jqnMtQT03ViQ+WGn0Omg1caLmnMs6qngOt3tKRFGcg+JdKJQk6Xt3OPb/ADOA70qSdOk+33LYC3K7gMthb8rdXIH+ClgG/FiSpMv3qZPLWCw2urvHrzb9sHXe2uq9F+kvwu6ws7/8mHO8KHaBS3+DLDsYOPK2c6zPWUVHP9A/sf4vN3P+RBU3Slud4y1PzcbmcHjlZ93Tb+H9Yzc4fqlxVAxoaKCBx1Zksig3Do0geKXunmCwooLm11/BUl/nnBN0OpKfeJzERx+hvXMQk/q/8j3i05j9H/9GzR/+SMMHe0CWcZjNVP72FRoPHyP2mecwJri2OeMrJIT78cLT+RwuqmfX8UoGzEq54MLSFi6WHWb13CQ2L07H3+h9uTl6Py3rt07nox1KOeiL52oJi/Ine9ZE9twHo5uyEFu5kt7bfPCPBGz4O5ckLo5byI5eJQf0o9LDzAyeNeHCGT21BgsN9cdg8J5zfyw0eQZYDrx8F8deRekf8jTwt/f5flVDj6m3OSb5M8fejq1Dj2tEUVz+mefSho8RRTEX6JMkaeNdyFQZIy61FdNtUb7EIYZgZkVNd0meraoIR8fQAk9nRD9zvasqepTayg7OnRhJt1q8MhNxeqzXLeodDpnDF+p5/1gFg+aRHgNajcDa+clsXJTmlYsGT+Ewm2nf9T6dB/bBTWVP/TIyid3+HEmzpnlQO5XxQGs0kv7cdrTTZ9P82itYGpRGqKYb16n58Q+J2LiZiPUbEHTq90ar0bB6bjLzc2LZdayCoxcbkAG7Q2ZvQS2ni5t5YuUUFubEet1ids7CFGorO7hcqHy+x/eVExUbRHTcxA3zMeZtxnb9NMgy9rqr2Juvo42dct/yFsTls/vGJ1gdVur7GqnoriYzLM19CquMG2MRvvXg0OMnd3HsjqFHV2obXhh6nC6K4q2ywOZ95ti7YRGKcXXzz7DhkzA0XvLFL1UZL47VjRRTW5ywAK3m/kOSZNkxqtusYfoqNH4T98Lf12PiwAcjTaoSUsJ4cL33JTrXtfTxszcL+cP+slEGyazMSF76swU8vmKKapDcxEDpNapf/F907t/rNEgEg4HoJ79M8vM/wJiQeAcJKr6Ef0YmqT/8ERGbtoBWuf7JNhvtu96n5qc/wlRV5VkFvYiQAANPr5/GD7fPIytppExwT7+Flz8s4d/euURr1/hFKNwNgiDw8GMziYhWgkHsdpl9u0owmyZeg8hhNGFx6DIXOsdmF7u8B+j9mReb5xwfq7/rzg8qXsZY3OmTgS5JkrrudKAkSZ2iKHYx4sm4ZyRJqhVFsQiYAzzOZ7quD3k7klC6vZ/+vITPyVtxq+dEUXwRpVfJLyVJ+s796qziHhr6mijvqgBAI2hYkrjAJXm26gs42pVcEnSGCe0lsdsd7N1VgmlQuXEFBBlYsyUbjRdVqbLa7Hx4qopPztRgd4zs9sdGBPDUqixmZkZ6ULvP43A4GBjoxWQawGazMr5FBpXKWrbOTuy9vQhbNmIYmtf4+aOPjMSs19Hcopy/bW3K4tRmU/MLfJXPfcYL5hCUl4u1rQ15qPKaDDQ1VaMd7EIXGoagGW8vgIBOp8fPL4CAgGA0Gu+4/qTGBfP8V+ZQcK2Fdw5fd5YQvlrZwQu/O8sjSzJYMy8JrZfoqzdoWbc1hx2vFWG12OnpMnFoTynrt033Os/O3WKYswnb9TOAjL32CvaWCrQxGfctb1nSA5xqVMpmX2i5wmNZfQQbJka5e5URxuIbZ0BJEr9bdECAi+/5s6HHfxZF0ekDFEUxBvjvoeE/SZLkuOm574iiWCqK4igjRmXicLz+jPP3mVHTCTPef4MsWZaxFI70JdHnrETjH+KSfp7k9KEKWhqUEC1BgDVbsgkINNzhVeOHVNPJD185x55T1U6DRKcV2LIknR8/N98rDZLOzlb6+rqw2Sx4wiCRbTa0QcEY4hOUn4QEjMkp6GNjEfSj95dsNgc228TvBK1ya77oM9YYDBjiEzAmJ4+cJ/EJaAMCkW02ZMd4dziXsdks9PV10dnZisPhPeekIAgsyInlp99YwJq5yQyv7S1WB+8cvs5LbxRS3eQ9Ya5hEQE8uGHE0111vZ2LZ2s9qJFraMMS0GWObCSaC3e5JC85OIH0ECWYxS7bOdlQ4JI8Fc8wFp6SOmCKKIqiJEnS7Q4UlW6EQUClK28oSdIOURR/BfwFcEUUxQOAFVgFhAC7UDqy30wUIKJ4UFQmGCabiYKmQud4WeIil+TZqy/iaB/KvdAaMMx8yCV5nqS8pIUrQ/HHAAtXZJCQHOZBjUboN1l559B1jl9uHDU/JSmU7eunkRDlnQ3CBgZ6sVpNaDRaQkIiMBj8xmXXV7bbsXa04zD1c/PlWhMQgD4i8pb5ArqhPgyqYeK73Okzdlit2NrbcJiGqtfJgEVGGxyELjwCYRzOX4fDgcVioqenA6vVxMBAL0FB3tVd3c+g46nVWSycHsurH5dS16rUzqlu6uUnr59n7bxktixNx+gF1Qozp0Uzc14il88p1/ezRyuJiQ8hMdU7ru/3imHOZmw3zqJ4Sy67wVuyiMoS5T5+ov4Ma1NXoBG8w9ulcneMxad1GKVL+4/u4tgfo1wqD7v6ppIkfQv4ClCEku+xDriO0gRxm1ra17coaLqAya643GMDYpgannnfsmRZHrVLo895EE2Ad90475bOtn6OfDKyF5A+NYpZ85M8qJGCLMsUXGvmBy+fHWWQ+Bu1fG2dyPNfmeO1BgmAyTQAQEhIBH5+AWNukMiyjL2vD3N9PY7+m1owabXoo2PQR8eoCcwqt0Wj16OPjUMXGQU3na/23l4sDfXYBwbGXgeNBj+/AEJCIoCR75E3kh4fwg+3z2Xb8gxnc0WHLPNpQQ0v/PYsxZUdHtZQYeGKDOKSFC++LMP+D0ro7zN7WKv7QxuegC5jnnPsam5JXsxMgvTKfaTT3MXVtmt3eIWKtzEWd7V/B74OPC6KohX4n5IkjdoWFUUxHvg5Sg6Ifeg1LiNJ0lvAW3d57IvAi/co/55fo+J+ZFnmeP1IetCyxEUuxdXaa272kugxzJqYXhKrxc7enSXYrMrOaWi4Pw9uED0ec9zRY+L3eyUu3WgfNT9najRfWTOV8GDv76Gh5JCAwTD2vVEcNhu29nYcg6MXcNrAIHQREQhaz+/YqkwMBEFAFxyMxt9/1Dkl22xYW5qxBwahH4dzavh7M/w98lZ0Wg0PL0pjrhjD65+WUlqjpMa2dZv4xZ8usmh6HE+umkJwgOdCYbVaDWu25LDj1UIGB6wM9lvZv+sam56a6expMpEwzNmCreIcIGOvuYS9tRJtdPp9ydJrdDyQMJ991co+97H608yMdq0ip8r44vYzWJKkUuBvULwlXwaqRVE8J4rie0M/54Fq4Kmhl3xPkqSJ3xFIZdy40V1FQ78SdWfQGlgQP+e+ZSlekpHdGX32g2gCJp4rXJZljnxaRme7sujQ6TSs25qD0c9zu+kOh8yB87X84LdnRxkkoUEGvr11Bt95dMaEMEgUlFj8sfSQyLKMrbcHS0P9KINE0OnQx8aij45WDRKV+0Kj06GPiUEfHQ03VSh09PdhbqjH3t+PLI9dvsnIxsh457TcH7ERAXzvqTye3TCNwJuuoaeLm/jBy2c5fbVpTP9fdyIo2MjqzdnOPJjGum7OHnUpCt5jaCMS0WXMdY5vvh/fD0sSFiCg/GOudZTRMtB6h1eoeBNjcoeVJOk/gSeARhRvTD5K/4+tKFWydEAD8KQkSW7xkqhMHm4uAzw/Ng9/3a0qQd8Ze+0lHG1VykCrxzB7g4vaeYbiogaul7Q4x0vXZREZ47nKI43t/fzszULeOlCO2TISObkiL5Gf/tlC8sVoj+nmjTisVqzNTdja2+GmZGBtcAiGhES0/q7WAlGZ7AiCgDYwCGNiIprAm0Il7XasrS1YW1uQbWNTZtbT3tr7QRAEls5M4KVvLGR+doxzvm/Qyst7lPLBw1W7PEFSWjjzlqY5x5cK6qiQJuYC3DBns/N3e81F7MP35Psg0j+C3KiRPk03F8RR8X7GbNtPkqR3UZoNPoSSX/LroZ8fDc2lS5L0zli9v4pv0m3u5ULrFed4WdID9y3r816SFRPSS9Lc0MPJgzec4+xZ8UybEecRXRyyzMHCOn706jluNPQ45+MjA3j+K3N4ep1IgAe9N96GLMvYursV78hwQjIg6PXo4+LRR0aOS0KyyuRB0GoxRMegj4lF0I58Fx0DA5j/H3vnHR9Vmf3/952W3nsCSSghBEgIXXqvoogia1dwXf25rru6rrpKV2zrrvq17dpFQVEUBaRJEQERIUAICSS0BNJ7T6be3x83zEwEQspMZpLc9+vFi3lu5j5zZjK59znPOedzcnMwVFU5NArgbPh4aHhozgD+Oi8Bf29LZPfE+VIWf3CQX9Mcp5UzeGQkUb38zePdm9MpL3Xeup2rofTvjqqHJVqia2O0ZGyEZV1wIO8wOqOuTfPJtB92XR2kp6cbgG0N/2Rk2swvuQcxidJOci+faCI8w1o9lzH7BKaihpC3UoVmYMeLktTV6tn+XRqmBqnPwBBPxkxtfWfctlBaWc/Hm0+SmllmPqZUCFw/MorrR0abi0dlJEw6XUNPCevdVgGlj3dDTwn585KxH0p3dxQuLhjKpd43AJhMkmJXTQ2qgAAU6pao+3duBvYOJDbSl29/PsfOw9mIQK3WwHsb0jh2upi7psXi6da+n5cgCEy+oS9ff3yEqop6dFqprvDmewahdgK1sJagGTwHw/nDgNQzzFhyEWVA61rYxfnHEOgWQHFdCXWGOg4XJDMqfNi1T5RxOPJdT6bDYDQZ2Zd70Dxuqwyw7tgm82N13/EoPPzaNF97YzKJ7Nx4kupKaVGrcVExfW4/s1RoeyGKIr+m5rPkw98aOSQRQR4svncoN43tKTskVogmE/ryMnR5uY0cEkGjQRMWhrqd5FplZASlEnVAIOqQUASVZUFtqq9Dl5uDobJCjppY4apRcceUPjx5xyACfSyiF7+dLGTxhwdJOVfSxNn2wcVVzfS5/VAopRS50qIa9m473eF+b8qA7qiih5jHumM/tHouhaBgbISlY/zPOb90uM+jqyLf+WQ6DCklJynXVgDgpfZkYHB8q+cyFpzBmNcgnSsoO2RfkqRfsrh43uIETL6hL96+ra+vaQ3VdXr++30q721Mo1Yr5aMLwIwRkSy5dyiRIV7tao+zY6qvR5eXi7G8XNLzBBAEVL5+aMLCUbh0lMJ/2zBv3g2MGTOUvLxcm8y3cuUyxowZyubNG20yX1dB6eaGJjwcpbeVFLooYigtRZefh0knp79YExvpx/KFwxmbYInUV1TreO2rZFZtS6deZ5/anKsRFOrFWKsIefqJAk4md7wWbJrE682PDecOYqosbOLZTTMybBhqhZQMdLEqh8zKjttosishOyUyHQbrAvfR4cPNF5zWYL0Lo+p9HQqvwDbZ1t5cOFfK4X1Z5vGgkd2J7t2+XdCPny1h8YcHOXTKcuMI9HHlqTsHM39ib9SqjpU+YE9Ekwl9aQm6/DxEvUUWVXBxQRMWjsrXt0MWA8t0HgSFArW/P5qwcAS1RfJW1GrR5eViKC+Xd5utcHNRsWBWHI/ekoC3uyXK9NPRHJZ9dIgzORXtak/cwDD6DAgxj/f9eJoiJ+pI3xyUwT1RRvSTBqKILnlLq+fyULszJCTRPLZuIyDjvMhOiUyHIL+mkPSyMwAICIyOGNHquYyl2RiyjprHHU1xq6qinp0bLU2hwiN9GT62dbruraFeZ2DV1lO8/nUyFdWWHdRxA8NYvnA4fZyke7yzYKyTUmGMlZbCfwQFKv8ANKFhKDSO63ngaN54411Wr15HUFDwtZ/cDB588BFWr17HuHETbTJfV0Th4oImPByVrx9mzVlRxFBehi43F5O2YzbqsxeJMYGs+OMIBvexKAoWltfx4udJfLPnLAajqYmzbYcgCIybHoN/kKSsZjSKbFufhrbeuXvD/B5N4mzzY33GXky15a2eyzrFO6kwmWpdTRPPlnEGZKdEpkOwz0rWLz6wH/6ura//0CVvNj9WRQ9G6RfRJtvaE6PRxPbv06ivk9ID3D01TJ0Th0LRPrvsZ7IrWPbRIX46Zkm38XZX8+gtCdw3Mw43F1lZ6xKi0Yi+uBh9QX4jqVWFq5Qqo/L27vLRkYiIbkRFRaOyUXf6wMBAoqKi8fR0nBx2Z0AQBFS+vlLUxCqlUNTr0OXloi8tRTS1z2K7I+DtruHPcwdw//VxuLlIEWJRhB8OZPH8p4fJLqpuFzvUaiXT5/ZDrZFskDawTnWoCJcyPA7FpeaJRgP6lO2tnivKuztRXlKxvMFk4EDeIVuYKGNHZKdExunRGnX8mn/YPB7XrfUF7qaqIgxnLA6OdQ5rR+CXnWcpzJVC8oIA0+b0w93D/jvtBqOJb/ac5cXVSRSW15mPD+kTxIo/jiAxpmOlv9kbY22N1JSu2ip9QqFAFRiIOiSk06oanT6dztNPP87MmZOYMmUMCxfexaZNkrznmDFDGTNmaKPnX62m5JFH/sSYMUM5cuQwp06d5KmnHmPWrMlMmjSKe++9nU2bvrvi68s1JbZFodGgCQ1D5edviZoAxsoKdLm5GOvrmji7ayEIAqPjw1ixcARxUZZNswuF1az45BBbD14wqyTaE19/dyZdH2seZ50t5eivHaeeQhCERvdlXdouRG3rIxzW64W9Ob+a1TtlnBPZKZFxeg7nH6XOIPVwCHYLJNav9ZK3uuSt0HBRUobHoQzuZRMb24OM1AJOHLEs3kZO7ElYd58mzrANheV1vPBZEj8cyDLXZru5KPnj7DgenjsAb/eum370e0SjEV1RIfrCQjBamkYq3N1xCY9A5enVaaMjSUmHePDBhezb9zP+/v6MHj0ODw8P/vWvF3j77TdaNefBgwd46KEF5OXlMmzYCGJj+3L27Gleeul5vvjicxu/A5krIQgCKh8fNOERKFwtilOiQY8+Px99SbEcNbEiwMeVv9+WyO2TY8yqgwajyFe7z/Cfr45RUWN/0YCesUEMHNbNPP7t5/PkZJU1cYZzoYoejMK3QURAX48ubXer5xocPBAPldR8tqS+lLSSdFuYKGMn5FwLGadGFEX25FgK3MdGXIdCaJ0vbaqrRJ/+s3nckaIkpcU17NmaYR73jA0kweqmYy8Onyrk4y0nqdNaFthxUX4snBVHgJUkZldHFEVMNTXoSxt3ZEepRO0fgNK6g3YnpL6+nhUrFqPTaVmw4AEWLvyT2flKSUnm8cf/0qp5V6/+lKefXszs2XPMx7Zt28xzzy3hk0/eZ+7cebi6yt/D9kChVqMOCcVYXY2hrNT8PTdWVWGqrUMVEIDS3d3BVjoHCkFg6rDu9O/hz/ub0shqKDhPyyxj6Ue/8acb+tEv2v8as7SNERN6UJBXSX52JaIIP35/knkLhuDp5fwKf4KgQDNwFvV7PgRAf2I7mvhpCKqWb4BplGquCx/KzgvSvf/nnAMMCIyzqb0ytkN2SmScmvOVWeRU5wGgVqi5LmzoNc64OvqU7WCUiv4UgVEoI/rbxEZ7o9Ma2LY+