
A High-Performance Multicore IO Manager Based on
libuv (Experience Report)

Dong Han
Beijing Bytedance Inc.

Beijing, China
winterland1989@gmail.com

Tao He
Beijing Bytedance Inc.

Beijing, China
sighingnow@gmail.com

Abstract
We present a high performance multicore I/O manager based
on libuv for Glasgow Haskell Compiler (GHC). The new I/O
manager is packaged as an ordinary Haskell package rather
than baked into GHC’s runtime system (GHC RTS), yet takes
advantage of GHC RTS’s comprehensive concurrent support,
such as lightweight threads and safe/unsafe FFI options. The
new I/O manager’s performance is comparable with existing
implementation, with greater stability under high load. It also
can be easily extended to support all of libuv’s callback-based
APIs, allowing us to write a complete high performance I/O
toolkit without spending time on dealing with OS differences
or low-level I/O system calls.

CCS Concepts • Software and its engineering→ Gen-
eral programming languages; Software libraries and repos-
itories;

Keywords Haskell, GHC, libuv, lightweight thread, IOman-
ager, multicore, concurrency, scalability, performance
ACM Reference Format:
Dong Han and Tao He. 2018. A High-Performance Multicore IO
Manager Based on libuv (Experience Report). In Proceedings of the
11th ACM SIGPLAN International Haskell Symposium (Haskell ’18),
September 27–28, 2018, St. Louis, MO, USA. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3242744.3242759

1 Introduction
GHC has a long history using lightweight threads to do con-
current programming [7]. The thread-based programming
model greatly simplifies concurrent program’s control flow
(e.g. within a Haskell thread user can block on I/O activities
synchronously), and is widely used to construct concurrent
applications, such as TCP server, or web data crawler, etc.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Haskell ’18, September 27–28, 2018, St. Louis, MO, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5835-4/18/09. . . $15.00
https://doi.org/10.1145/3242744.3242759

But the threaded model also gives rise to the I/O multiplex-
ing problem: due to the asynchronous nature of underlining
I/O operations, can we effectively schedule those threads
doing I/O, so that they won’t block the other threads from
running. The problem’s complexity includes I/O operations
differences (for example, network I/O and file I/O may need
different treatment), platform gaps and RTS scheduler’s inte-
gration. The current I/O manager solved this problem using
native event mechanism on UNIX and Linux platforms, but
its design is not compatible with Windows, and introduced
complexity into GHC code base.

Fortunately libuv provides an unified API for doing asyn-
chronous I/O on different platforms. Combined with GHC’s
comprehensive concurrency support, we have implemented
a new I/O manager, which can be used as a basis to write
a complete I/O toolkit without dealing with different OS
directly, thus saving a great amount of work in I/O library
construction. We also benchmarked our new I/O manager
and compared its performance with MIO [9], the current I/O
manager in GHC, and I/O multiplexer designs from other
languages/runtimes. Our benchmark showed that our new
I/O manager’s performance is comparable to others with
higher throughput under high concurrency load.
In this paper we will focus on network I/O, but the tech-

niques described here apply to other types of I/O operations
as well. Section 2 presents the background of I/O multiplex-
ing, including the event-driven I/O model in modern OSes,
libuv’s asynchronous I/O interface and I/O multiplexer in
other languages/runtimes. We also give a brief review on
GHC’s runtime system, and MIO, the current I/O manager in
GHC. Section 3 describes our new I/O manager’s implemen-
tation in detail, including some interesting design choices.
Section 4 gives the benchmark of our techniques and result
analysis. Sections 5 presents the conclusion and some future
work possibilities.

2 Background
Modern OS schedules users’ programs with kernel threads,
which provides an ordered control flow within a process. To
do concurrent I/O operations, for example serving multiple
TCP clients, we can simply spawn multiple kernel threads
and serve each client with one thread. But with a high con-
current clients number, this architecture requires spawning
a large number of kernel threads, which impose scheduling

https://doi.org/10.1145/3242744.3242759
https://doi.org/10.1145/3242744.3242759

Haskell ’18, September 27–28, 2018, St. Louis, MO, USA Dong Han and Tao He

difficulties and memory pressure. Thus an event-driven I/O
model is often prefered, which enables processing concurrent
requests within one kernel thread.

