import paddle from paddle.vision.transforms import Compose, Normalize transform = Compose([Normalize(mean=[127.5], std=[127.5], data_format='CHW')]) # 使用transform对数据集做归一化 print('download training data and load training data') train_dataset = paddle.vision.datasets.MNIST(mode='train', transform=transform) test_dataset = paddle.vision.datasets.MNIST(mode='test', transform=transform) print('load finished') import numpy as np import matplotlib.pyplot as plt train_data0, train_label_0 = train_dataset[0][0],train_dataset[0][1] train_data0 = train_data0.reshape([28,28]) plt.figure(figsize=(2,2)) plt.imshow(train_data0, cmap=plt.cm.binary) print('train_data0 label is: ' + str(train_label_0)) import paddle import paddle.nn.functional as F class LeNet(paddle.nn.Layer): def __init__(self): super(LeNet, self).__init__() self.conv1 = paddle.nn.Conv2D(in_channels=1, out_channels=6, kernel_size=5, stride=1, padding=2) self.max_pool1 = paddle.nn.MaxPool2D(kernel_size=2, stride=2) self.conv2 = paddle.nn.Conv2D(in_channels=6, out_channels=16, kernel_size=5, stride=1) self.max_pool2 = paddle.nn.MaxPool2D(kernel_size=2, stride=2) self.linear1 = paddle.nn.Linear(in_features=16*5*5, out_features=120) self.linear2 = paddle.nn.Linear(in_features=120, out_features=84) self.linear3 = paddle.nn.Linear(in_features=84, out_features=10) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.max_pool1(x) x = F.relu(x) x = self.conv2(x) x = self.max_pool2(x) x = paddle.flatten(x, start_axis=1,stop_axis=-1) x = self.linear1(x) x = F.relu(x) x = self.linear2(x) x = F.relu(x) x = self.linear3(x) return x from paddle.metric import Accuracy model = paddle.Model(LeNet()) # 用Model封装模型 optim = paddle.optimizer.Adam(learning_rate=0.001, parameters=model.parameters()) # 配置模型 model.prepare( optim, paddle.nn.CrossEntropyLoss(), Accuracy() ) # 训练模型 model.fit(train_dataset, epochs=2, batch_size=64, verbose=1 ) model.evaluate(test_dataset, batch_size=64, verbose=1)