DYNeWgT4+LkxcVasXXfc9QYjX+48w+6jOeZjSoXAvAm9mDqsO4pOutvfGkwGA1v2pLPpaCFaw5XSM860u03NwUWjZM7oHswYEdnmuXbv3kFJSTHdu0eyYMEDjb6b8fEDmTt3HmvWrGrxvBMmTGrkkABMnz6Lzz77mMzM85w6lUZi4uA22y/TPARBQOXlhcLNDUNJCaY6qXu4aDSgLyzA6OGJ2t8fQSkr7wGEB3rw7N1D2LD/PD/8koUIVNbo+PeXx5g9Kpobx0SjtFNPIqVSwbQ5/fj64yTqavXU1er58fs0brx9IEql8yfJqHqPRDi8HrGmFLFhQ1HTf0qr5hobPpJdF/YiIpJWkk5xXQmBbu2rVinTPJz/mynTpfk52yLjNywkEXd163biRF0durSd5rEmcXaHSKMRRZE9WzMoL5Fu/iqVgulz+6GxY0F5XkkNz69KauSQBPq48szdQ5g+PFJ2SBoQRRFDZSW63Bx2pBRfxSFxXrQ6I9sOXbDJXMeOHQFg8uRpKK6wyJo6dUar5h01auwVj0dGRgNQXFzUqnll2oZCpUIdHIw6KAisHBBTTTXanByMNdUdqrjanqiUCm4e14vHb0vEu6H+TwQ2/pLJv744RlmV/dTMPLxcmDonzlwOlJ9dycGfztvt9WyJoFShSbBcN3TJWxBNrev/EuQeQFxAHwBERPblHLzGGTKOQnZKZJyWKl01RwuPm8dj21DgrkvbDTqpKFPwCW3UOdaZOZGUy5mTloXXuOkxBATbT1nowIl8VnxymIuFFrWYobFBLFswnB5h3nZ73Y6GSa9HX5CPoSFda3JfH1xUHctZc9EomT6s7VESgKIi6TsaGhp6xZ+HhoZd8fi1CAm58nweDelwOrmpn8MQBAGlhycu4REoPKyuSSYj+qIi9EWFmAzt20TQmekf7c/yBcMaFcFnXCxn6Ue/cfxssd1eNyLKj+HjLJLxyYeyOXuqYzjz6r7jEVyk75ZYXYLh7G+tnstaHviXvN/QGzuWVHJXQU7fknFafsn9DYMo1TL08I4k0qt1NRSiQYc+ZZt5rBk4E8FOIXNbkp9TyS+7zprH/RLDiI2/8iKtrWh1Rlb/mMG+lDzzMZVSwe1TYpiQGN4hokrtgSiKGCsrMZSXWTqyA1PjA5k1oW+jQmBHorpUYGto7wLkK39PWitZLX/vnB9BqUQTFITRwwNDSQmiUXJETLW16OrrUfn5o5QlmgHw8XTh739I5Idfs/hu7zlEEarr9Lz+9XFmjIjk5nE9UdkhtWrQdd3Jz6kk60wJALs3pxMQ7IGvv3PXAAlqF9QDpqJLWg9ITY9Vva9DaEVdaf+AvgS4+lFSX0aNvpYjhccZEdYxNie7Es6/MpPpkphEE3utepOMjWh9lESfsQ+xTuquK3j4oY4Z3Wb77E1drY7t36WZJSQDQzwZPaX1qmNNkV1UzYpPDzVySEL83Vl0zxAmDoqQF4YNiCYRXV6eVORrdkgElD4+aMLCncYhcQSBgZIkdEFB/hV/npeXd8XjMp0Hpbs7mogIlF5eloMmE4aShl49cjoXIDnoN4yK5snbB+HraSnc3nrwAi+vPkJxue1llgVBYPLsWLwaxEn0OiPb1qeh1xuvcabj0fSfDGrJblNZDsYLya2aRyEoGBNxnXlsLaAj4zzITomMU5JeeoYyrdTJ1UPtzuDghFbNI5qM6JK3mMea+BkISucOEJpMIjs2nKKmIdfYxVXF9Ln9zLvftkIURX5OzuW5Tw+T11CzAjCyfwhL7xtKZIhXE2d3HUx6PYayckS9HlFnyf/9fkASAAAgAElEQVQWNBo0YWGo/fw7ROTNnlwqNt+160dMV5CH3bFj22XHZDofgkKBOiAQdWgogsrSi8dUX4+o02OoqJTlgxuIjfRj2cLhxPe0FFyfza1k2ceHSEq3fXqVi6ua6XP7oVRKm0ylRTX8vO200zuLgqsn6rgJ5rH22A+ttnlk2DBUglQDlVV5kdzqK2+iyDiOrn0nlXFaDuYfMT8eHjoYtbJ1zeYM5w4hVjVc4F08UMeNt4V5duXw/iyyMy2a8pNn98Xb182mr1GnNfD+xjQ+2XIKfUOKj0alYMGsvvxxdj9cNc7tuLUXdWfPcOG5pRgqyi0HBQGVn58UHXFxfnnN9mDixCn4+weQlZXJqlUfNVo0pKae4Ntvv3agdTLtjdLVDU14OErvxn2UDGWlXHzpebQ5OVc5s2vh7a7hr7cmcOvEXigbUhxrtQbeXp/C6h8zzNdmWxEU6sWYaTHmccaJAk4mO38UUxM/HRSSM2EqOIMxr3W9Rrw0niQEWVQ3f7NaZ8g4B7JTIuN01Bu0JBelmMfDQ1sn+SmKIrpjP5jHmv5TENTOnWJz4VwpSfuzzOPBIyOJ6m1b6cIL+ZWs+PQwv6YVmI9FBHqw+L5hjE2Q60cATFothV+u4eJLK9HlWhpWCi6uaMLCUfn4yp+TFW5ubixevByNRsMHH/yXu++ez7Jlz/Loow/x8MP3c8MNkqyvSiU7u10FQaFA7e+PJiwcQW1JU6o/d46sFUso2fg9olwIj0IQmDkiiqfuHEyAt2WTY2dSNi9+nkRhWW0TZ7ecuIRQYuNDzOO9P56hqKGPirOi8PBD3ceSdq1L/qGJZzeN9XriUMFRucO7kyE7JTJOR3LRCXQmSRkj1COE7p4RrZrHeDEZU+lFaaDSoBkw1VYm2oWqinp2bDhpHkdE+TJsbLRNX2P/8Vye+L+fKSi13OjGDQxj0b1DiQjs3A3+mkvtyTSyli6ifMd2S+2IICColGhCQ1Fo5A72V2LYsOt4992PGD16LMXFxezd+xNVVZU8/vhTzJ9/BwA+Pr4OtlKmvVG4uKAJD5d6l1zy441GSr5fT9Zzy6g/f86h9jkLvSN8WLZwOINiAs3HMvOreOy1PRw/Y7t0LkEQGDsthoAg6XpvMopsW59GfZ1zq1FpBs7i0hfIeDEFY3FW0ydchX7+sXiqpfderq3gdJn8/XMmBGfPJ+yC/ASM1+kMVFTYvuDtagQFSfUDRUWO3zF58+j7nCo7DcCcnjOZFj2xVfPUbngBY77UBV09YBquo+6wmY22xmgw8d3qYxTmSZ+/h6eGeQuG4O5hmwWwySSyfu85fjhguZBr1Arum9GX6/rbR9Gro2GsraHoq7VU7vu50XH3/gNQ3joXQaUiNDTKQda1DMepb12ZrVt/4PnnlzJq1FheeeU1R5vTKXC23/G1yM/PwqTTY/h8DfXnrBaCgoDftOkE3DhXTodEivDvSMrmq11nMDYInSgUAvMbGtfaKkJbUVbHuk+S0GmlYveoXv7MnDfAqSPAdTvexnDuEACqnsNxm/Jwq+b5KuN79mTvB2BE6BDu6fcHm9nYWhy1BvPxcUMjpWvvASa064tfATlSIuNUlGsrSC+TOmALCAwLHdSqeQz5GWaHBIWyURMmZ2T/rrNmh0ShEJh6Uz+bOSSS5GRyI4ckyNeVRXcPlR2SBqqPJpG5+NlGDonC3YOQBX8k4m9/R5DTjq5JWVkp+fmX56efOJHCO+/8HwCzZs1ub7NknAiFRk33pxcR9IfbES5FHEWRsm1byVq+hNpTJ5ueoAsgCAJTh3bnH7cPMjdbNJlEvtx1hvc3pqG1kWKWj58bE2f1NY+zzpZy5IBtmqnaC02i5fphOH8IU0XrCtVHWKVwHStKQWeU+x05C/KdVsapOJR/FBFpdyjGrxd+rq1L99Ad3WR+rI4ZhcLT3yb22YOM1AJSj1jqFq6b0JOwbj5NnNF8LhRU8da3KRRX1JuPDekbzH0zYvFwbZ14QGfCUFFB4RefU334UKPjnkOGEnzHXajkdKNmc+bMaR577M/07NmLsLBw1Go1ubk5ZGRIRanTp89iwoTJDrZSxtEICgV+U6fjkTiIwlWfUHsyDQB9YQHZr76Mz/gJBN4yH6W7c/fQsDd9uvuy9L5hvLcxjfQLkvDJr2kF5BTX8MjN8QTZQPykZ2wgA4d3I/m3bAAO7c0kJNybbtF+1zjTMSgDo1B2G4Ax+wSIIrrkLbiOW9DieSK9uhHiHkxBbSFao47kotRWb4DK2BblsmXLHG2DTGPuA6KNRhNabfsVAXp4SGHz2lrH7RiIosiX6eup0kvdxGf2mEJ3r/AWz2MsuYju1y8bRgJukx9CcHVOedvSohq2fHPC3I+kZ2wgoyb3skkI/de0fN78JoUqq1zh+VP68MitiRg7gD69PRFFkapffyHnzdfRZmWajyu9vQld+ACBN97UqO9IdbXU58bTs2M4KZeaFV76XrUHarUarVZHXl4emZnnOXv2NDqdjgEDErj//gdZuPBPTp0a0tFwxO+4Lfz+b0jp4YHXyFGo/f2py0g3F71rszKp+vUX1KGhaEK6diTXzUXF7HG9KK/WcjZb+vwqa3QcOJFPZIgnwX5td9wiovzIzSqnulKSO79wrpSYfsFoXJxzz1rw8MOQIaVemUpzUMeORdC0zEETBIE6Qz0ZDVkZOqO+1YI6tsJRazBXVzVKqWFnFvBJu774FXDOb51MlyS7Oo/cGikcq1aoGRQ0oFXzWCtuqXoMQeEbZhP7bI1Oa2Db+lQMeikn3MffjYmzYtu8cDOaTKz76SzbfrtoPuaiUfLH6+OYMaZXm+buDOhLSij47FNqTxxvdNx79FiC5t+G0kMu+G8NwcEhPPHE0442Q6YDIQgCPmPH4xGfQMHnq6g5dhQAQ1kZuf/3Ol4jriPotjtQeXk72FLHoVYpeeTWREJ9XVn9YwYGo0hNvYHXvkrmlvG9mDkisk33DCldOI6vP06irkZPfa2eH79P48bbB15arDoVyrC+KIJ7YSo8CyYDupRtuF53W4vnGRYyiI3ntgJwsjSDCm0lPi5d93vmLDjfN06my/JbfpL58cCg/riqWi7fa6osxHDuoHmsSbzeJrbZGlEU+WlLBuWlkpiBSqVg+k392rw7VVWr4z9rkxs5JFJ39qEMiQ1u09wdHdFkonz3TjKXPNvIIVEFBBDx2BOELrhfdkhkZByAyteP8D8/SthDD6O0ckCqDv5K1uJnqTz4q9M3+bM34xMjeOqOweYu8KII6346y7vfp1Kva1tWhYenC1Nv7Mcl3yY/u5Jff3JOVSpBEHCxqi3Rn/wJUVvT4nkC3PyI8e0JgIjI4YJjNrNRpvXITomMU2A0GRtdFIaHDmnVPLrkLWYZV2VEf5RBPWxin61JScrh7CmLzOO4GX0ICPZs05xZ+VWs+OQQJ7MsjRcTewey+B5Z7leXn0/2v16icPVniNqG+hpBwHfyVKKXr8Sjf+uicjIyMrZBEAS8hg4n+rkX8Bo5ynzcWF1F/vv/JfetN9CXlTUxQ+enV4QPS+8bRoxVzeHhU4WsXJVEQRv7mURE+TJivOV+efxQ43uUM6GMGojCryG1W1+PLnVnq+axXmfIjRSdA9kpkXEK0svOUKmT1Ke8NJ709evd4jlMteXoM/aax84aJcnPqeDALssuVL/EMGIHhDRxxrXZn5LHC58nUdKQFwxw05gePHJLPO6uXTdLUzQaKd3yA1nLFlF3OsN8XBMaRvcnnyH49jsb1Y7IyMg4FqWnJ2H3/4mIvz6Oyt8iUFKTfIysJc9Q/vNPXTpq4uPpwj9uH8SkwZb+XTnFNaz45DDJZ4rbNHfiiO5EWzXr3b05nfJS2zZvtAWCoEAz0HJ/15/4EdGgbeKMKzMoOB61Qro/ZlfnklPt/N3tOzuyUyLjFBy0St0aFjIIpULZ4jn0KdvBKIWxFUE9UYbH2cw+W1FXq2P7dyfNxalBoZ6MntJyB+wSJpPI2l2n+fCHk+gb+hW4uSh59JYEbhzTA0UXLizWXrzAhZUrKP7ma0vnaIUC/+tvIHLpctxiYhxroIyMzFXxiE8gesVKfCZOMh8z1dVRuOoTsv/9CrrCQgda51hUSgV3TYtl4aw4VA11H3VaA/+37jhbDma12mkTBIFJs/vi7Stt1Oh1RratT0Ovcz5hFFXvEQiekgMl1lehP/XzNc64HDeVKwmB/c1jOVrieGSnRMbh1BvqSS5KNY9bo4Ih6urQndxtHmsSr3c6pR+TSWTHhpPUVEk7Oi6uKqbd1N/cBK2l1OsMvPVtSqP6kbAAdxbfO4xEq67AXQ2TXkfx+m/Ien452guW3iwukVFELlpK4NxbUKjlruwyMs6OwtWNkDvvoduT/0QdYokm1506SdayRZRu24Jo6hjNI+3BmIQw/nnXYPy9JeUmEfh691k+2XIKg7F1n4t0X+qHUindP0uLavh522mni04JChWahJnmsS5le6u+C9brjUP5RzGJXff75AzITomMwzlWdAK9SZKtDfcIpZtny2WA9el7QScVjQs+IaiinU9z/PC+TLIzy83jyVY7Ui2ltLKelz4/wjGrcH1i70AW3TOUUP+uq+9fd+Y0F5YvpfSHjWCUdvcElYrAW24l8tkluEZ2jI7sMjIyFtz7xBK19Dn8ZswChbRsEXU6ir9ey4UXnkObk+1gCx1HjzBvltw3jD5WdSZ7j+fxn7XHqKnXN3Hm1QkK9WLsNEskOSO1gLRjzpfapO47FlykekmxqghDZtI1zricOP8+eKmles4KXSUZZWdtaqNMy5CdEhmHYx0yHR46uMURDtFkRHdiu3msiZ+OIDjXVzvrbAlJv1i65Q4eFUmUVe5uS8jMr+T5VYe5UFhtPjZjeCSP3ByPm5Nqy9sbU309hWs+5+LLL6Cz6iruFtOHqGXP4z/zegRly1MCZWRknAOFRkPQvPlEPrMEl+7dzce1mefJWrGU4u/XW9I0uxje7hr+ftsgRg2w9HU5daGc59tQAB83MIy+8Zb59u04Q2FeVZtttSWCygVNP0t6n+741hbPoVQoGRqSaB7LKVyOxblWbjJdjrL6cvPOhIDQ6OLQXAyZSYhVUsRAcPFE3We0TW1sK1UV9ezceMo8jojyZdiY6FbNdSSjiJdWH6G8WmqwpFQI3DsjlvmTepubqXU1alJPkLn0Wcp37TArrwkurgTfeTfd/vE0mtCu3YBNRqYz4RodTeSzSwm46WYEVcMmjNFI6cbvyVqxlLpzzilla2/UKgX3Xx/H3HE9zccKSmt5/tPD5o7wLWXstN4EBEuRCJNRZPv6VOrrWhd9sRfq/pOhoVjdVHgWY/7pFs9hncJ1tCgFrdFxTaS7OrJTIuNQDhUcRURaSPbx64Wfa8s6Zoui2Gh3RN1vIoLKxaY2tgWjwcS29Wlo66UdPA8vDVNujGuxAyGKIlsPXuDtb1PQ6S8VtKt4bP5AxidGXOPszomxpob8jz8k57VXMZSUmI+7D4gnesVKfCdORlDIlzgZmc6GoFIRMPtGIpeswLWXRShEl5vDxRefo2jtF5i0LVdj6ugIgsANo6J5aE5/1A21ijX1Bl798hj7U1qefqVSK5k+tz8aFynKXFWpZeemU05VX6Jw90XVe6R53JpoSXevCELdpT5eOqOO5KITNrNPpmXId2wZhyGK4mWpWy3FWHAGU2HDzphCJe2aOBH7d56lKF8KeSsUAtPm9MPdo2VF1gajiU+3nuKr3We4dCsI8nVl0T1D6Bft3+S5nZWqpMNkLnmGyv0WCWiFhweh9z9AxF8fRx3QutQ4GRmZjoNLeDjdn3qGoNvuRNA0XFdFkbIft5G1bBG1p0461kAHMTwuhCfvGIR3w73GaBL58IeTfPvzWUwtdCh8/NyYdH1f8/jC2VKOHLjQxBntjyZhuvmxIfMIpsqWKbMJgtBo/SGncDkO2SmRcRjZ1bnk1RQAoFGoSQxqeQM7vXWUJGYkCveWRVrsSUZqAalHc83jkRN7EmpVjNgcaur1vPZVMj8nW3a5Yrr5sOieoYQFdL2GiIaKcnLffYu8d9/CWFFhPu45dDjRK17Ae+Rop1Nd6yoYDAYOH/6NN998jfvvv5tp08YzYcJ13HTTTBYtepIjRw43eX5eXi5jxgwlLy+3yee1hnnzbrDp3CtXLmPMmKFs3rzRJvPJtB5BocBvitQE1T3OIu+qLyoi+9WXKVj1McZa5+u1YW96hfuw6J4hRARZ7hObfsniv9+notO3TOK3R59AEkd0M48P7c0kO9N5Glkq/buh7HZp/SCiS9nW4jmGhQ5CQLp3nCo9TYW20oYWyjQX2SmRcRjWuxEDgwbgqmqZEpWpogBDpmUOdfwMm9nWVkqLatiz1dKsr1ffIOKHtizNqrCslpWrkhp1aB/ZP5QnbhuEl3vXkrQVRZGK/fvIXPws1UmWxa3Sx5fwP/+F8IceRuXTModPxrYcPZrE3/72MGvXrqa4uJDExEGMGzcRb29vfvppF48++hAffPDfRucYrlGYfK2fy8hcQh0URMTjTxBy3/0o3C0KhBU/7yFzyTNUHzvqQOscQ6CPG8/cNYT4npbI8eFThby85igV1S1Lbxsxvidh3aVrrCjCjxtOUl3lPClymgTL/V+fvhexvrqJZ1+Ov6sfMb5SPY6IyKGCrvd9cQZkp0TGIRhNxkZ/9K1J3dKlbIeGhCZl93iU/s5RW6HTGti2PhVDQ+2Hr78bE2b2adEOfsZFSTkl36qb7tyxPfjj7DhzrnBXQV9STM7r/6bg4w8w1daYj3uPGUf0cyvxHDTEgdbJXEKhUDBhwiTefvt9vv9+G6+88jorVrzIqlVrWb78BZRKJZ988oE5YpKbm8O8eTewYcP6y3LUTSYT33//LbfeeiO5uTlttu2NN95l9ep1BAUFt3kugAcffITVq9cxbtxEm8wnYxsEQcBnzFiiV7zQ6LpgLC8n9603yHvvXQxVXWsH3M1FxaPz4pk8xBLpOJ8nKTheLGz+wl2hEJg6Jw43DzUA9bV6fvwuDWMr+6HYGmVEfxT+DapsBh26kz+1eA45hcvxKJctW+ZoG2Qacx8QbTSa0Grbb5fQw0MqDq+tbR/ViZOlGezPPQiAt8aL+X3moGiBjK9YX039T++DSQpDu465F4W3bRYcbUEURXZtSifvopRapFIruOG2gXh6Nz8KdOBEPm+vT0HbEGJXqxT86YZ+TBrcrc2pSe39e24LoslE+e6d5L7zJvo8S/qaOjCI8P/3CH5Tp7VbE8Tqaun36enpPOmBTXFJSMFkar+C1PDwCCZNmkpoaNhlP+vZsxcFBflkZKSjUCgYO3Y87u4eeHt78fHHH7Bz53bCwyPYtWsHCQkDefHF5fzyyz7uu++PDBo0BEUbBQu8vb3x9fVt8zyXcHd3x9fXF43GcRFLR/yO20J7/g0pXF3xGj4CTUQEdRnpiA1F77qcHCr270Xl64smou3X0/bAFtdshSCQ0CsATzc1J85LoiB1WiMHUvOJDPYipJm9rTQaFcFhXmSckNKuq6u06HVGIns6vrZREAQElcacPWEqz0Xdf0qLxE4C3QLYfXEvJtFEla6axKABeGu87GVyIxx1b3Z1VaNUKgCygE/a9cWvQNfacpVxGqx3IYaFDEKpaFkPCd3J3WCQ/ngV/t1RRvSzqX2tJeVwDmdPFZnH42f0wT+oebUfoiiy5dcs3t+UhrFhoeHtrubJOwYxPC7kGmd3LnT5eVx85UWK1nxuXlAgCPhOmUbU8udxj3OO37dM84mJiQWgqEgqQlUqlcyefRNffPEt48dP5OWXVwLwyisvMH78JL788lvmzLkZlapx753Tp9N5+unHmTlzElOmjGHhwrvYtOl7AMaMGcqYMUMve+2r1ZQ88sifGDNmKEeOHObUqZM89dRjzJo1mUmTRnHvvbezadN3V3wvck1Jx8BryDCp1myURSbeVF1N/gfvkfvm6+hLS5o4u/MxeUg3/jpvIK4a6X6r1Rn5v3XH2Xe8+cpc4ZG+jBjfwzw+/rt7niNR9boOoaGuVKwtx3D21xad76ZyZaBVbevB/JY3Y5RpG7JTItPu1BnqSS5KNY9bmrolGvXoT+wwjzUJM5xixys/u4IDuy0a+f0HhdOnf/OcCZMo8uXOM3z9k6WbbESQB4vuHUqv8K5TKyEaDJRu3kTWssXUn7HozWvCw+n+9LME33YHChfnkXyWaT7Z2RcBCAgIvOxnit9tSigUyis2QE1KOsSDDy5k376f8ff3Z/TocXh4ePCvf73A22+/0WrbDh48wEMPLSAvL5dhw0YQG9uXs2dP89JLz/PFF5+3el4Zx6P09CR04QNE/O3vqPwttRU1x5PJWvIs5T/tQjQ5RwpSe5DQK4Bn7h5CgLd0HTWJIh9tPskPBzKbLfWbOKI70TGWz3L35nTKShwvJiAoVaj7TzGPdce3tli+2Ho9cjj/KCax63w3nAHZKZFpd44VpqA3SQ2Ywj1C6eYV3qLzDWd+RayTUgEEd19UvUbY3MaWUlujY/v3aeZUiuAwL0ZP7tWsc/UGE+9tSOXHwxfNx/pG+vLPO4cQ6ONmF3udkfoLWVx44TmKv11n6cysVOI/+0YiFy/HzaofgUzHoqSkmC1bpKjC+PFSB2aTycSWLZu4445b2L17B08++QwATz75DLt3/8jtt9/Mli2bMDUsGOvr61mxYjE6nZYFCx7g88+/ZvnyF3jzzf/x1lvv8d1337TavtWrP+WJJ/5prn95992PWLx4BQCffPI+9fX1bXn7Mk6Ax4B4olc8j+8ki2y8qb6ews9Xkf3qy+gK8h1oXfvSLciTZ+8ZSvdgT/Oxb/ac44sdp5slGSwIApOu74u3r5SWrNcZ2bY+Fb2uZape9kATNwFUUlqlqTQbY05q0yf8jr5+MXhppM+lQldFeukZW5so0wSqaz9FRsa2tKU3iSg2lvtT95+CoHTs19hkEtmx4SQ1VVI6mYurimk39UPZjIL0Oq2Bt75NaaSwNTQ2iAdu6Ida1bKUto6KSa+jdOMGSrduBqsdS5eoaELvux+X7t0daF3z0B3fgjbpe9B3oMWr2hWXIXPQJMy068sYDAZWrFhCdXU1Q4YMZ8yYcYAkAfy//73NggUPcMMNN1HQsCjs27cf//vfJ2zYsJ7//e9tEhISiYjoxu7dOygpKaZ790gWLHigUXQ0Pn4gc+fOY82aVa2yccKEScyePafRsenTZ/HZZx+TmXmeU6fSSExsuRiHjHOhcHUj+I678Ro2gvxPP0KfL33n6jLSyVq2mIA5c/GbOh1B2fmvvb6eLjx1x2De+vY4py6UA7AjKZuKGh1/nN3vmoIqLq4qps/tz7efHcVoMFFWXMuebRlMnt3XoZkLgqsn6tix6FN3AlK0RNWt+e0GlAolQ0MS2X1xHwAH848QF9DHLrbKXI4cKZFpV8rqyzldLqU4CQgMCx3UovONOamYSrOlgUoj7Yo4mMP7MsnJKjePJ9/QFy+faxe2V9ToeHnNkUYOyaTBETw0Z0CXcUjqTp8ma/kSSjdvMjskglpN4Lz5RD6zuEM4JAC649s6lkMCoK+X7LYzr776IklJvxEcHMKSJSvMxyMiurFu3UbmzLn5sgJ0hULBTTfdwrp1G4mIkFSDjh2TNjMmT552xYL1qVNbLwk+atTYKx6PjIwGoLjYOXLmZWyDW0wfopauwH/WbGj4Lol6PcXrvuLCi8+jvXjxGjN0DtxdVTw2P5GhfS0iMYdOFfL618nUNUNoJzDEk7FTLRHs06mFpB5teed4W6OJnw4NPUeM2ScwXlozNBPrzdLkohTqDc4jfdzZkZ0SmXblUP5RxAYZ31i/3vi6tKxeQmfdLDF2LIKrZxPPtj9ZZ0tI+sXS3XbIqEiiel27m3hBWS0vfHaYCwUWScabx/Xkzql9zKo6nRlTfR2Faz7j4isvmHcrAdz6xBK17Dn8Z8zqULuVmoTpoG5Znx2Ho3Zt1AnZHrz++qts2vQ9AQEBvPHGu5fVk/y+iP33WP+8qEhyDEJDQ6/43CupfjWXkJArz+nhIYlU6HTOr1Yn0zIUag2BN88jctFSXLpHmo9rM8+T9fwyir/7FpNe7zgD2wm1SsFDN/Zn8mCLZPDJrDJeXn2kWb1M4gaG0TfB8vezf+cZCvMcK7us8A5GFW1xLPQtbKbY3TOCMA+pHlRn0pNcdMKm9slcHTl9S6bdEEWxkZpFS1O3jKXZGLMvXRyEht0Qx1FZXs/OjafM427RfgwdE33N887nVfL618lU1Uo3PIUgcO+MWMYObFltTUel5kQKBas+wWClfKNwdSVw3nx8xk1okYSjs6BJmGn3NKiWoGpIvTAYHFek+eabr7Fu3Zf4+vrx+uvv0t1q4XclwsLC2bev6a7vEld22tvizDuDUIaMY3CNjCLy2SWUbd9KyYbvpHo2o5HSTRuoPnKYkHsXdvp6NoVC4I6pMfh4avj2ZymT4UJhNSs/S+Lvf0i8pmTw2Km9Kc6vpriwGpNRZNv6NG5dMARXN3V7mH9FNAkzMGRK6w396QNoht2Cwr15ctSCIDA8dDDfn90CSCnnI8LkfljtQce7+8t0WC5W5ZBfK8mBahTqRtJ7zcE61UQVPdihfUmMBhPbv0tDWy+FuD28XJhyY99rLoxOnC/hlTVHzQ6JWqXgkZvju4RDYqyuJv/D98l5/d+NHBKP+ASiVqzEd8KkDumQyFzOO++8wdq1q/Hx8eH119+hR4+ebZ4zMFCKshRcpSA5L8/xaSMyHRNBpcJ/1myilq7A1coB0eXmcvGllRR+uQaTtnOn8AiCwOxR0SyY2RdFg5NeXFHPys+SOH+NyIdKrWTa3H5oXKTodnWllp0bT7VY+cqWKENjUAQ3iM2YDOYak+YyLGQQQsMGSHrZGcq1FbY2UeYKyCsAmXbDusB9YGZL9/sAACAASURBVFA8rqrmS7uaassxnDlgHmsSWp8/bgv27TxDUX4VIO0yTbspDjf3phupHUjN542vj5ubInq4qvjHbYNIjLlcIrWzUXX4EJmLn6HywH7zMYWnJ6F//BPhjz6G2v/aKW8yHYN3332TNWs+w8vLm9dee5vevWNsMu+lQvNdu340K3JZs2OH/etjZDo3mrBwuj/1DEF33IVwSXpcFCnfsZ2spYuoPZnmWAPbgbEDw3nklng0DdHW6jo9r6w5yolzTfd08fFzY9L1fc3jC+dKG6U2OwLrdYI+bTdiC2pD/Fx9ifGTnBoRkUP5R21un8zlyE6JTLtgNBk5XHDMPB4R1rLULX3qTjBJUQlFcC+UobZZ6LSGjBMFpFkV842c1JPQiKZrY7YevMD7Gy1NEf29XfjnXUPo3a1z9yAxlJeT+86b5P33bYxVlt02r+EjpKZm142SU2c6Ee+99w6rV3+Kp6cXr732Nn369L32Sc1k4sQp+PsHkJWVyapVHzXahU1NPcG3335ts9eS6boICgV+k6YQvWIl7v0t0Xx9cRHZ/36F/E8+wlhb40AL7U9i70CeuH0QHq5Shr9Wb+SNdcc5cKJp2eQefQJJHGERJzm0N5OL50vtamtTqKKHIHgFASBqq9Fn7L/GGY0ZYZVibr2pKmM/5JoSmXbhZGkGVXqpqNtH402sX/NzdEW9Fl3aLvPYkVGSkqIa9mzNMI979Q0ifkjEVZ9vEkW+3n2Gbb9Z1FwiAj14bP5A/L07WGF0CxBFkcr9+yj66gtMtZamWkpfX0LuuhfPxJaprsk4P/v27WHVqo8A6NatO998s/aKz4uMjObuu+9r8fxubm4sXrycp556nA8++C87dmyjd+8+lJaWkJx8lHnz/sDatWuuWTwvI9Mc1AGBRPzt71T+sp+itV9ganBEKvf9TE3KcULuuhvPQZ23zqB3hA//vGsI//nqGKWVWowmkfc3pVFRo2PGiKvXh40Y34PC3EpyL0rpTjs2nOLWBYPxdMD9TlAo0MRPQ/vLagB0KdtQx024YmPWK5EYNIAv09ejN+nJrcknuyq3xX3VZFqGHCmRaReOFB43Px4amoiimRcFAH3GPtBKNwTBKwhVtGNuBDqtgW3rU83Fw74B7kyY2eeqO/0mk8gnW041ckhiuvnw9F2DO7VDoi8uIue1Vyn45MNGDonPuPFEr1gpOySdlMpKSyTs1Kk0tmzZdMV/Bw/+0urXGDbsOt599yNGjx5LcXExe/f+RFVVJY8//hTz598BgI9P84pZZWSuhSAI+IweQ/RzK/EcMtR83FhRTu7bb5L733cwVHTeWoPwQA+evXsoEUEe5mNf7T7DN3vOXrVeRKEQmDqnH+4eUjpzfZ2e7d+lYTQ6RnRDHTsWNFITYrGiAEPWsWucYcFV5crAoP7mcVJhss3tk2mM4MhCJJkr8hMwXqczUFFR124vGhTkBUBRUZXN5zaajPxz33PUGKQF6pND/0KUd/P6T4gmEzVf/ROxsgAAl1F3ohkw1eY2XtMOUWT7d2mcSy8GQKVWcMs9g/G3ulhbYzCa+GBTGr+dLDQfGxQTyIM39kejdpzUrT1/z6LJRPmunRSvX4doVRSqDgoi5J4FuMf1s/lrthf5+VkAhIZGOdiS5uEM6lvtzdatP/D880sZNWosr7zymqPNsTsd7Xfc0f6GrkRV0mEKV6/CaOWAKzw8CL7tTryuG2mXVFR7XrObS029njfXHScj2+KATRnajdsnx1z1PedeKGfDF8lcWmLGD4lgzFTHqJhpD36FLnkzAMrQPrjf+Eyzz00uSuW9lE8BCPUIYfGIv9vFRkf9nn183NBoVAB7gAnt+uJXQI6UyNidcxVZZofER+NNd6+rpzv9HsOFo2aHBI27tOvhAI4fzjE7JADjZ/S5qkOiNxh5Z/2JRg7J6PhQHp47wKEOiT3R5uZy8eUXKPpytcUhEQR8p04natnzHdohkXEeyspKyc+/XGXrxIkU3nnn/wCYNWt2e5sl00XwGjKU6OdexHu05T5kqqkh/8P3yHnjNfQlTReDd1Q8XNU8/odEEqx6cO04nM2nW09hMl15Yzs80pfrJlhU91KScjhjdU9sT9T9p4Ag3XuN+RkYC881+9w4/xjUCiklNL+mgMLa4mucIdMW5ORbGbtzvDjV/Dg+qF/LUresZIA1cRMQHNCgLi+7gl93Wy5i/QeH06d/yBWfq9Ubeeub46RmNu7SfsfUPmaZxc6EaDBQunUzpZs2SPr+DWjCwwm5737cevZyoHUynY0zZ07z2GN/pmfPXoSFhaNWq8nNzSEjIx2A6dNnMWHCZAdbKdOZUXp4ELrgfryGj6Bg1ccYGhyR2hPHyVzyLEHz5uMzvmP2W2oKjVrJIzfH896GVA6nS41Mf07OQ6c3cf/sOJRXeL8Dh3cjP6eS8xnSQv6nLRkEBHviF9B03xNbo/D0R9VruFnBU3d8K25THm7WuRqlhr7+MaQUnwQgpTiNyZHj7GZrV6dz/dXIOB2iKHK82CKjmBDY/B1zY+E5jPkNReWCUtrtaGdqa3T8+F2aeTcoOMyL0ZOuvNCu0xp4be2xRg7JzBGRUpf2TuiQ1GdlcmHlckq++9bikCiV+N8wh8jFy2WHRMbmREVFc9NN8zCZRI4fT2bv3j3k5+czZMgwFi1azqJFyx1tokwXwaP/AKKXr8R38lRouL6L2noKV68i+18voctvWqmqI6JSKnhwTn9GDbB0cP81rYB3v0tFf4U0QkEQmDgrFh8/qaZDrzOybX0qep2x3Wy+hLVAjuH8YUxVzY94JARa6kqsN1llbI8cKZGxK/m1hRTXSTtJLkoNfVqguqU7vtX8WNVrOApPf5vb1xQmk8iODSepqdYB4OKqYtpN/VCqLvflq+v0vPbVMc7nWfJBbxrbgxtGRXc6yVuTTkfJhu8o274VrPpFuET3IPS+hbh0a169kIxMSwkODuGJJ552tBkyMgAoXF0Jvv1OvIYOp+DTj9A1pBbWnc4ga/liAm6ci9+06QjKzpO2q1QoWHh9HBq1kp+O5gBwJKOIN785zp9vjsfldynKl+6b3352FKPBRFlxLXu2ZjD5hr7tem9UBkahDI/DmHsSRBO6Ez/iOvL2Zp07IDAOAQERkbPlmVTra/BUXzl9W6ZtyJESGbtyvMiyqxDnH2vOzbwWpuoSDOcPmceOkAE+tC+TnKxy83jKjXF4+VyePlZRo+OVNUcaOSR/mNSbG0f36HQOSW1GOlnLl1C2dbPZIRE0GgJv/QORzyyWHRIZGZkuh1tMDJFLl+N//Q3QkMYk6vUUf/MVF1auQHvRsU0EbY1CELh7Wh9mDLdIA584X8prXyVTpzVc9vzAEE/GTbP0FjudVkjq0dx2sdWaRs0UT+1B1DVPTMhb40W0t/ReRURSi0/ZxT4Z2SmRsTMprUzd0qfu5JJshzI8DmVg+yq2ZJ0p4YhVN9oho6OI7Hl5pKa0sp6XVh8hu6hBshi4Z3os04dfXce9I2Kqr6Ng9SqyX3kRfYElLcEtti9RS5/Df/rMTpdDLSMjI9NcFGoNgXNvIXLRUlwiLfcr7YUssp5fTvH6bzDpdQ600LYIgsCtE3sxZ0wP87GMi+W8+uUxaur1lz2/b0IocQMtaV/7d5ylILfysufZE2X3eBS+DX1G9PVSu4FmkhBkWb9Yp6TL2BZ5FSFjNyq0VWRWSj06FIKCAYFxzTpPNOjQndpjHqvbWQK4sryenZssOyHde/gxdPTlTlFheR0vrT5CQamkLCYIcP/sOCYMar66WEegJkUq4KzYbWlgqXBzI/ju++j29yfRhFy56F9GRkamq+EaGUXks0sIvOVWhEuNPI1GSn/YyIXlS6k7c9qxBtoQQRCYM6YH8yda0rLP51XyypqjVNZc7oCNmRpDYIgnIKVHb/8ujfq6yx0Y+9mrQD3AUpuqS92BKDZPUtt6UzWtNB29sf3s7krITomM3ThRnIaIFO3o5RONh7p5ihv6MwesmiUGoopMtJuNv8dgMLH9u1S09VII2sPLhck3xKFQNE7Dyiup4aXPkyiuqAdAqRD4f3MGMGpAWLvZam+M1dXkffgeOW/8B0Npqfm4R8JAopavxLcTKszIyMjItBVBqcR/5vVELXsOt5g+5uO6/DwuvvwChV+sxlRf70ALbcuMEZHcPc3yPi8WVvPymiOUVWkbPU+lUjB9bj80LpKzVl2pZcfGk1dtxGgP1DGjGjVTNGafaNZ5Ie7BBLsFAqAz6kgvO2M3G7sy8opCxm60RnVLFEX0J3aYx5r+k9t14bt/xxmK8qsBqTPttJv64eaubvScCwVVvLT6COUNBfBqlYK/3BLP0L7B7WanPRFFkapDv5G5+J9UHbB031Z6ehH6wEOE/+VvqP3bV3RARkZGpqOhCQ2j2z+eJvjOuxFcGuoRRZHynT+SuWwRNanNWxB3BCYO7sb918ddEiIjr6SWFz9Poqi8cd2Gt68bk2fHmscXz5WRtD+r3ewU1K6oYy2Svjqr9UaT5wkC8VYpXClyCpdd6FTqW7GxsXcA/w9IAJTAKeBj4N309PRmxehiY2MVwHXALGASEAd4AqVAEvBeenr6d7a3vnOhNepIL7OEqeOtJPWawpiXjqlUSvlCpWl08bA36Sn5pB2zNGYbNbkXoRHejZ5zLreS/6w9Rm1DMZ+LWsmj8xKIi/JrNzvtiaG8jILVn1Fz9Eij414jriPotjtQeXlf5UwZGRkZmd8jKBT4TpyMR8JACj77lNoTKQAYiovJee1VvEePJWj+bSg9Or6a0+j4MFzUSv63IRWjSaS4Qqq5fOK2RMICLO8vOiaQQdd15+iv0r3+0L4sQiK86d6jfTa7NP0no0/ZDogYLx7HVJ6Pwjf0muclBPZn54WfAckp+YM4t0V912SuTaf5NGNjY98GVgNDgb3Aj0Af4C1gXYOz0Rx6AvuBZ4FY4DfgGyALmAmsj42N/Tg2NrZzySrZmFOlGehN0sI9zCOEIPeAa5whoU+17FqoY0YhuLTPhbqksJqft1mcqN5xQQwYHN7oOedyK/n32qNmh8TNRcXfb0vsFA6JKIpU7N1D5uJnGjkkKj8/wh/5K2EPPCQ7JDIyMjKtRB0QSMRfHyf0/gdQWDkglfv3krnkGaqOJDnQOtsxtG8wj9wcj0opLbnKqrS88sVR8htqLy8xfFwPwiN9zeMdG05SXdk+KW0K72CUkQPNY11q86IlPX2izFLAFboqLlbl2MW+rkyncEpiY2NvAR4G8oGE9PT02enp6XOBGOAkMBf4SzOnE4FdSA5IcHp6+vT09PTb0tPThwMTgBrgvoZ/MlfheJF16lbzoiSm6hIMmZYLs7p/+xS4a+sNbFufhqGh+ZNfgDsTZsY2kvM9n1fJv9ceo04rNX3ydFPz5O2D6B3h0y422hNdUSE5//kXBZ9+jKnOEmr3GT+BqOUr8Uwc5EDrZGRkZDoHgiDgPXI00StewHPocPNxY0UFee+8Se67b2GoKG9iho7BwN6BPHZrgrlnSUW1JJtfYOWYKBQCU+fE4e6pAaC+zsC279IwGptXeN5WNFYCOvqMfc2SB1YICgYEWAR7rFseyNiGTuGUAP9s+P+p9PR083Z3enp6AVI6F8DTzYmWpKenn01PT5+cnp6+NT093fi7n+0BXmoY3mUDuzslJtHEiZKT5nF8M+tJGskAR/RD6W9/FStRFNm9OZ2KMumCpFJLhXhqjaUB1Pm8Sl798phZf/2SQxIV6mV3++yJaDJR9uM2spYuovakxYlUBwXT7YmnCLn7PpTuzRMnkJGRkZFpHiofH8IfepjwP/8FpY9lY6s66TCZi5+lYv++di3+tgdx0f787dYENGpp2VVereOVL45SUGZxTNw9NEyb089ch1KYW8WBXefaxT5lRL9WyQPHy9LAdqXDOyWxsbHdgCGADvj69z9vcCRygFCkWpG2crTh/242mKtTcq4ii2q9pJ7lo/EiyvvaH9VlMsD9pzTxbNtx/FA25zOKzeMJM2PxC7SE1rPyq/j37xySJ25LpFuwZ7vYZy+0uTlcfGklRWu/QNQ1SDcKAn7TZxC17Dnc+zZPvllGRkZGpnV4DhpC9IoX8B5jqZ001dZQ8PEH5Lz+b/QlxU2c7fzERvrx2K0DzY5JWZWWV9Y0dkzCuvswcmJP8zglKYfTaYV2t00QhFbJA8f590HV0AQ6tyaf4roSu9nYFenwTglwKbckNT09/Wrxt0O/e25buNSWNK/JZ3VhjhdbQpoDAvs1qxDMETLAeRcrOLDbsiszYHA4Mf0sClpZ+VW8+qWlhsTDVcUTtyUSGdJxIyQmvZ6La7/mwoql1J87az6uiehG5DOLCbr1NhQuLg60UEZGRqbroPTwIPS+hUQ8/g9UgYHm47WpJ8hc8ix5P2xGNLVPSpM9iI3042/zBqJRNXZMCq0ck4Rh3egZa3nvP21Jp6y4xu62tUYe2EWpoa+fpS+LHC2xLZ3BKbnUTrQpTblLrbl7NPGcaxIbG+sOPNow/KYtc3VWRFEkpahlUsCOkAGurdGx/fu0S9liBId7MWpyL/PPLxRIDklNvcUh+cftgzq0Q1KfeZ7kJ57iwpovEQ3S+0KpJGDOXKIWL8O1R8+mJ5CRcQI2b97ImDFDWblymaNNkZGxGR79+hO9fCW+U6ZxKZ9J1Go5996HpDyzGF1+x90H7Rvlx1/nJTR2TL44SmGDXLAgCEycFYuPn+QgGPQmtq1PQ68zXnVOW9BaeWDrOlm5rsS2dAZJ4Et5NE251dUN/7d1RfkOkmOTBrzXxrmaRKNRERTU/gvgtr5mTmU+hXVSyNlF5cLoPoPQKNVNnlN3IZXqBhlgQe1C6KhZKN3slx5lMprYsu4EtQ19Rtzc1dy+cLj5gng+t4J/rz1mdkg83dQ899AoenfzveqczoxRq+XiF2vJ+X4jWO24ecbE0PsvD+MRFelA6zoGxcVKDAYTKlXH2sfpaPY2h0uNTAVB6JTvr6V0nM9A+n054r7WcfAi5C8PUjl1AmfefIe67GwAqk6eonr5EiJvm0/4TTeiUHW8pVtQkBc+Pu6s+PBXdAYTpZVa/r32GC8+PIYQf6l28bb7h/HhG/sw6E2UldTy6+5zzL1zUCPRGVujH3sjF63kgX0UVWgCwps8Z4LnMNakS/vSZysycfNW4GkjpdCu/vfRUa5mDic2NnYxcC9QAcxPT0/XXuOULsmhnGTz44Ghcdd0SAAqD202P/YcMN6uDgnA7m0ZZJ5pyAMV4Oa7BjdySJ599xeqavUAeLipee7BjuuQVJxI5dhfHydn/fdmh0Sh0RC98D4SXl4pOyQyMjIyToZ331gSX3+VbvPnISgl0RVRryfrs9Uc/8fTVJ9rn2JwWzOwTxCL7x9hjpgUldXxzDv7KGxQ5QoJ8+b6eQnm5584msthOzdWVPuF4h4zxDyuPLzlmuf4uvkQ4x8NSMI+R/I6TxNMR9Px3O3LuRQFacpNvbTKrWrNC8TGxj4OrGh4rZnp6el2j9fpdAYqKq4tUWcrLnnnRUWt+ojM/Jp11Pw41qvPNeczVZdQk37QPDb2Gt9mG5oi83Qx+3eeMY+Hjo7C29+VoqIqsgureeWLo1TXSQ6Jm4uKx+cPxMdVaVeb7IGxro7idV9RsWd3o+M+CfH0/vNDVCk9KP6dbrzM1TEYjA3/d4zc7ku75+1tb11dHd9++xW7d+/kwoUsDAYD4eERTJw4mdtvvxt3KzW3Dz/8Hx9//D4LFjzA3Lnz+OCD/3LgwH7Ky8sIDAxi0qSpLFz4J1ysapzmzbuB/IY0ls2bN7J580bzz2bOnM2zzy5r9Lyvv97A6dMZfP31F5w+nUF1dRUff7yamJhYs71ffbWGXbt2kJMjRWu7dYtk0qQpzJ9/B66uro3e35Ejh3n00YdITBzMv/71Bp988gG7du2guLgQPz9/xo4dz8KFf8LHx7KJsXXrDzz//FKGDx/Jf/7z5hU/t7Nnz3DvvbcRGBjEunUbUTVjJ9xRv+PWI2IwGDvctdSRuE+bzcBRIzn95jvUnJVqAGvOnSf570/hP2MW/jfciEKtcbCVLSPCz41Hbonn/7N33uFVFVsffk9N7xUSSKghpNKr0hQE6U1UiogK167X8qlIRxDL9apXbAiiNEXpICBICb23FFoK6b0np+7vjxNOElIISYAA8z4PD2dmz8yeneScM2tmrd/6cu059AYjqVlFvPv1ft55qh2uDlY09nGgbWgjcyLj7RsuYGWnwqPx7cuTJbXqA5eOA5B7ZjfGwCHISmJNqsLfsQ2XMmMAOBB9En+bmqmMVkV9rcFuFQcHK9TqhmMK3A8nJTEl//tU06bJDW1rjJ+f3yvAZ0ARMDgqKurQrY7xoJCrzSM6xxS+I0NWTs+7KnThu++YDHBudhG7NkeZy02aOdGxh+nPJj7tRoNEwVvjQmnW6N5LGJh/9gyxMz4oZ5DIrazwmDiZgDkzsfS8eeZageBWSU1N4fnnJ7F48VckJycRGBhE585dyMvLZenSH/jXv6aQm5tbab8pUyZw8GAYAQFBtGvXgaysTFas+JkZM/6vXNvevfsRFGRKeubl5c3AgYPN/4KDK4pjrF79K++//xbFxcV07dqd4OBQZCXCG9nZ2UybNpkfflhMamoKnTt3o3PnbiQnJ/H9998wbdqz5ObmVPqser2e1177F3/++RvNmzenR4+H0Go1/PHHb0yd+iyZmaWKPH37PoqTkzPHjh0mISG+0vH+/PM3AIYOHVEjg0Tw4GDTzJeQTxbgOnosMlWJ54HRSObWzcTOnkHRpUvV9m+IBDZz4dVRpQkW03OKWbTyFBk5puSJPR5piauHaS/ZaJTYsT6cohLvhdtBbeSBy6Y6CM+INCeLFtSN++HT7/rWfICfn59VFQpcnW5oWyP8/PxeAr4EioGhJfLCgio4nx6BhMnAaO7gi626eh9LSa9FG7HHXL6dMsB6vSlwTntd2tfegn5D/JHJZCSk5fPJDQbJm0/cewaJIS+P1NUryTtS3m62CW2H+9MTUTk53VbfXMGDiyRJzJjxHjExVxk1aiwvvvgqFhamUwaNpphFi+azffs2vvrqc/NpxnW2bNnIkCHDefPNd1GVLLpiYqJ5/vlJHDiwn7NnT5sNjpdffp2tWzdx7twZgoNDK4x1I+vX/8GiRV/QvXvPCtc++2whV65cJiSkHQsXfo6dnWmnMjc3l3fffZ1z587y2WcfM3v2RxX6nj9/liZNmrJy5R+4uZkU+woLC3jvvbc5ceIo//nPJ8yda0pppVarGTp0BD//vIR169by8suvlxuroCCfHTv+QqlUMnToyJv8pAUPIjKFAufHBmEb2p6U5UspumjaXNMlJ3Nt0Uc49umL68jRyC2r391vSAQ2d+HlkUF8/edZ9AbJZJisOsm7T7XH2d6SASPasnbZSTTFevJzNezaFMGgMUHmmLL65Lo8sCZsOWCSB1YF9DNvYFRGIxsPXK1cSC/KQGPQcjHrCgEufvU+tweNe94oiYqKuubn53cSaA+MAZaXve7n59cLU06RZKDGpxx+fn7TgK8BDTA8KiqqZrIMDzBlpfGC3W5+lHknZYDDdl4mPcXk6SeXy+g/vC1W1ioS0gv4ZNUpcwyJpVrBm2NDadH43snULkkS+ceOkrrqVwx5pUe/Cjs73J8cj22nzsIYuc38HbeXrdE70Ri0d3sqNcZCoWZQs0d5pGmvOo91+PBBzp8/S0BAEK+99hbyMup5FhaWvPXW+xw9eoQdO7bxyitvYm9favC7u3vw+utvmQ0SAF/fZgwYMIj169dy4sSxSk9BasKgQUMrNUiSk5PYs2cXcrmcd9/9wGyQANjb2/POO9OZNGkc//zzNy+++CoeHhVPF19++Q2zQQJgbW3D22+/x9NPj2bv3t2kpCSb+w0fPopff13G1q2beP75f5VzSdu2bTNFRYX06fMIrmUkYQWCG1F7euL91rvk7NtD+trfMBYXgySRvXsX+adP4zHxGWwCg+72NGtMcIvrhsk59AaJtGzTick