2.1 I/O Event Handling on Different Platforms
There are three major event-driven I/O frameworks to be
discussed here: epoll [2] on Linux, kqueue [4] on BSD and
IOCP1/overlapped I/O on Windows. The former two frame-
works are very similar, userspace programs could interact
with the framework through following steps:

1. Create a notification file descriptor, register events on
the notification file descriptor.

2. Poll events by blocking on polling the notification file
descriptor, optionally with a timeout limit.

3. Loop to process events received during step 2, perform
actual I/O operations, register or modify events during
processing.

4. Go back to step 3 and wait for next upcoming events.
OnWindows scalable network I/O is done quite differently,

the main steps are:
1. Create an I/O completion port, associate sockets with

that completion port.
2. Use overlapped I/O call to read/write sockets, i.e. a

pointer to an OVERLAPPED structure is passed as a param-
eter to such I/O call.

3. Block current thread by polling on that completion
port.

4. Retrieve OVERLAPPED structures, process I/O results, asso-
ciate or modify sockets during processing, make new
overlapped I/O calls.

5. Go back to step 3 and wait for next completed over-
lapped I/O operations.

The main differences between IOCP model on Windows
and the others is that on Windows, the overlapped I/O calls
ask for pre-allocated buffers, after polling finished, notified
completed I/O operations are already performed. But under
epoll or kqueue framework, users have to perform the actual
read or write manually. To provide an unified APIs in a
cross-platformmanner, a pre-allocatedmodelmust be chosen
since there is no way to separate I/O operations from event
notifications on Windows, while with epoll and kqueue, one
can simply do the I/O operations with pre-allocated buffers
after events are received.

2.2 Design Overview of libuv
libuv implements previously discussed pre-allocated model
using different native event backend on different OS, its
network interface can be illustrated as follows:
// creating an event loop instance

uv_loop_t *uvloop = uv_init (...);

// open a new socket , bind it with a loop instance

1https://msdn.microsoft.com/en-us/library/Windows/desktop/
aa365198(v=vs.85).aspx

uv_tcp_t *socket = uv_tcp_init(uvloop , ...);

// attach some custom context data

socket->data = ...

// start receive event on that socket

uv_read_start(socket ,allocation_callback ,read_

callback);

// wait on platform 's poller

uv_run(uvloop);

The allocation_callback and read_callback will be called
by libuv during uv_run. Inside these callbacks users can read
socket ’s data field to retrieve context data. libuv supports two
polling modes: the UV_RUN_NOWAITmode which can be taken as
an event check step, it’s implemented by giving native poller
a zero timeout, so that uv_run returns even without receiving
any events. Another mode UV_RUN_ONCE is implemented by
setting the timeout to infinite, under this mode uv_run will
not return until some events are polled. These two modes
are especially useful when we integrate libuv with GHC’s
lightweight threads.
It’s important to emphasize that most of libuv’s function

are not thread safe. The event loop has to be run single-
threadedly to avoid corrupting libuv’s internal states. Wak-
ing up a polling thread from other threads safely is supported
via uv_async_t: user should initialize a uv_async_t on the loop
thread first, then a uv_async_send call on that uv_async_t from
another thread will wake up the loop thread immediately.
This design is different from some of the native event back-
ends. For example, with epoll it’s safe to block a thread on
an epoll file descriptor with epoll_wait, while other threads
add events to that epoll file descriptor concurrently.

2.3 I/O Multiplexer in Other Languages
There are some interesting I/O multiplexer designs in other
languages and runtime systems. For example, Node.js is
widely known for its integration of google v8 javascript run-
time and libuv. Another example is golang’s netpoll module,
which is designed specifically for multiplexing concurrent
I/O operations between goroutines (the golang’s lightweight
thread implementation) [1].
Node.js embed google v8 runtime directly with libuv’s

event loop, so it shares the same callback-based asynchro-
nous programming model of libuv. A Node.js process con-
tains a single kernel thread which runs libuv’s event loop
together with v8 javascript runtime, javascript callbacks are
scheduled by this embedder thread, passing between v8 run-
time and libuv. To leverage multiple cores, Node.js provides
cluster module, which uses multiple worker processes: a
server’s accept loop runs on the parent process, and dis-
tributes new connections to children processes via IPC.
Golang’s netpoll is designed for monitoring multiple file

descriptors to see if I/O operation is possible on any of them,
thus it’s not compatible with Window’s IOCP model. Golang
runtime starts a dedicated thread to run the netpoll, which
accepts I/O registrations from other goroutines, and unblock

https://msdn.microsoft.com/en-us/library/Windows/desktop/aa365198(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/Windows/desktop/aa365198(v=vs.85).aspx

A High-Performance Multicore IO Manager Based on Libuv Haskell ’18, September 27–28, 2018, St. Louis, MO, USA

them after it polled events from underlying event file de-
scriptors.

2.4 GHC Threaded RTS
GHC has a sophisticated RTS for scheduling thousands of
lightweight threads to take advantage of modern multicore
hardware [6]. The RTS maintains an array of capabilities
(also called a Haskell Execution Context (HEC)), and each
HEC is executed by a kernel thread. Thus several HECs
can run concurrently on a multicore machine. The native
thread running the HEC is responsible for scheduling all
runnable Haskell threads live on that HEC, responds to cross-
thread messages and balance workload by stealing Haskell
threads from other HECs. GHC also support a special FFI
mechanism call safe FFI [5], whichmigrates a HEC to another
kernel thread when the original kernel thread enter a safe
FFI call. This is important for running some blocking system
calls since other Haskell threads on the same HEC need
to continue to run concurrently with the Haskell thread
running that system call, instead of being blocked until the
system call returns.
Some thread synchronization primitives are directly pro-

vided by base, the Haskell standard library. For example we
use MVar [7] as a single element channel: an empty MVar will
block the Haskell threads reading it until another Haskell
thread fills it with a value. A more complicated notification
mechanism based on safe transactional memory [3] is pro-
vided by the stm package: retry will block current Haskell
threads until there’re changes occur on any transactional
variables inside the transaction’s context. These synchro-
nization primitives are effective tools when we design the
integration of libuv’s callback-based asynchronous interface
and GHC’s lightweight thread runtime system.

2.5 Previous Work
The MIO I/O manager [9] is currently used in GHC since
version 7.8. It has two event backends available, which use
epoll on Linux, and kqueue on UNIX. This I/O manager do
its job as follows:

1. MIO uses file descriptor, the integer value itself as key,
and store Haskell callback functions in an IntTable.

2. A Haskell thread performing I/O operation on a file
descriptor should first allocate an empty MVar and store
a callback into the IntTable, which will fill the MVar

when be called.
3. Now the Haskell thread may register events with na-

tive backend, and blocks itself on taking the previously
allocated MVar by takeMVar.

4. An I/O manager thread is running concurrently with
all the other Haskell threads on the same HEC. When
run by the scheduler, it will get all available events
with native backend poll mechanism, loop through the
events and execute corresponding callbacks stored in

the IntTable, thus previously blocked threads will be
resumed, and continue performing their desired I/O
operations.

MIO has a subtle logic to choose between safe and unsafe
FFI call when calling native backend poll function. It’s be-
cause when a thread enters a safe FFI call, GHC RTS may
relinquish its HEC and trigger a context switch to another
native thread [5], this would bring a significant overhead, so
in MIO, the I/O manager always prefer doing zero-timeout
nonblocking poll, and only if it didn’t got any events after
a whole RTS scheduler loop, it will start an infinite timeout
blocking poll using safe FFI.

3 Implementation
Our libuv based I/Omanager also has one I/Omanager thread
per HEC design. Each I/O manager works on a core data
structure defined as follows:
data UVManager = UVManager

{ uvmBlockTable

:: IORef (UnliftedArray (MVar Int))

, uvmLoop :: Ptr UVLoop

, uvmLoopData :: Ptr UVLoopData

...