7T7XD2dGKfoPbsHWtKV7jWnQWJw7G0qmn722Zi6pVdzRHfwdtkVkeWNkkuMr2MpmMYNe27L62H4Bz6eHCKKkH7gf3LYAFJf9/7OfnZxaQ9vPzc8ekmAWwMCoqyljm2st+fn6Rfn5+5YyYkmvPl/TTACOioqK2376p3x9oDVoiM0uPkW8mBSxJEroLd0YGOPJcMhFnSuUUe/RrgUdje1IyC/lk1SlySwwSC7XphKSF171jkOizs0j835ckfb+4nEFi17UbvnM+wq5zF2GQ3AF2x+27pwwSAI1By+64ffUy1uHDBwDo1atvOYPkOlZWVrRp44/BYCAysryuf4cOncynKmXx8fEFID09rdbz6tWrT6X1Z86cQpIkAgICadrUt8L1Zs2a07ZtIEajkTNnKh6w29ra0aPHQxXqvb2bVNrPzc2dXr36kpubw65dO8r1Wb/epOIzcuSYW3k0wQOKTC7HsXdffObMxzqwdNGsz8wg4YvPSP7pBwz5+dWM0LAIbuHKiyOCUJScgKRmF7Fo1Smy8zX4tHShfbdSMZbjYbHEXc28LfOojTxw2XXOufRwpOs5BgS15p4/KQGIiopa6+fntxj4F3DOz8/vb0AH9APsgfWYTj3K4gr4YTpBMePn5xcKfAfIgGjgCT8/vycquW16VFTUW/X6IPcwkZmX0BlNi3tPa3fcrd2qbW9IvogxwxRYilJd7sOgPslIzWff9lJjqWVbdwLaNyYjp5hPV58it8C0kLRQK3hzbAgt7xGDRJIkcvfvI+331RiLSj0WlU7OuE+YiG0td5YFtaNv04fvyZOSvk3r532XmJgAwDff/JdvvvlvtW2zs7PKlSs7hQCwsTG5f2q1tf+Zeno2qrQ+Lc2UMbpRo6pj2Bo3LLLAjQAAIABJREFU9uL8+bPmtmVp1KjycU3XGnPu3BlSU1PK1Y8e/QS7d+9k3brfGTRoCGAKnI+JiaZZs+a0a9ehsuEEgkpRObvg9dob5B05ROrqlRhLDJHcgwcoOH8O96cnYNeh001GaRiEtnTlpRFB/G/dOQxGidSsIj5bc5p3n2pPp4d8SUnMJSE2G4BdmyIY/UwH7BwqbmTUFXVAP3Rl5IGN2cnIHauOwWzu4IuN0poCfSHZmhyu5SXQ1N673uf1IHFfGCUAUVFRL/r5+YUBLwG9AAUQCfwELC57SnITHDEZJABtSv5VRiwgjJISyrtuBVTT0oTu/E7za1Wr7sjqSeO7LJpiPdvXhWMoUadxcrGm92OtyS3U8enqU2TkmlSd1So5b4wJodU9IvurTU01+RVHRpSrd+jVB9fRY1FY3Tt+xfcLjzTtVS9uUPXFnVZmMhhM9wkNbU+jRtVr/Ht4lF/Q386TvLJuUpVxJw8Rg4NDad3aj4iIcCIjI2jTxt8c4D5ihDglEdw6MpkM+67dsW4bSNqqX8k7dhQAQ24uSYv/R177Drg/NQGlY8P/bgtt5cq/hgfyzbrzGCWJhLQC/vPbGd4aF8ojQ/1Zu/QEBflaiov07NgQzvCnQ1Eo6te7Qm7vjqJpCIa404AptsSyx/gq2yvkCgJc23A0+SQAZ9MvCKOkjtw3RglAVFTUSmBlDdvOAmZVUr+HUqNEUAOMkpFz6TXP4m7Mz0Afc8JcVgU8Wu9zkiSJf7ZGkZNlOkVQquQMGNEWrdHIZ6tPk3K9XiHj5ZFBtG7S8D+0JaOR7L93kL7+T6Qyu8cqdw88Jk3G2q8q+1kguL14eHgA0KfPI4waNfYuz+bmXI8FuX7CUxnXr5WNG7lOUlLV2bWTkhKr7Ddq1BMsWDCHP//8jRdeeJH9+/dibW3DY48NuqX5CwRlUdrb02jqi9h17krKr8sx5JhOFfJPnqAwMgK3J57EvnvPBu/K2761G1MG+/PjpnAkIDopl6/+OMvrY0J4dHhbNq48g9EokZqYx8FdV3iof6t6n4M68FGKSowS3cUwLDqNqlYeONg1oIxREs7g5gPqfU4PEvdLTIngLhKTG0e+zhSwbqe2xce+SbXt74QM8Jmj8URfTDeXew/0w8regi9+O0N8mumYWyaDqUMDCGzmUu/3r280CfFcWzCPtN9WlxokMhlOjw3CZ9ZcYZAI7ipdu3YH4J9/br8eiFJpCog3GAy1HiMkxJQl+sKF88TFVUzOFhMTTXj4eeRyOSEh7Spcz8/P49ChirKhCQnxhIefRyaTERLSvsL1Rx4ZgIODA7t27eDXX5dhMBh47LFBWFvX/0mx4MHDtl17fOfOx/6hUrdMY2EhKUuXkPCfT9HVIT7rTtEtwJPxA0oDxiPjsvlm/XncGtnRtXdzc/35k4lcCq/oWllXblUe2N+5NUqZKcFlQn4SGUW3J+blQUEYJYI6czat9JQkyKUt8mpk9O6EDHDitWwO7ynNeBvYvjG+rV346o9zXEkszZPw7CB/OvhV3M1sSEh6PRkb1xM7ZybF0aXPpPbypukHM3AbPRa5+t5KniW4/3jood74+flz+vRJPvnko0rze2RkpLNx47o638vNzRSvFhMTXesxPD0b0atXX4xGI5988hH5ZQKD8/Ly+OSTjzAajfTp80iVMS9ff/0F6emlGx+FhYV89tlCDAYDDz/cG89K8gFZWFgwZMgINBoNa9euAYTrlqB+UVjb4DnpWbz//Q4qt9LYzsLwC8TMnE7Wrp1IxoadcLNPOy/G9G5hLp+9ksGPm8MJ7NCY5n6lCnV7tkWRmV5Qr/e+Lg98He2Fv5Gkqn9elkoLWjub9ZXKubILbp37yn1LcHe4FSng2y0DXJivZeeGiOsHMbg3tqNz72YsXn+BiNjSANunH21Nj6Cqg1UbAsXRV0le9hPaMgnXZEolzoOH4vzYIGQiyZqggSCXy1mw4FPefvs1Nmz4k507t9OyZSvc3T3QarVcuxZLTEw0Tk7ODB06ok73CggIwsXFhYsXI5kyZQLNmjVHqVQSFBTC448PrfE4b731HnFxMZw6dYKxY4fRrp3pZOPkyRPk5eXSsmVr/v3vdyvtGxgYjMFg4MknR9KhQ0eUShWnT58kOzsLLy9v3nyz8n4AI0aMZtWqXzAYDLRr14FmzZpX2VYgqC3W/m3xmTWPjPV/kvX3DpAkJI2GtFUryDt6BI9Jz2LRuPr4r7vJwK4+FGr0bDlkOsk8GpGKpVrBkwNbk5FaQE5WEXqdkR3rwhk1qT0qtaLe7n2r8sDBrgGEZ5hyx5xLD6dPk4oy5IKaIU5KBHUipTCNlELTEaparsLPqWofz9stA2w0SuzcGE5hvsm9ydJKySPD/Pn5ryhOXy7d0Rz5cHP6dWi4wWhGjYa031YT99HccgaJZfMWNJ0xG5fBQ4VBImhwuLt78P33P/PGG+/QurUf0dFX2bNnFxcunEWttmDcuPHMn7+ozvdRq9V8+ulXdO/ek6SkRHbs2MbmzRs4ffrkLY3j6OjIt98u5bnnpuHm5sbhwwc5fPgg7u4evPDCiyxevAR7+8rV+JRKJV9++S3Dho3kypXLHDiwD5VKxciRY/juu2W4uFSdb8TDw5OmTX0AIQMsuL3ILSxwe+JJmrw3HXUZA6T4ymXi5swgY8smJH3DzUQ+8uHm9Gtf+l2970wS6w7E0H9EW7OYR1ZGIXu2RdWrHO+tygMHufqbX1/KvkqhrrIc3oKaIBO6yg2OPUAvrVZPTs6d+8N2czMlD0tLy7tJy/LsjN3D+itbAQhxDeCF4ElVttUnRVG0qSSljFKN7dP/qVfVrcN7rnLq8DVz+fGxgey5lM6eU6XBrAO7NmV0rxYNNuCvMDKClJ+XoisjQypTq3EdORrHvo/U2Yir7e/5QSc52bRb5+npc5dnUjPutPrWg8LJk8d59dVphIa25+uvv6/VGJcuXWTy5KdwdXVj7dpNKGu5wXCv/Y7vtfdQQ6G+PrONOh2ZWzeTuXUzlInHsmjSBI9npmBZkheooWGUJH7aEsHB86XZG4b3bIafgxW7t0SZ63o+2pKgDvUXn2rMTaVg9buAaY1sM3ZhtfLAi459RWyeaf3xTNsn6eRZMRatOu7Wd7ODgxVqtRJgL9D7jt68EsRJiaBOlFXdCrqJ6tbtlAGOvpReziDp2MOHI7FZ5QySPu28GqxBYigsJGX5MuI//bicQWLt3xaf2fNweqT/bUsuKRAI7hxLlnwLmPKW1NYgEQhuFblKheuwEfh8OAsL32bmes21a8TNn0PaH79jrENOoNuFXCZj8qA2dGhdGh+zPiyauGIdbUNLXbAP7rpCckJuZUPU7r4l8sDX0V6o/rSkrOv6ORFXUmvEKkdQa/K0+VzNMe1+yZARWOYI80ZMMsCl7hX1KQOcm13E7s2R5nKTZk4kyyW2HYkz13UN8ODp/q0bpEGSf/oUsTM/IGffHnOd3MoKj0mT8XrzbdSVSIsKBIJ7h7CwvSxYMIfnn59IWNg+GjVqzKhRleXkFQhuLxbeTWj63nRcxzyBTGVSssNoJGvbFmJnz6DwYlT1A9wFFHI5LwwNIKCZs7lu1a5L4G6Nm6ctUOK+vSGcokJdvd1XHVi6TtFdDEPSVu29UnZT9kJGFHpjw3WLa8gIo0RQa85nRCKVHG02d/DBTm1bZVtd+D9QomBRnzLAer2R7evC0WpMx9G29haomtizbn+pMk+7Vq48O8gfeQMzSPR5uSR9/y2JX/8XfVZpEL5Nu/b4zv0Ih4d6NUgjSiAQ3BpRUZFs2bKR2NhYunTpzmeffYmVSHIquEvIFAqcBwzEZ9Y8rFqXyu/qUpKJX7SAlBXLMRY3rLgIlVLOyyOCaOldGue1fOdFPIM8sLA0nTjm52rYtSkCo7F+whIqygMfqLJtYxtPXCxNRlOxoZhL2VerbCuoGmGUCGrNubQL5tfVuW5JBj26qH3msiqgX73NIWznJdJTTHKecrkMzyB31uwr/TDw93Fi2rAAlPWc+bUuSJJE7pFDxHz4PnlHD5vrFXb2NJr2Io1ffAWlo9NdnKFAIKiM9u07EhZ2/JbjSaZMmUpY2HF27NjLZ599SdOmvrdnggLBLaD28MD7rXdxn/AMcktLc33OP7uJmfEBBefO3sXZVcRCreD10SE09TBtgEoS/LzrEs07lm5yXovO4viBirmHasON8sC6iN1VBtTLZLJyiaPLpkoQ1JyGs1IT3FNoDToiMi+ay8FuAVW21UcfRyoy+XrKbJzrTQY48mwyEWdKg9+aBHmw+mCMudzCy55XRgWhUtafVGBd0WVmkvjVFyT/8B3GMrkR7Lv1wHfuR9h17CxORwQCgUBwR5DJ5Tj26o3PnI+wCS6NodBnZpLw389JWvI9hjLfVXcba0slbz4RSiMXawAMRolVh2PwDSh1cz5xIJa4q/WTxFDVshuoTAabMSsRQ/LFKtveGFcihKRuHWGUCGpFVNYltEaT76aHtTse1m5VttVF/GN+rfLvhUxedyMhPSWffTsumcsevo6sP5dkzk/SxN2W18eEYKluGIGkktFI9t5/iJ3xPgVnz5jrlc7OeL32Jp5TnkdhW7X7m0AgEAgEtwuVszONX3kdz+enobC1M9fnHTpoOtU/frTBLLLtrdX8+4lQXB1MxoJOb2TLpVRcG5XO+++NEeTlFNf5XjK1lckwKUEXvrvKti0cmmGtNLllZmmyic9PrPP9HzSEUSKoFWWPJoOrcd0yZCZgSCoJnJMpULXpVed7a4r17FgfjqFECtPW0ZJ/ErPRl2Sp9XCy4t9PhGJjqarzveoDbUoK8Z8tIvWXnzEWl35IOvTph++c+dgEVZ2USSAQCASCO4FMJsO+S1d85s7HrnNXc70hL5ekb78h8Zuv0Gdn38UZluJsb8lb40Kxt1EDUKg1cCy3ECsb0/f+jeuEuqBq29f8Wh99HGNhTqXtFHIFAS5tzOWzZVzcBTVDGCWCWhGVVXpKUV0Wd11E6a6C0rcdcmvHOt1XkiT+2RJJTpYpCE+pknNBq6NAawp0d7BR8+YTpR9UdxPJYCBz+zZiZ39IUVSpOpjKwwPvd97D4+kJyC1FsKtAIBAIGg5KO3savTCNxi+/htKpNL6x4NRJYj58j5ywfQ3i1MTdyZo3xoRgWZLNPb1AS6wCZHKTC3RqUh4Hdl+p830ULk2Qe7Q0FYwGdFH7q2xb1pU9ssw6SVAzhFEiqBW2JUpbnjYe+No3rbSNpCtGd/GguVx2t6G2nDkaT/SlDHM5xUJOamFJBne1gtfHhODmePcX+pr4a8QtmEf672uQrmu/y+U4DXwcn5lzsS6jeCIQCAQCQUPDNrQdPrPn49Crt7nOWFREyrKfSPj8U3RpaXdvciX4eNrx8sggFCWGSGxuMQV2pV4SF04mcvFCSp3voy6zftFF/INkrPwEpq1zaxzU9gDYqYRL9q2imDVr1t2eg6A8zwC+BoMRjebO6Vzb2FgAUFhYs+RJwa4BeFi78XizR7FWVW4E6C6GYYg+DoDcwROLruPqFMSdGJfNrjL5SIptVUTlawBQyGW8NjqYVt51O4mpK5JeT8amDSQv+R5DVmmgnUWTJni98gYO3XsgU9y9wPtb/T0LTOTnm47rbW3v7t9XTZGXfEHXlzSmoOFxr/2O77X3UEPhbn9my1UqbENCsWrtR9GlSxgLCwDQpaeRs38vcgsLLH2b3VWBFjdHKzycrDkRZTKS0jR6GtlaINOaDIdr0Zk0a+WKVR08KOQOHqbUBgYtaItQuDdD7lAxw7tSriTQ1R9v28Y85tsPpbxmca136/dsaalCYVInjQWW3dGbV4I4KRHUCju1Ld0bd8bJsvIvGEmSTG/gElRt+9TpQ6swX8vODRHmQHbJUsH5/NL4jCmD/Wnr61xF7ztD0dWrxM6ZSeamDWAwuZPJlEpcRoyi6QczsfT1vavzEwgEAoGgNli38cdn1lyc+j8GJd/lklZL2uqVXPv4IzSJCXd1fl3aejCub0tz+VR+MTIL0wagXmdk+7oLaOuw0StTqlH6PWQua8usb27Ew9qN7o07Y6m0rLKNoHKEUSK4LRjTrmLMKNEKV6hRte5Z+7FKMrUWFpTsIChknCnWcn1/cFzflnRtW3HH4k5h1GhIW7OKawvmoi3zwWzZoiVNZ8zB5fEhyJQNQwVMIBAIBILaILewwG3sOJq89yFqL29zffGVy8TNmUnG5o1I+ruXybx/56Y81tnkTm4Ezmm05viS7Mwi9my7WKdYGHXbPubXhrizGPPuvvva/YYwSgS3BW0Z2Txliy7ILGxqPdbRfdEkXitVu4gy6NGVvH6sc1P6d648puVOUBgZQeys6WTt3M71YxyZhQVuTz5Nk3ffx6Jx47s2N4FAIBAI6hur5s3x+XAWLkOHQ4k7sqTXk7H+T2LnzaY4JuauzW10nxZ0DfAAoAi4YjSYr12JTOPcidqf6Mjt3VF4B5aUJHQRe+swU0FlCKNEUO9Ixfnorxw1l8vuLtwq0RfTOXX4mrkcj5HcktddAzwY3adFrceuC4bCQlKWLyX+04/LBftZtw3Ad/Y8nPo9ikwu3l4CgUAguP+QKZW4DB2Oz4zZWDZrbq7Xxl8jbv5s0tb+hlF75+Ng5DIZzw7yJ8DXpBqWgUQqpUHph3ZfJTmhcknfmqAqs57RRe1DMty9k6H7EbFqEtQ7uothYDCdZchdfZC7NavVODlZRezeUhrYnoNEUonTVoCvE88O8kd+F4Lr8k+fImbG++TsK90lkVtb4zF5Cl5vvIXKtepEkgKBoOYsWfIdPXt2ZMmS7+72VKokKSmRnj07Mnr0kLs9FYHgjmPh5U2T96bjNnYcMnVJILkkkfXXVmJnf0jhxag7PielQs6LI4Lw8TAlU4xDorBk7WA0SuxYH0FRLQPKlU1DkdmY4lelolz0JWI+gvpBGCWCekWSjGjLZnBv27dWAe56nYEd68LRakxHr1okrpTsdvh42PHiiCCUijv756vPyyXp+29J/Pq/GMokkLJt1wHfOR/h0OOhu6pAIhAIBALBnUYml+PU/zF8Zs3Dqo2/uV6XkkL8ogWk/LocQ1HRHZ2TlYWS18eG4OZoiQRcwsh1R66CPA1/b4yolXKdTF4+CbQuouqAd8GtI4wSQb1iSIhAyinRBFdboWrRtfoOVbB/52XSU/MBU8Da9Q8UN0dLXh8bgpXFnQsclySJ3COHiPnwffKOHjbXK+zsaTTtJRq/9ApKRyFzKRDUN6NGPcGKFWsZNeqJuz0VgUBwE9Tu7nj/+x3cJz6D3Ko0VUDOnt3EzvyA/LNn7uh8ridTtrNWoQWuUBpfEh+TzfGwmFqNq2rzMMhMy2dDUhSGrLurPHY/IYwSQb2iKxPgrmrVA5nK4pbHiDiTROTZZHM5DiOFgJ21ijfHhuJwB7O16zIzSPzqC5J/+A5jfr653q5bd3znfoRdx053bC4CwYOGo6MjPj6+OAqjXyC4J5DJZDg+3Buf2fOxCQ4x1+szM0n88j8k/fgdhry8OzYfDydrXh8TgoVKQQ6QWCa+5MTBOGKvZFTduQrkNk4ofduby7pq5IEFt4bQKRXUG8aCLPSxp8xlVS0C3NNT8tm/83JpGSNpSFioTNnaPZyt62WuN0MyGsnZv5f039dgLC7Nh6J0dsFj4iRsAoPvyDwEgnuFnj07AhAWdpytWzfxxx+/ERsbjbW1Dd269WDatFdwcnJCo9Hw66/L2LlzO6mpyTg6OjFgwCCmTJmK8gbp7CVLvmPp0h+YPPl5pkyZWu7a339vZ+PGdVy6dJHCwgJsbW1xcXElJKQ948Y9jVcZydL09DSWL/+JI0cOkZaWikwmw8HBEV/f5vTq1Ydhw0ZWeJ6YmGjWrFnJyZPHSEtLQ61W4+HhQadOXRk9+gk8PRvd9Gdy4cJ59uzZxcmTx0lNTSEvLxcHB0eCgoIZN24CgYFBFfoYDAY2bVrHX39tJTr6ChqNBjs7e9zc3GjXriPjxz+Dk5OTuX1cXAzLly/l1KkTZGSko1KpcXBwoFUrPwYMGEjv3v1uOk+BoL5ROTvT+JXXyTt2hLSVKzDkmwyRvMOHKLxwHvenJmDbsdMdcXlu1sieF0cE8uXasyQYJWyQcMB0312bIhkzuQN2DreWU0TVtq85nkR38QAWncfUahNWUB5hlAjqDV3kXpBMuxCKRn4onLxuqb+mWM/2dRcw6E1jFCIRi4RCLuPFEYE0a2Rf73OuDG1KMik/L6XohgA9hz79cBs1Grll5RnsBQIBfPPNl/z++ypCQ9vTpUs3zp8/y5YtG4mMjGDx4iX8+98vExMTQ2hoe7y9vTl9+iS//LKU7Oxs3n33gxrd47qxolQqCQwMxtXVjfz8PJKTk1i37ndCQkLNRkl6ejpTpownIyMDT89GdOnSDZVKTVpaKuHh50hOTqxglGzbtplFi+aj0+lo3NiLHj0eQq/XER9/jdWrf6V58xYMGnTzwPbvv/+G06dP4OvbHH//ANRqFXFxsezZs5v9+/cyc+Z8+vZ9pFyfhQvnsm3bZiwsLAgODsXBwZGcnGwSEuJZs2YFffo8YjZKLl++xAsvPEthYQE+Pr70KIlrS0tL4+jRQ2g0GmGUCO4aMpkM+85dsfEPIHX1CvKOmNyfDXl5JH33DTZH2uExfiJKR6ebjFR3gpq7MHlQG37cHMFVjAQgR42sZN0RzojxoSiUNXceUjT2R+bgiZSTDLoidFcOoy4TayKoHcIoEdQLktFgMkpKULXte2v9JYndWyLJzTadShhKAtuNwJSBbQhq7lKf0618DgYDWX/vIGP9n0g6nble5eGJx6TJWLf2u+1zEAjudf76awtLl67E19ekupebm8u0aZO5cuUS06ZNxtbWjt9/34itrS0Aly5F8dxzE9m8eT2TJj170xMIrVbLypXLsbKyZsmSX2ja1Kfc9WvX4lCU5E4A2LRpHRkZGQwbNpK33nqv3M6sVqslPPx8uf4RERdYuHAuAP/3f9N5/PFh5frExETX+Gfx5JPjmTlzLs7O5T+/wsL2MX36O3z66QK6d++JpaVplzY5OYlt2zbj7u7Bjz8ur9Dv0qUoXMuo+61evYLCwgKmTn2JCRMml2tbWFjI1auXEQjuNgo7Oxo9Pw27zl1J/fVn9FlZABScPkVMVCRuY8dh3/Ph235q0j2wEVl5Gv7Ye5XLGGmDHDky0pLzOLDrCg8PaFXjsWQyGWr/PmgOrwJMrusqv9v/DPc7wigR1Av62NNIBaYPGpmVPUrfDrfU//SRa8RcKvXtjMZIMTCkuy89gm7uJlFXNNeukfzzT2jKLjjkcpwGDMRl6DDkqjsXxyK498jcvo2MjRuQNMU3b9xAkFlY4jJ0GM4DBtbruFOmTDUbJAD29vYMHz6KL7/8nJiYaJYvX2M2SABatfKjW7cehIXt49SpEwwcOLja8QsKCtBoNLRs2bqCQQLQpEn5ZKqZmZkAdOnSvcKCQa1WExravlzd8uU/YTAYePrpSQwePLzC+GWf7WZ07dq90vqePR+mT59H2LnzL06ePE737j0ByMoyzdXPr00FgwRMP6uyXH+2yu5jbW1NoHAzFTQgbENCsWrVmvQ/fiNn7x4AjEVFpPy8lNwjh/GYNBm1m/ttncOgrj6kZhWx/2wS8Ug0LXHjunAqEU9ve1qXJF6sCarWPdAcWwsGHcb0WIxp0Sjcm9+8o6BKRKC7oF4oF+Du9zAyRc3t3cS4bI7sLTUGkjGSBXRp68Hwh2qX46SmGHU60tf/Sey8WeUMEosmTWn6wQzcRo0RBongpmTt2H5PGSQAkqaYrB3b633cLl0qLpC9vJoA4OHRqNJFvbe3yZBIT0+/6fhOTk40atSYy5cv8tVX/yE2Nqba9m3bBgCwePGX7Nu3h6JqpEkNBgPHjh0BYMiQigZJbcjOzmbr1k18/fUXLFw4l/nzZzF//iyuXr0CwLVrsea2Pj6+WFvbcPBgGMuX/0RyclK1Y19/tk8+WcCxY4fR3oVkdQLBraCwtsZjwjN4v/UuqjIGSFFkBLEzp5O1czuS0VjNCHVDJpMxYYAf/j5OpCCRWSbwfe9fF8lMK6j5WJa2KFt0MZe1ZdZBgtohTkoEdcaYk4wh4UJJSYbKv3eN+xbka9ixIRypRC48D4l4JFp6O/DsoDa39Si06MplUn7+CW1iornuepZap/6PIVOKt4egZjj1H3BPnpQ49R9Q7+O6u1fc6bQqkQet7FrZ61qtpkb3mD59NtOnv8uaNStYs2YFjo5OBAQE0rlzNwYMGFTuJGbAgEEcPXqYnTv/4v3330KhUNCsWQtCQ9vRr19/goJKFYJycrIpLi5GoVDg7d2kxs9cFevX/8HXX/+H4uKq/y4KCkoXQdbWNrz33ocsWDCX77//hu+//wY3N3cCAoLo3r0n/fr1x8KiNJh2/PiJnDp1ihMnjvLGGy+jVqtp2bI1oaHtGTBgEC1atKzzMwgEtwPrNv74zJpLxsZ1ps0RSULSaklbs4q8Y0fwmDQFC69bi0utKUqFnJdGBDL/lxNEZxRihYQVMvQ6I9vXXWDUpPaoa5h2QN22L/qLYQDorxxB6joOmaXtTXoJqkKsugR1Rhuxx/xa0TQYuZ1rjfoZjRI7N0RQVGCK39CVxJG4OVrxysggVErFTUaoHUaNhvR1f5C9aydmawiwbNESz2eeRd2o8W25r+D+xXnAwHp3g6oLypKATb3+9u04VoVcXvUBfH1tMoSEtOP33zdy4MB+Tp06wfnzZzl4MIwDB/azdOn3fP7517Ru3cY8n5kz5zFhwjMcOBDGuXNnOHfuDGvXrmHt2jU8/vhQ3ntvRr3OD0yxKZ99thCFQsGLL75Gz54P4ebmgaWlJTKZjO+++x+//LIUSSqfwK1Pn0fo2LELYWF7OX36JOfOnWHPnl3s2bNFsIYNAAAgAElEQVSLn376nv/97wc8PDwBsLS04r///YYLF85z5MhBzp07w/nz5wgPP8/KlcuZMmUqkyc/X2/PJBDUJ3ILC9zGjMOuY2eSl/2ENiEegOKrV4mdMwOXwUNxHvj4bdkgtLZU8fqYEOYtP87lQh1tkaNARnZmEXu2XeTRYf41+jyQuzVD7uqDMT0WDDp0Fw+gDq7/zZ4HBWGUCOqEpNeii9pvLqtvIcD9yN6rJF3LMY1TYpCoLZW8NiYYO+vb4zJVGBFOys9L0aWnmetkFha4jhyNY59+yKpZUAkEgoaDpaUl/fo9Sr9+jwIm16+vvvqMXbt28vnni/j225/KtW/evCXNm5tODoxGI4cOHWD27Ols2bKRfv3607lzV+ztHbC0tKS4uJiEhPhyssK3yp49u5EkidGjx/HUUxMqXI+Pv1ZlXzs7OwYOHGyOr0lIiOfjj+dx8uRxFi/+ilmz5pdrHxAQSEBAIAA6nY6dO//i44/n8dNP39Ov36M0bepb6+cQCG43ls2a4/PhLDK3bSFj80YwGMBgIGPDOvKOH8PzmWexbFb/sRpujla8OiqYRatOEaOXaFESX3IlMg1PL3uCO938/S+TyVC17Ytm31IAtBH/oArqLwLea4lYgQnqhP7qMdCY3A9kdq4ovCvq7ldG9MV0Th+JN5cTkCiUy3hpRBCNXGzqfZ6GwgKSl/1E/GeLyhkk1gGB+M6eh1O/R4VBIhDcw7i6uvLCCy8BcPnyxWrbyuVyevR4iIceerhce4VCQceOnQHYtGl9neaTm5sLgLt7xcDZrKwsc+xKTfDy8mbixGdL5nqp2rYqlYpBg4YQEBCEJElcviwUuAQNH5lSicuQYfjMmINl81IDRJsQT9xHc0n7fQ1GTc3cO2+FFl4OPDe4LZlIpJaJLzn0z1WS43NqNIaqRVdQm1xQpZxkDIkR9T7PBwWxChPUibKBXSr/3jVa2OdkFbF7c6S5nI1EEhLPDGxDG5/61yvPP3WSmA8/IDdsn7lObm2Dx+Tn8Hr936jKSGwKBIKGTXJyEps2raegIL/CtQMHTO/xsrLC27ZtJioqskLbnJxszp8/B5gC8K8zceKzKBQKVq36ha1bN1XoFxsbc9PgegAfH5My2F9/baGwsNBcX1hYwIIFc8jPr5jV+uLFSHbt2oGmktikAwf2lzybp7lu7drfiIurOJeEhHiio69WaC8QNHQsvLxo8n/TcXviSWTqEo8JSSJr+zZiZ8+gsJL3cl3p1MadUb2aE4dEPiZ3SqNRYseGcAoLbi4eIVNZoGrVw1zWiYD3WiPctwS1xpAeizHVpCCDXIHK7+Gb9tHrDGxfdwGt1gCABomrGG+L9K8+J4fUVSvIP360XL1th464PzUepYNjvd5PIBDcfvLycvn443l8/vnHtGzZmsaNG2M0SsTEXCU6+ipKpZJ//etVc/t9+/5h/vxZuLm506pVa2xt7cjJyeHs2VMUFRUREtKOXr36mNu3bRvI22+/zyeffMRHH83m55+X0Lp1G3PyxOjoq7z//kx8fHyrneegQUP57bdVXLwYydixwwgODkWSJM6cOYVKpeTxx4eyZcvGcn2Sk5OZOfN9LC0tad26De7uHuj1Oi5ejCIxMQFraxuee26auf2GDX/y6acLadzYi+bNW2BlZU1mZgZnz55Gp9PRr19/2rYNrJ8fvEBwh5DJ5Tg9OgCb0HakLl9GYUQ4ALrUFOI/WYhDrz64jh6Lwqr+Ehlflwo+cjaJAOQokVGQp+XvjREMfiIYubx6dyyVfx90F/4GQB9zEmNBFnKb258U8n5DGCWCWqML/8f8WtmsI3Krm2dc37/jMhmpJncvIxKXMdKxnqV/JUki7/AhUlevwFhG2UZhb4/70xOw69Cp3u4lEAjuLF5e3rz66pucOnWC6OirHDx4FZlMjpubG0OHjmDMmCdpVsb/fNy48Xh6Nub8+TNERkaQl5eLg4MjrVu3YeDAwfTvPxDlDYG0gwcPw98/gDVrVnDixDHCwvZiaWmFh4cnTz01gfbtb/4ZYm9vz5Ilv/DDD4s5duwohw6F4eTkTK9efZgyZRobNvxRoU9AQCBTp77M6dMniYuLISoqApVKhbu7B+PGjWf06CfKnQJNnfoi+/fvIzz8POfPn6WgoAAnJ2dCQ9szZMgIeve+tSS2AkFDQu3mjtebb5Mbto+031ZjLJHzztn7DwVnz+A+YSK2waH1cq/rUsHpOcVcjc2iFXJkyEiIzeZ4WAydH65+jaJw9kLRyA9DUhRIRnSR+7DoMKxe5vYgIbtR+UNw19kD9NJq9eTkVK2nX9+4udkBkJZW0aWgMiRtEfm/vg56k4+n1ZD3UDaqPuN5xJkk9mwr9fWOwYiDtz1vjwutN6UtXUYGKb/8TOH5s+Xq7bv3xG3sOBS2D7ZU363+ngUmkpNNuSQ8PSsm62uI3E31LcGd4V77Hd9r76GGgvjMNqHPziLl1+UUnD5Vrt6uSzfcxz2Fws6uXu5TWKxj/i8nkGUU4VUmwmHQmEB8WlRMaFoW3eXDFO/+FgCZjRM2T36KTF6ztc3d+j07OFihVisB9gK97+jNK0HElAhqhe7SQbNBInfyQuHZutr2acl57NtRGqCZjhGZg0W9Sf9KRiPZ/+wmZsYH5QwSpYsLXm+8heezzz3wBolAIBAIBPciSkcnGr/0Ko2mvljOAMk7coiYD98n9+jhCvLateG6VHCelYIcSsf7e2MkudnV56FSNuuIrMRjRCrIQh93ps7zedAQRonglpEkqZzrlsq/T7Xyd5piPdvXhWM0mN7ghUikWch5bWxIvUj/apOTif9kIakrlpcmr5PJcOz3KL6z52MTIHyqBQKBQCC4l5HJZNh16ozv3AXYde1mrjfk55H8/bck/u9LdFlZdb6Pm6MVr44OIU4B2hLDRKvRs339BQzVnEzKFMpysbUi4P3WEUaJ4JYxpl7BmFUi56tUo2rdvcq2kiSxa3MkeTkmY8GARLRM4sWRwXWW/pUMBjK3bSV29ocUXSp1C1N5etLknfdxf/Jp5JaWdbqHQCAQCASChoPC1pZGz02l8atvoHRyNtcXnD5F7Iz3yd63p86nJi28HJg8pC2XMWIsMUzSk/MJ+7t6iW2Vfy8oyXdiiL+AMS+t2vaC8gijRHDL6CL3ml+rWnRBprausu3pI9eIvZxhLkdj5MlBdZf+1VyLI27+HNL/+A1JZ8oIj1yO8+ND8Jk5B6tWreo0vkAgEAgEgoaLbXAIPnPm41BG0MFYVETq8mXEf7YIbWpqncbv1Madx3o151oZN67w00lcPJ9SZR+5nRuKJte9M6RyyaUFN0cYJYJbQtIWobtSmvRL1aZXlW0TYrM5vCfaXE7GSNeuTesk/WvU6Uhf/wex82ajiYs111s09aHp9Jm4jhiFXHV7ssELBAKBQCBoOCisrPAYPxHvd95D5VGaqLQoMoLYWdPJ2vEXkrH2YhCDuvrQvK0bmWUSK/6zLYqMtIIq+5RdF+mi9iMZDbW+/4OGMEoEt4TuyhHQm5IJyZ28kLu3qLRdQb6Gv9ZdMJfzkHBq7sSohytvXxOKrlwmbs5MMjdvAoPpTS5TKnEdNYamH8zAsqlQdREIBAKB4EHDurUfPjPn4vTYICiJcZW0WtJ+W821BfPQJMTXalyZTMbkQf5IHrYUXU+saJDYuvY8Wo2+0j7KpqHlAt4N8edqde8HEWGUCG6Jcq5bbXpVGuBuMBjZ9ucFtMWmN6wOiTxHC14YGnjTBESVYSwuJnX1Cq4tnI82KdFcb9WqNT6z5uI88HFkivqRFBYIBAKBQHDvIVercRs9lqYfzEDt3cRcXxx9ldg5M8nYuB5JX7khUR0qpYKXRgeTYqXAUGKY5OcU8/fmyEpjV2QKJarWPc1lXcTeCm0ElSOMEkGNMaTHYkwrcceSK1G1qjzA/dA/V0lLNGltS0gkqGS8PDYEa8tbz9VZcOE8MbOmk/33Tih588ssLHF/egLeb/8fas/6zQIvEAgEAoHg3sXStxk+02fiMnwksuuJUQ0GMjauJ3buLIquXr3lMZ3sLJg6JoRrZfZVYy9lcOZY5ScwZVW49HFnMBZm3/I9H0SEUSKoMbrIfebXymYdkVlWzPtxNSqNc8cTzOUEJCaODMLDuepg+MowFBSQvGwJCf/5FH16urneOjAI3znzcOzTD5lc/PkKBAKBQCAoj0ypxGXwUJrOmI1l81K3cW1CPNcWzCVtzSqMGs0tjdm8sT3DHvcjpUx8yaF/rpIUn1OhrdzRE8X1hNKSEV1UWO0e5AFDrOoENULSa9FdPmguq9o8XKFNdmYhOzZGlJaR6NW3BQHNnCu0rY68kyeImfE+uWGlqhVyGxs8pzyP12tvonJxrcUTCAQCgUAgeJCwaOxFk//7ALdxTyFTl4jgSBJZO7cTO2s6hZER1Q9wA90DG+HfyZv864pcEmxZe57CAm2FtuUD3vchSbUPuH9QEEaJoEborx4DbREAMnt3FI3blLuu0xnYsOYcUkmCRA0S7m3deLRTkwpjVXmPnGwSF39N0jdfYcgp3Xmw7dAR3zkfYd+tR7VJGgUCgUAgEAjKIpPLcXqkP76z52PtH2Cu16WlEf/px6QsX4ahsLDG443p0xJlUwd0JYaJrljP5rXnMBrLx5com3WEkpQJUm4qhsTIenia+xthlAhqhC6q1HVL5fcwMlnpn44kSezYFEFhSYJEIxIaN2smDvKvkREhSRK5Bw8Q8+EH5J84bq5XODjQ6MVXaPyvl1E6ONTj0wgEAoFAIHiQULm54fXmW3g88yxyKytzfc6+PcTMeJ/806dqNI5cLmPqyCCybdVIJYZJRlI+YbuvlGsnU6pRtSrNPF9WKEhQOcIoEdwUY3YShqQoU0EmR+XXs9z1MycSiLtYmiAx3ULBtHGhqJQ3//PSZaST8MVnJP/0A8bCUt1v+54P4TvnI+zad6ifhxAIBAKBQPBAI5PJcOj5ML5zP8KmXXtzvSE7m8Sv/0vS94vR5+XedBxrSyUvPBVKmqJ04/XC8QSuRKWXa6dq09v8Wh99Aqk4v+4PcR8jjBLBTdGWDXD3CUVu7WgupyTmcnBX6e5Apkxi0rgQHGyqT2AoGY1k7/6bmBnTKbxwvnR8V1e83nwbz2emoLCxqcenEAgEAoFAIACloxONX3yFRtNeQmFnb67PO3qEmA/fJ/fIoUrlfsvi6WzNyJEB5JTJ+L5jYzg52UXmssKlCXK35qaCUY/u0oH6fZD7DGGUCKpFMujRXyxVjSgb4K4p1rF+zVlkJe/HQiT6DfLDt5H9jcOUQ5ucRPwnC0ld+SuSxuTyhUyG4yOP4jtrHjZtA6rtLxAIGh56vZ7jx4/y1Vf/YcqUCfTv34vevbsyfPhApk9/h5Mnj1fbPykpkZ49O5JUJhfRnWDJku/o2bMjS5Z8d0fveytc/9mMHj3kbk9FILhvkMlk2HXshO9cU8zqdYz5+ST/8B2JX32BLjOjmhEgqIUrIQ/5orlumBgk/lhxGr2+NKi97LpJF7nvpsbOg4wwSgTVoo89hVRsyjkis3FC4R0MmOJAfl95BqPGlFndgESTdp50Dao6b4ik15O5dTOxsz6k6NJFc726UWOa/N8HuI97Grml5W18GoFAcLs4deoEr7/+ImvWrCA9PZXQ0HY8/HAf7O3t2bNnN6++Oo0ff/y2XB/9TRKZ3ey6QCAQ1BWFra1J3fP1N1E6u5jrC86eIXbGB2Tv/QfJWLVy1mPdfbBt4YyxxDDR5GnZ9GepB4iqRRdQWgBgzErAmHql0nEEwigR3IRyGdz9HjLnBtm14xJ5qaUxIDSyZXR/vyrHKY6LJe6juaT/ubY0o6pCgfPgITSdMRurFi1vy/wFAsGdQS6X07t3X/73vx/YsGE7ixZ9wZw5C1i+fA2zZ3+EQqFg2bIfzScmiYkJjB49hI0b11XYOTQajWzY8CdjxgwlMTGhstvVG6NGPcGKFWsZNeqJ23ofgUDQsLEJDMZ3zjwc+vQz1xmLi0n95WfiP/0YbUpypf1kMhmTRgRS5GBhrku+msXRw3Gm62ork2FSglZkeK8SYZQIqsSYl4Yh/kJJSYbK7yEALkamcvFUkrldvqWCKeNCkVeitGXUaUn/cy1x82ajiYs111v4+OIzfSauw0chV6lu63MIBILbT4cOnZg3bxEhIe0qXOvXrz8DBw4GYPv2rQB4eHjy3HNTWbbsR1544Rmiokz5AiIjw5k69RmWLfuRZ555Dnd3j9s6b0dHR3x8fHF0dLx5Y4FAcF8jt7TC4+kJeL/zHioPT3N90cUoYmd9SOb2bUgGQ4V+KqWc58a3I09Zug46tieaxARTegOVf2nOEv3VI0jaogpjCEB5tycgaLiYMpCadjAV3gHI7dzIySli58ZIszVbKIMJE9phZVHxT6no0iWSf16CLrl0d0GmUuEydARO/QcgUyjuwFMIBIKGQKtWppPUtLRUABQKBYMHD+fRRwfy+++r+Pjj+QAsWvQRTz89kTFjxmFhUd6ds2fPjgCEhR1n69ZN/PHHb8TGRmNtbUO3bj2YNu0VnJyc0Gg0/PrrMnbu3E5qajKOjk4MGDCIKVOmolSW/6xasuQ7li79gcmTn2fKlKnlrv3993Y2blzHpUsXKSwswNbWFhcXV0JC2jNu3NN4eXmb26anp7F8+U8cOXKItLRUk8qPgyO+vs3p1asPw4aNrPAziYmJZs2alZw8eYy0tDTUajUeHh506tSV0aOfwNOzanfY61y4cJ49e3Zx8uRxUlNTyMvLxcHBkaCgYMaNm0BgYFCFPgaDgU2b1vHXX1uJjr6CRqPBzs4eNzc32rXryPjxz+Dk5GRuHxcXw/LlSzl16gQZGemoVGocHBxo1cqPAQMG0rt3vwr3EAjuZaxb++Ezaw6ZmzaS+ddWMBqRdDrSf19D3rGjeE56Fosm5fOwOdpZMuqJYDauOI0lMuTA+tVnmfJSV9RuzZE7eWPMige9Ft3lw6jb9rk7D9eAEUaJoFIkoxFdVGlGdVWbXhgMRtb8cgp5SYIgHRJ9hvjj6VJeJctYXET6n2vJ/mc3lHHLsGrth8fEyag9PREIBA8W8fHXAHBxca1wTS5XVCiXzYV0I9988yW//76K0ND2dOnSjfPnz7Jly0YiIyNYvHgJ//73y8TExBAa2h5vb29Onz7JL78sJTs7m3ff/aBG871urCiVSgIDg3F1dSM/P4/k5CTWrfudkJBQs1GSnp7OlCnjycjIwNOzEV26dEOlUpOWlkp4+DmSkxMrGCXbtm1m0aL56HQ6Gjf2okePh9DrdcTHX2P16l9p3rwFgwbdPLD9+++/4fTpE/j6NsffPwC1WkVcXCx79uxm//69zJw5n759HynXZ+HCuWzbthkLCwuCg0NxcHAkJyebhIR41qxZQZ8+j5iNkitXLvOvf02hsLAAHx9fevR4CJlMRlpaGkePHkKj0QijRHBfIlepcR05GtsOHUlZ9hOaayZ3LE1MNLHzZuE8aDDOgwaX8/Zo0cSR0F7NuLA3GgUyZDojq1ecZuKzHVH590JzcAVgyv0mjJKKCKNEUCmG+HNIBZkAyCztUPq0488/zmPI1wEgIeEV7En7tuVdKwrOnyNl+TL0ZRQr5JaWuI4ei8PDvc0xKQKB4MEhIyOdbds2AdCrV1/AFDeyfftWfvzxW5ydXXjnnff58MP/45133mflyuX88ccanntuGgMGDEJ+w+fGX39tYenSlfj6NgMgNzeXadMmc+XKJaZNm4ytrR2//74RW1tbAC5diuK55yayefN6Jk169qYnEFqtlpUrl2NlZc2SJb/QtKlPuevXrsWhKHPSu2nTOjIyMhg2bCRvvfVeuaSxWq2W8PDz5fpHRFxg4cK5APzf/03n8ceHlesTExN98x9qCU8+OZ6ZM+fiXCZAFyAsbB/Tp7/Dp58uoHv3nliWiIgkJyexbdtm3N09+PHH5RX6XboUhaurm7m8Zs0KCgsLmDr1JSZMmFyubWFhIVevXq7xXAWCexFLH1+afjCDrB1/kbFxvSku1mAgc9MG8k8cw2PSs+XiYvt08yE2Lpui6GwACtMK2bn9Io/27obmyBow6DGmRWNIj0Xh6lPVbR9IhFEiqJSyAe7K1j04diKJ1KtZ5jrJ1ZqRA0sD2w35+aT9torcg+U1uK0Dg/GYOAnVDV98AsH9xOkj1zh+IBadtqKvcUNFpVbQsYcPoV2a3LxxHdDr9cyZM4P8/Hw6dOhMz54mecykpES+++5/TJ78PEOGDCelJIi0TZu2fPfdMjZuXMd33/2P4ODQcm5SAFOmTDUbJAD29vYMHz6KL7/8nJiYaJYvX2M2SMDkOtatWw/CwvZx6tQJc3xLVRQUFKDRaGjZsnUFgwSgSZOm5cqZmaYNnC5dupczLgDUajWhoe3L1S1f/hMGg4Gnn57E4MHDK4xf9tluRteu3Sut79nzYfr0eYSdO//i5MnjdO9uSnqblWWaq59fmwoGCZS62V3nevvK7mNtbU1gYHCN5yoQ3KvIlEqcBw3Gtl17kpf9RPEVkzGuTUzk2sL5OD7SH9fhI5FbmILdx48O4qtvDmNZYNrIvXw6maa+zvg064j+8mHAJA+s6Dnh7jxQA0VsWwsqYCzMRh972lzOcu7Esd1XzeUilZzJ49uZv3zzThwjZsb75QwSua0tns+9gNdrbwiDRHDfc+ZY/D1lkADotAbOHIu/7ff59NMFnDhxFHd3D2bMmGOu9/LyZu3aTQwbNrLCSYhcLmf48FGsXbupgkECpsX/jXh5mYwrD49GlS7qvb1NhkR6enqFazfi5OREo0aNuXz5Il999R9iY2Oqbd+2JLfS4sVfsm/fHoqKqg5iNRgMHDt2BIAhQyoaJLUhOzubrVs38fXXX7Bw4Vzmz5/F/PmzuHrVJD167VqpyIiPjy/W1jYcPBjG8uU/kZycVNWwAPj7m57tk08WcOzYYbRabb3MWSC4F1E3akyTd9/H7anxyEoMECSJ7J3biZ05ncKIcACUCjkTJ7ajqOSjTQb8vTGCYu/SfCi6yweR9Jo7/AQNG3FSIqiA7mIYSCZNbqN7G/7cnGi2XjXAiHHBWFuq0Gdnk7ryF/JPnijX365TZ9yeHI/SvvokigLB/UJIJ+978qQkpFPFBX998sUXn7J58wZcXFz4738XV4gnuTHo/Eaquu7u7l6hzsrKqsprZa9rtTVbBEyfPpvp09/l/9u78/ioyrP/45/JAiGQsEgAAUEWuVRQgSLuLI2IINpHhepDXVqtti61e6vWlmpVxCpqFaj4E39qsaWiVazValGQTUWUXW5EQCoaFZGsAlnm+eOcQAhJyHImZzL5vl+vvA4z554713DnzJnrnHuZM2c2c+bMpl279vTvP4ChQ09h9OixB9yJGT16LG+//SavvvoyN9/8C5KTk+nVqw8DBw4iO/ssjjvuhH1lc3N3sXv3bpKTk+neveF3qZ577hkeeug+du/eXW2ZwsL907enp7fmppt+y+TJf2DmzOnMnDmdrKxO9O9/HKeeejrZ2WfRsuX+qU0nTryMVatWsmLF2/z0p9fTokUL+vbtx8CBgxk9eix9NJ27NDORpCTaf/NM2hx/Ap89+ThF67zumcU7vuDje+8m84xhZE24iMPatubM845h4XPrSSFCclmUv/87n//t2IVIfg7s/ZqSze+Q2u+0Q/zG5kNJiRwgGo1SvOEN/9/wcs5gkvb6CQpRBo3ozZFdM8ldsogv5vyVsqKifa9NbtuOzpdcRptBg6usWyRRDTzpiJh3g6qLlBTvMkLFVYUb24MP3sfcuX+jXbv23H//jIO6PFV2+OFdWby45lXfy1W+s1JR5e5T9XXCCYN4+ul5LFmyiPfeW8HatatZunQxS5Ys4rHHZjJ16kP063f0vngmTbqdSy/9LkuWLGbNmlWsWbOKuXPnMHfuHM455zxuuul3gcYHsH79Ou699y6Sk5O59tofc/rpZ5CV1Zm0tDQikQgPPzyNJ5987KB1YEaOPJMhQ05i8eKFrFz5LmvWrGLBgvksWDCfWbNmMm3aI3T2p0NNS0vjgQems27dWt56aylr1qxi7do1rF+/lqeeeoIrr/wB3/veVYG9J5GmIrVjFt1+8nPyli7xvw95yX/eojcoXL2azpdcxvGDBrNl0Fdsf+9TIkQoKyxmUevTGcZcwOsqr6RkPyUlcoDSTzcQzfOm7NxY0p+d+fuvmGX0as+pfVux/b57KFq/7oDXlV8ZSE4/cCYuEWl+pk9/gDlzZtO2bVvuv386vXr1DjukeklLSyM7exTZ2aMAr+vXgw/ey/z5rzJ16t38+c+zDijfu3dfevf27hyUlZWxbNkSbr31Fl58cR7Z2WcxdOjJZGa2JS0tjd27d7N9+8dVdk+rrddfn080GmX8+IuZOPHgvunlM55VJSMjgzFjxu0bX7N9+8dMmXI77777DjNmPMjvf3/HAeX79x9A//4DACguLubVV19mypTbmTVrJtnZo+jR48h6vw+RpioSidD2tNNpPWAAnz/1FwpWeBdWSnN38cm0P5Fx4lDGXvwdHv04j+gX3kXcbZ9n8N+MHhyRuo3SnI2U7voEsqpffLo50ZgSOUCxv9LolyWHsTx/yP7n01M4p8NnbJ10ywEJSWrHLLr//Fd0ufwKJSQiwowZD/LUU0+SkZHJffdNo2/fo8IOKTAdO3bk6quvA2DTpo01lk1KSuK0087gjDOGHVA+OTmZIUOGAvDCC881KJ68PG9htqoWmPzqq6/2jV2pjW7dunPZZVf4sX5QY9nU1FTGjj2X/v2PIxqNsmmTZuCS5i2lbTu6XnM9h19zHckVuq7nL3+bj353M+OP2s3u1P13SRcXDCO/1OsCWt47RRIsKTGziWa2yMxyzazAzN4xs+vMrF7v08zONrNXzGynmRWZ2Voz+xiNrAoAABYnSURBVI2ZtTz0q