}

The uvmBlockTable is an array holding MVars, we use the
UnliftedArray which appeared first in primitive package ver-
sion 0.6.2.02 to reduce one layer of indirection that ordinary
boxed array would bring. This array will be enlarged on
demand, and perform as a parking lot to park users’ Haskell
threads.

Whenever a Haskell thread allocates a new libuv’s socket
struct, for example the uv_tcp_t, we will allocate an unique
integer we called slot as the identity to pass the context
between Haskell side and libuv’s callbacks, this is done by
write the slot number to the uv_tcp_t’s data field. This integer
is also used as the index to find which MVar we should block
on, thus it should always be smaller than the uvmBlockTable’s
size, otherwise we will enlarge the table.

The uvmLoop field keeps the reference to a uv_loop_t struct.
We also attach a small struct uv_loop_data to the loop’s data
field to pass data between Haskell and libuv’s callbacks, The
struct’s reference is stored in uvmLoopData field for Haskell
side fast accessing. It’s defined as follows:
typedef struct {

size_t event_counter;

size_t* event_queue;

char** buffer_table;

ssize_t* buffer_size_table;

} hs_loop_data;

The event_counter and event_queue constitute a queuewhich
we will use to record received events during libuv’s uv_run.
The counter will be reset to zero each time before we enter
2http://hackage.haskell.org/package/primitive-0.6.2.0

http://hackage.haskell.org/package/primitive-0.6.2.0

Haskell ’18, September 27–28, 2018, St. Louis, MO, USA Dong Han and Tao He

uv_run, and during callbacks we push the uv_tcp_t’s slot into
this queue. After uv_runwe can peek this queue to find which
threads we should unblock. This queue will filled with at
most n events, where n is current active uv_tcp_t, so it must
be enlarged in the same way as the uvmBlockTable.
When read or write a socket, another information we

have to pass to libuv’s callback is the receive/send buffer,
this is done with the buffer_table and buffer_size_table fields
above, which are arrays holding buffer pointer and buffer
size respectively. These arrays’ size should be synchronized
with the uvmBlockTable, and indexed by uv_tcp_t’s slot in the
same way as the uvmBlockTable.

To combine libuv’s asynchronous I/O interfacewithGHC’s
lightweight thread runtime, multiple I/O manager threads
are started when a Haskell program starts, each one for a
HEC. Within each I/O manager thread a UVManager is initial-
ized, including a size N uvmBlockTable, a new uv_loop_t struct,
a uv_loop_data struct with event_queue, buffer_table and buffer

_size_table, each initialized with size N . Now a typical net-
work I/O operation is performed as follows:

1. Initialize an uv_tcp_t struct on an opened socket, with
the event loop on current HEC’s UVManager.

2. Allocate a slot integer, write it to the uv_tcp_t’s data
field. If the slot exceeds UVManager’s size, double related
data structures, and supply a slot in the new range.

3. Use slot as the index to store the buffer pointer and
buffer size fromHaskell side into the uv_loop_data struct.

4. Call libuv’s asynchronous read or write function, i.e.
the uv_read_start or uv_write, with predefined callbacks.
Take reading as an example: the allocate callback should
fetch buffer from buffer_table and buffer_size_table,
and the read callback should push the uv_tcp_t’s slot
to event_queue, and record read bytes number to buffer

_size_table.
5. Block the I/O Haskell thread by takeMVar with the MVar

from uvmBlockTable, indexed by slot allocated in pre-
vious step. If an asynchronous exception is received
during blocking, we should directly close the socket,
the slot will be freed by libuv inside close callback. Ex-
tra measures are also taken to stop user access closed
socket.

6. In I/O manager thread, call uv_run function, with a
similar timeout strategy with MIO, and during uv_run,
received event on certain uv_tcp_t will be processed
with supplied callbacks above.

7. After uv_run returns, read event_counter and event_queue

from uv_loop_data struct, loop through slots pushed
during uv_run, read I/O result recorded in buffer_size

_table, then use the result to unblock corresponding
Haskell threads.

There are some design details, for example, the slot al-
locator is based on GHC’s stable pointer implementation,
which can give a slot integer in constant time [8]. During

data UVManager = UVManager {

...

, uvmRunning :: MVar Bool

, uvmAsync :: Ptr UVHandle

}

each read and write callback, we save the asynchronous
operation results in the buffer_size_table so no extra result
buffers are needed. A key design choice that has to be made
is how can we safely operate on libuv’s state since its APIs
is not thread-safe. We will describe our current design and
potential alternatives in 3.1.

3.1 Thread-safe Wake-up Mechanism
As we have already pointed out in 2.2 libuv is not a thread-
safe library, thus we have to take care of race conditions
on the Haskell side. For example, two situations below may
raise the risk of race condition:

1. First a Haskell thread associated its uv_handle_twith an
uv_loop_t on the same HEC, then after some time the
thread is migrated to another HEC run by a different
kernel thread, now it can register events on uv_handle_t

while original uv_loop_t is being mutated.
2. After I/O manager decides to do a safe blocking poll,

thus relinquishes current HEC to another kernel thread
in order not to stop other Haskell threads on the same
HEC, now it’s possible for the other Haskell threads to
race with I/O manager’s uv_run by doing some event
registrations on the same uv_loop_t.

In order to eliminate the race conditions above, two de-
signs are experimented. The first one is based on MVar, namely
we add two extra fields to UVManager:

The uvmRunning field is a boolean which indicates if current
uv_loop_t is being polled, this boolean is protected with a
MVar to stop being accessed concurrently. The uvmAsync field
is the pointer to an uv_async_t, which is initialized on current
uv_loop_t. During unsafe nonblocking poll, we simply occupy
the uvmRunning lock until poll finish. In case of safe blocking
poll, we swap the uvmRunning’s content for True before enter-
ing FFI call, after poll finishes, we swap False back. If other
Haskell threads want to mutate the event loop’s state, it can
use following combinator to ensure the mutation’s safety:

withUVManager :: UVManager

-> (Ptr UVLoop -> IO a)

-> IO a

withUVManager uvm f = do

r <- withMVar (uvmRunning uvm) $

\ running ->

if running

then do

uv_async_send (uvmAsync uvm)

return Nothing

else do

A High-Performance Multicore IO Manager Based on Libuv Haskell ’18, September 27–28, 2018, St. Louis, MO, USA

r <- f (uvmLoop uvm)

return (Just r)

case r of

Just r' -> return r'

_ -> do yield

withUVManager uvm f

Here we try to acquire the uvmRunning lock first, this can
eliminate concurrently event registration or race with the
unsafe poll. After we successfully acquire the lock, a check
on its content is performed: if the boolean indicates there’is
a concurrently safe poll, we call uv_async_send, then yield
current Haskell thread, and go back to this loop again; if
there is no concurrently poll, then we directly call user’s
function f with current uv_loop_t pointer, and return the
result.
An alternative design is based on GHC runtime’s STM

support. Instead of using MVar as the lock, we use a transac-
tional variable to hold concurrent event loop’s state, namely,
we use following data structure:

data UVMState = UVMLocked | UVMPoll | UVMFree

data UVManager = UVManager {

...

, uvmState :: TVar UVMState

, uvmAsync :: Ptr UVHandle

}

Before safe blocking poll we write UVMPoll to uvState, and
write UVMFree after poll finishes. Under this scheme
withUVManager should be adjusted to use STM instead:

withUVManager :: UVManager

-> (Ptr UVLoop -> IO a)

-> IO a

withUVManager uvm f = bracket_

(atomically $ do

state <- readTVar (uvmState uvm)

case state of

UVMLocked -> retry

UVMPoll -> do

uvAsyncSendSTM (uvmAsync uvm)

retry

UVMFree ->

writeTVar (uvmState uvm) UVMLocked)

(atomically $ writeTVar (uvmState uvm) UVMFree)

(f (uvmLoop uvm))

uvAsyncSendSTM :: Ptr UVHandle -> STM ()

In the STM version, we retry if current event loop is run-
ning, so that the pausedHaskell threadwill resumewhen poll
finishes, thus the race condition is eliminated. uvAsyncSendSTM
wraps libuv’s uv_async_t into STM monad, since it’s safe to
be called multiple times without any arguments.