5ue0qJ8Sra8w56yFrxRMJLyP48SShmbv4Av5zxFdI/fHzsSod2o0fS89XbSjzk2vKBFJG7MnDmd2bMfp02bDO67b9q+7k1NTU7Op7zwwnMUFhYctG/JEu8LRMVphV966Z84t+Ggsrm5u1i7dg3gDcAvd9llV5CcnMxf//ok//rXCwe97qOPth5ycD1Az57egP6XX36RogpdaYuKCpk8+TYKCvIPes3GjRuYP/8V9uw5eAzKkiWL/Pe2fy2pZ599mm3bDo5l+/aP2bJl80HlRZqzjG+cyJG33UmmP9sdQFlhITufeJQxZSsowetSWxpNZVHBSEqjyZRsXEK0tDiskONKwnTfMrNpwLXAbmA+UAxkAw8B2WY23jlX6w7WZvYrYApQCiwAvgKGA7cD48ws2zlXVH0NTU/B2oVES0tYWngmhWUZ3pPRUs74eB5le3btK9eia9eD5uUWkeZt8eKFPPGE152pe/cjeOaZOVWW69HjSC699LuNGFnd5efnMWXK7UydOoW+ffvRtWtXysqibN26mS1bNpOSksI119ywr/wbb7zOHXf8nqysThx1VD/atMkgNzeX1avf4+uvv+aEEwYxfPj+hdKOPXYAv/zlzfzxj3dy55238vjjj9Kv39H7Fk/csmUzN988iZ49j6wxznHjzuNvf5vNxo0b+Pa3v8Xxxw8kGo2yatV7pKamcM455/Hii/MOeE1OTg6TJt1MWloa/fodTadOnSkpKWbjRscnn2wnPb013//+D/eVnzfvH0ydOoWuXbvRu3cfWrVKZ+fOL1m9eiXFxcVkZ5/FsccOCOY/XiQBJLdpQ5crvk/GSSfz2ROPUfKlt25bklvFyW2+YHnns4hEIuws7cjyopM4ObKUwo3LaXNM1dN7NycJkZSY2YV4CUkOMMw594H/fGfgdeB84EfAA7WsbwhwF1AEfNM595b/fBvgRWAYcAfw02DfSXii0Sh5K+ezbvfxbC/eP2D3uJwFpJcnJMnJVa5gKiKSl5e3798bNqxnw4b1VZYbOHBw3Ccl3bp154YbfsZ7761gy5bNLF26mUgkiaysLM4773wmTPjfA8bJXHzxJXTp0pW1a1exYcP75Ofn0bZtO/r1O5oxY8Zx1lljDppJbNy4b3HMMf2ZM2c2K1YsZ/HihaSltaJz5y5MnHgpgwefeMg4MzMzefTRJ3nkkRksX/42y5Ytpn37DgwfPpIrr/whzz//zEGv6d9/AD/4wfWsXPku27Ztxbn3SU1NpVOnzlx88SWMH3/RAXeBrrrqGpYuXcT69WtZu3Y1hYWFtG/fgYEDB3PuueczYsQ3G/A/LZK4WvcfwJG33sGOZ+ey6/X5EI3StuATLPlNNmadAsCmPUZWyue0WvkfJSVApPKsHE2Rmb0DfAO43Dn3RKV9w/HudOQA3Wpzt8TM5gIXApOcc7dV2tcb+AAoATo753ZVUUVDLACG791bQm5u9XPdBy1j76eseORPvJZ/FlG/21aPr9Zw1JfeoK2WR/aiy+VX0PKI+JlhSOouK8u7A/bFFwd365Dq5eR46zx06dI0Vt+Nh9m3JLaaWhs3tWMoXugzOzF8/cEH5Dz+KMU5OUSBdZ2H8VlGHwCSKeHszBc5/sd3sKu4VaPG1bZtK1q0SAFYCIxo1F9ehSY/psTMuuMlJHuBpyvvd84tBLYDXYCTa1FfC2CM/3B2FfVtBpYBLYCx9Q48zny06D8szh++LyFp93UOfb5cQSQ1lY4TLqLHTbcoIRERERGpo1ZHHUXPSbfRYew4IklJHP35UtL3ete0S0lhYf5IPn3z1ZCjDF+TT0qAQf52nXOuulsLyyuVrYkB6cBO59yHAdQX93bn5/PKmy3Zg5ehtygpYkDOAlr360fP399Oh9FjiCQnhxyliIiISNOUlNqCjheMp8ctk2h9RDeO//Q1ksu8Ae4F0Uxe+ncepSXNe8B7Iowp6eVvP6qhzLZKZWtT37YaytSlvnpp0SJl323bWHtlzjy+SvanlIyWMWDnMo79wWV0HnUmkRoWKZOmq7H+thLFjh3JlJSU7esy01Q0tXil7ppOG0dISUnSZ0896f8tgWQNoNsJd/PJc/PIf34Z6zp504Z/lnQE299ewTe+NSrkAMOTCElJG39bWEOZ8nkda3NUB11f3Mvq1ZXI5nyiROhTvJFR991Cy46HhR2WiIiISMJJSkmh+/gL6HDySeRNnsN/0/qRXLaXjj2b5kKzQUmEpCQhNeZA9+5Dh3BR5gbyduXT46SryYtGQIPqEpIGTdZPSUmpv20ag4qb2iBoqbum18ZRSkpK9dlTR/rMTnAtMznnd1fy4RvL6NK7J+ndjmjUtq4w0D0uxE8k9Vd+16Km5cTL737UpqWDrq9J6HeGN/2kPvhEREREGkckKYlTJpwN6DtYU+mMWpOt/rameQbLp43aWkOZyvX1CKg+ERGRZisRlh4QkdhLhKTkPX/b38yqm+D5xEpla7IB+BroYGZ9qikztA71iUiTFwH05UqkYSJhByAicazJJyXOuf8C7+KtGzKh8n5/8cTueIsnLqtFfXuBl/yH36mivt7AKXjrorxY78BFpMlISvKmxC5p5tM1itRH+XFTfhyJiFSlySclvsn+doqZ9S1/0sw6AdP9h3dVXM3dzK43sw1mdsAK8OVlgSjwazMbWuE1bYBZeP9v02OwmruIxKGWLdMA2LOnKORIRJqe8uOm/DgSEalKQiQlzrm5wAy8VdvXmNkLZvYs8AFwLPAc8FCll3XEWyjxoLEjzrnlwI14iyguNbNXzOzvwIfAcOAt4DcxejsiEmfS0tIBKCjIo6gon7KyUnXlEqlBNBqlrKyUoqJ8CgrygP3HkYhIVRJh9i0AnHPXmtli4Dq8xCEZb3zILGBGxbsktazvbjNbDfwcb0xKGrAZ+BNwj3NuT5Dxi0j8atmyFenpmRQV5ZGXt5O8vJ1hh3QI5X33lTglrqbVxunpmbRsWd2wTxERiOhqX9xZAAxvzHVKQHOhNxdq5/qLRqPs3l1EUVE+xcV7iecvgykp5WNgSkOORGKlabRxhNTUFqSnZ5CWlk4kooHudaXP7OYhrHausE7JQmBEo/7yKiTMnRIRkViKRCK0atWaVq1qWsIoPuiLTOJTG4tIokmIMSUiIiIiItJ0KSkREREREZFQKSkREREREZFQKSkREREREZFQKSkREREREZFQKSkREREREZFQKSkREREREZFQKSkREREREZFQaUX3+PMx0K2sLNqoK/X6K3qyd29Jo/1OaXxq5+ZB7Zz41MbNg9q5eQirnVNSkklKigBsB7o36i+vgpKS+LMLaBt2ECIiIiLSLOQC7cIOIiXsAOQgW4BeQAGwKeRYRERERCQx9QXa4H33DJ3ulIiIiIiISKg00F1EREREREKlpEREREREREKlpEREREREREKlpEREREREREKlpEREREREREKlpEREREREREKlpEREREREREKlpEREREREREKlpEREREREREKlpEREREREREKlpEREREREREKlpEREREREREKlpEREREREREKlpEREREREREKlpEREREREREKlpEREREREREKVEnYAEhtmNhG4BjgeSAY2AI8BM5xzZfWo72zgZ8AQIA3YDPwVuMc5tyeouKVugmhnM0sCTgbGAt8EjgHaADuBFcBM59xzwUcvtRX08Vyp7quBh/2H05xz1zekPqmfGHxmJwNXAROB/kBr4AtgJd4x/UJAoUsdBNnOZtYe+CVwLtAb7ztdDvAGcK9zbmWAoUstmJkBZwMn4n1f6gdEgAnOubkNqDdm54B4EolGo2HHIAEzs2nAtcBuYD5QDGQDGcA/gPF1+SM2s18BU4BSYAHwFTAcyALeBLKdc0UBvgWphaDa2cz6Ah/4D3cC7+C1cW+8D1aA/w9c4ZzTB0YjC/p4rlR3T2ANXhIaQUlJKGLwmX0Y8BLe8bsTWAYUAkcAg4DZzrnvB/ke5NCCbGcz6wEsAnoAO4C3/HoHAn2AEuBi59wzAb8NqYGZ3Q/8uIpd9U5KYnkOiDfqvpVgzOxCvD/eHOB459w459z5wFHA+8D5wI/qUN8Q4C6gCDjNOXemc24C3hfWN/CusN8R7LuQQwm4naPAa8AYoJNzbrRz7mLn3FBgBN6Xme/6P9KIgj6eK9UdAR7FOw88EUzEUlcx+MxOAubhJSQPAN38Oi9yzp0KdPKfl0YUg2P5LryE5F9AT7++8XhX5m/Fu2vysJmlBvg25NDWAn8ELgL6AgsbUlkszwHxSElJ4rnJ3/7aOVd+9Rvn3Gd4t/4AbvRPXLVxI94V1CnOubcq1FcAfA8oA641s3YNjlzqIrB2ds596JzLds697JwrrbRvId7JD+CSAOKWugn6eK7oh3hX224CtjYkSGmQoNv4KuBU4J/OuZ8453ZX3Omcy3fOrWlo0FJnQbfzSH97e8WeCv4V8z8AXwOH4X15lUbinPt/zrlfOef+7pz7MIAqY3kOiDsJ8SbEY2bdgW8Ae4GnK+/3v2BuB7rg3eE4VH0t8K6eA8yuor7NeN0CWuCNR5BGEHQ718J7/rZ7AHVJLcWync2sF3A3sBh4qMHBSr3EqI3Lu99NDSJGabgYtfOhxnKWd7XdUcv6JM6EcK4PnZKSxDLI365zzn1dTZnllcrWxIB0YGcNGX9d6pNgBN3Oh1J+pe3TAOqS2otJO/vdtmbhde+4UuOEQhVoG5vZ4cAAvPF/y8ysn5n91sweNrPJZna23/7SuGJxLL/sb28xs/TyJ/32/S3euXuec+7zugYrcaOxz/Wh0+xbiaWXv/2ohjLbKpWtTX3baihTl/okGEG3c7X8k90N/kMNmGxcsWrn6/HGCt3onNtYj7gkOEG38XH+9ku8rh13c+B5/kZgqZmdry+rjSoWx/IteF9ExwIfmdmbeHdPTgB6An/BG4sgTVejnevjhe6UJJY2/rawhjIF/jYjhPokGI3ZLtPxPuzWAzMbWJfUTeDtbGZ98MYIvQPcU//QJCBBt3GHCtupeF0+jgUy8ab7fh9vvMlBXUEkpgI/lp1zO/Da9HGgIzAOuBBvcPVmYKFzLr9e0Uq8aHbfwZSUiEiVzOy3wOVALvBtrUfTtFXotpWK122r9BAvkaan/JyeAix2zk10zr3vD25/HTgLbwD0MDMbWW0tEvfM7Gi88X6jgUuBw4F2eJNXFAKPmNms8CIUqTslJYmlPGNuXUOZ8sy7NldQgq5PghHzdjGznwG3+b9rjHNuXX3qkQYJup1vAIYBk51zqxsSmAQm6DauWOaRyjudcx8DL/oPlZQ0nkDb2cxS8LrT9gUucM79xTmX45zLdc69BowCPgO+p+SzSWt238E0piSxbPW3PWsoc0SlsrWpr0dA9UkwtvrboNr5AGb2I+BevCuq45xzy+pahwRiq78Nqp3P97ejzGx4pX1HlpcxswFAgXNuXC3qlIbZ6m+DauMt1fy7qjJdalGfBGOrvw2qnU/C65a3uarPZ+fcTjN7CW9tqTOB12sbqMSVrf42Juf6eKQ7JYmlfOrW/mbWqpoyJ1YqW5MNeF9MO/h90asytA71STCCbud9zOw64E94K8ee5085KOGIVTufAgyv9FN+0uvqPz69bqFKPQXdxo79/c8Pq6ZMR39bUM1+CV7Q7Vx+oTC3hjK7/G2HGspIfIvZuT5eKSlJIM65/wLv4q0bMqHyfv/qaHe8lUEPefXbObcXeMl/+J0q6uuN9wVnL/u7BEiMBd3OFV73Q7w1K/YA/+Oc+08gAUu9xOB4HuGci1T1g7cCNMA0/zkthtoIYtDGxcA//YfZVdSXiteFD7zJDqQRxOAz+xN/e3QNCxeXr1tR3R0ziXOxOtfHMyUliWeyv51iZn3LnzSzTngzKQHc5a/6Wr7vejPbYGZPVFHfXXiLMP3azIZWeE0bvEGzScB059yuKl4rsRNoO5vZVf7r9gDnO+f+HbvQpQ6CPp4l/gTdxpOBMuBqMxtd4TXJwBSgD96Ca/8I9m3IIQTZzsvwEpNWwKNmllnhNUlmdgteUlKCpnKPe/4aQhvMbHIVu+v8d9OUaUxJgnHOzTWzGXhz1K8xs/8AxXhXzTKB5zh4BeeOeAsl5lRR33IzuxHvZLbUzF7Duy08HOgEvAX8JkZvR6oRZDub2UDgYSCCd1XtIjO7qIpfu8M594tA34jUKOjjWeJPDD6zV5nZT4AHgJfM7G3gY7w1LXrjdfmZUMNibBIDQbazc26vmX0XeB64ABhuZsvxulsPxJvGvQz4SQ0LH0sMmNlg9icL4I39AbjTzPadP51zFVdgPxyvnQ+vXF89/26aLN0pSUDOuWvxulu9i5c8jAY24S2admFdpwJ1zt0NjMEbLHcicC6wA2/xpuHOuaLgopfaCrCd2+ElJABH400DXNXP+MCCl1oL+niW+BODz+wH8daw+BfeDE3n4V2EnAkM1OQV4QiynZ1zr+ItlPhnvMUyRwDn4LXz34DTnHPTgoxfaiUTbyKC8p/y9UOOqvR8rTWnc0AkGo2GHYOIiIiIiDRjulMiIiIiIiKhUlIiIiIiIiKhUlIiIiIiIiKhUlIiIiIiIiKhUlIiIiIiIiKhUlIiIiIiIiKhUlIiIiIiIiKhUlIiIiIiIiKhUlIiIiIiIiKhUlIiIiIiIiKhUlIiIiIiIiKhUlIiIiIiIiKhUlIiIiIiIiKhUlIiIiIiIiKhUlIiIiIJy8wWmFnUzEaEHYuIiFRPSYmIiIiIiIQqJewAREREAMxsK9ATGAlsBn4HjAaygE+BZ4A/OOdyQwpRRERiRHdKREQk3vQF3gGuBNoBUeBI4OfAO2Z2eHihiYhILCgpERGReHMPkAuc4ZzLAFoD/wPswEtYHg8xNhERiQElJSIiEm9aAmOcc4sBnHNlzrnngW/7+0eZ2emhRSciIoFTUiIiIvHm7865TZWfdM69Diz1H45v3JBERCSWNNBdRETizYIa9i0ETgUGlz9hZqcCz1ZTvoO/fdbM9laxf6lz7oL6BCkiIsFRUiIiIvFmey32ZVV4rgXQ+RB1tq/m+Q7VPC8iIo1ISYmIiDRpzrkFQKSqfWa2ABgOjPTLiYhIHNKYEhERiTdda7Hvi8YIREREGoeSEhERiTfDa7Hv3cYIREREGoeSEhERiTcXmVnvyk+a2TDgNP/h040bkoiIxJKSEhERiTd7gZf8WbUwsyQzOxeY6+9/1Tm3JLToREQkcEpKREQk3vwCb7asJWaWDxQA8/Bm3NoEXB5ibCIiEgNKSkREJN5sAoYAs4BcIBnYCtwLDHHOfRpeaCIiEguaElhEROKOc24bcGUA9YxoeDQiIhJrulMiIiIiIiKhUlIiIiIiIiKhUlIiIiIiIiKhUlIiIiIiIiKhikSj0bBjEBERERGRZkx3SkREREREJFRKSkREREREJFRKSkREREREJFRKSkREREREJFRKSkREREREJFRKSkREREREJFRKSkREREREJFRKSkREREREJFRKSkREREREJFRKSkREREREJFRKSkREREREJFRKSkREREREJFRKSkREREREJFT/B2f6dtv4jNHyAAAAAElFTkSuQmCC\n", "text/plain": [ "