Though the STMversion provides a nice notificationmech-
anism, in practice it’s not chosen over the MVar version for
several reasons:

1. The transaction’s runtime overhead is larger than MVar

’s, and STM’s notification mechanism will wake multi-
ple threads instead of keeping a FIFO order like MVar,
which costs extra CPU time.

2. When retry returns, thewaitingHaskell thread is added
to the end of HEC’s run queue. While in the MVar ver-
sion, we put the waiting Haskell thread to the end of
HEC’s run queue by calling yield explicitly. If our I/O
manager thread exits from uv_run before the scheduler
resumes the waiting thread (which is common), then
the STM version will have no latency advantages over
the MVar version.

4 Benchmarks
We set up a small TCP server benchmark which includes
golang’s netpoll, node.js’ cluster module, MIO in current
GHC, and our new I/O manager. The server reads some
input (up to 4KB) without parsing, then respond with 500
bytes of zeros in HTTP protocol so that we can use standard
HTTP benchmark tools such as ab3 or wrk4. If the connection
is not closed after we responded, then we loop back and start
reading again to simulate HTTP keep-alive connections.
Our loader generator has 64 cores (Intel(R) Xeon(R) E5-

2683 v4), 128GB memory running Debian 8 with kernel ver-
sion 3.16. While test server has 48 cores (Intel(R) Xeon(R)
CPU E5-2650 v4), 256GB memory running the same OS. The
server communicates with loader generator over a 10 Gbps
Ethernet network. Load is generated via wrk HTTP bench-
mark tools, with thread option -t64 to match generator ma-
chine’s core number. Concurrency level is adjusted with wrk’s
-c parameter.
We run this benchmark using different number of cores

to measure scalability, with mechanism provided by each
runtime. For example the golang version is run with differ-
ent GOMAXPROCS environment variable, and Haskell versions
are run with different -N RTS options. We also run Haskell
programs with appropriate -H parameter (the heap size hint)
under high concurrency, to keep GHC’s GC and mutation
time balanced. The exactly parameters used in this bench-
mark are -H128M under -c1000, -H512M under -c5000 and -H1G

under -c10000.
Figure 1 compares throughput of different multiplexers.

Golang’s single multiplexer thread is not sufficient to support
this heavy I/O benchmark scaling effectively: the through-
put improvement between GOMAXPROCS=10 and GOMAXPROCS=40

under high concurrency load (-c100000) only reaches 31.64%.
The differences between MIO and our libuv based I/O man-
ager is small, with our new I/O manager pushing 3% to 11%
more throughput under concurrency level (-c100000). Both
I/O managers are able to deliver very good performance

3https://httpd.apache.org/docs/current/programs/ab.html
4https://github.com/wg/wrk

https://httpd.apache.org/docs/current/programs/ab.html
https://github.com/wg/wrk

Haskell ’18, September 27–28, 2018, St. Louis, MO, USA Dong Han and Tao He

1 4 10 20 40
0

250

500

750

1,000

1,250

GOMAXPROCS

Th
ro
ug

hp
ut

[M
B/
s]

golang’s netpoll

-c100 -c1000 -c5000 -c10000

1 4 10 20 40
0

250

500

750

1,000

1,250

Number of pre-forked processes

Th
ro
ug

hp
ut

[M
B/
s]

Node.js’ cluster

-c100 -c1000 -c5000 -c10000

1 4 10 20 40
0

250

500

750

1,000

1,250

+RTS -Nx

Th
ro
ug

hp
ut

[M
B/
s]

MIO

-c100 -c1000 -c5000 -c10000

1 4 10 20 40
0

250

500

750

1,000

1,250

+RTS -Nx

Th
ro
ug

hp
ut

[M
B/
s]

libuv based I/O manager

-c100 -c1000 -c5000 -c10000

Figure 1. Throughput under different concurrency level,
with different cores used.

and scalability. Figure 2 compares latency of different multi-
plexers. Overall these event-based multiplexers share pretty
similar characteristics. Since this workload is I/O bounded,
this result is expected.

5 Conclusions and Future Work
We presented and evaluated our new libuv based I/O man-
ager, it provides comparable performance and under high
concurrency load comparing with MIO, the current I/O man-
ager in GHC. The design is easy to implement (core manager

1 4 10 20 40

100
101
102
103
104

GOMAXPROCS

La
te
nc
y
AV

G
[m

s]

golang’s netpoll

-c100 -c1000 -c5000 -c10000

1 4 10 20 40

100
101
102
103
104

Number of pre-forked processes

La
te
nc
y
AV

G
[m

s]

Node.js’ cluster

-c100 -c1000 -c5000 -c10000

1 4 10 20 40

100
101
102
103
104

+RTS -Nx

La
te
nc
y
AV

G
[m

s]

MIO

-c100 -c1000 -c5000 -c10000

1 4 10 20 40

100
101
102
103
104

+RTS -Nx

La
te
nc
y
AV

G
[m

s]

libuv based I/O manager

-c100 -c1000 -c5000 -c10000

Figure 2. Average latency under different concurrency level,
with different cores used.

is less than 500 LOC), modular (without bringing modifica-
tion to GHC runtime) and robust. The techniques described
in this paper are also well suited to be used with many other
types of I/O operations provided by libuv. In the future, We
plan to write a comprehensive I/O toolkit supporting net-
work, filesystem, tty, named pipe/UNIX domain and more
based on this work.

References
[1] Nirmala. R. Deshpande, Erica Sponsler, and Nathaniel Weiss. 2012. Anal-

ysis of the Go runtime scheduler.

A High-Performance Multicore IO Manager Based on Libuv Haskell ’18, September 27–28, 2018, St. Louis, MO, USA

[2] Louay Gammo, Tim Brecht, Amol Shukla, and David Pariag. 2004. Com-
paring and Evaluating epoll, select, and poll Event Mechanisms. (01
2004).

[3] Tim Harris, Simon Marlow, Simon Peyton Jones, and Maurice Her-
lihy. 2005. Composable Memory Transactions. In Proceedings of the
Tenth ACM SIGPLAN Symposium on Principles and Practice of Par-
allel Programming (PPoPP ’05). ACM, New York, NY, USA, 48–60.
https://doi.org/10.1145/1065944.1065952

[4] Jonathan Lemon. 2001. Kqueue - A Generic and Scalable Event Notifica-
tion Facility. In Proceedings of the FREENIX Track: 2001 USENIX Annual
Technical Conference. USENIX Association, Berkeley, CA, USA, 141–153.
http://dl.acm.org/citation.cfm?id=647054.715764

[5] Simon Marlow, Simon Peyton Jones, and Wolfgang Thaller. 2004. Ex-
tending the Haskell Foreign Function Interface with Concurrency. In
Proceedings of the 2004 ACM SIGPLAN Workshop on Haskell (Haskell
’04). ACM, New York, NY, USA, 22–32. https://doi.org/10.1145/1017472.

1017479
[6] Simon Marlow, Simon Peyton Jones, and Satnam Singh. 2009. Runtime

Support for Multicore Haskell. SIGPLAN Not. 44, 9 (Aug. 2009), 65–78.
https://doi.org/10.1145/1631687.1596563

[7] Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne. 1997. Con-
current Haskell. In Proceedings of the 24rd ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL ’97). ACM, New
York, NY, USA, 296–308. https://doi.org/11.1145/237721.237794

[8] Alastair Reid. 1994. Malloc Pointers and Stable Pointers: Improving
Haskell's Foreign Language Interface. In Draft Proceedings of the Glas-
gow Functional Programming Workshop.

[9] Andreas Richard Voellmy, Junchang Wang, Paul Hudak, and Kazuhiko
Yamamoto. 2013. Mio: A High-performance Multicore Io Manager for
GHC. SIGPLAN Not. 48, 12 (Sept. 2013), 129–140. https://doi.org/10.
1145/2578854.2503790

https://doi.org/10.1145/1065944.1065952
http://dl.acm.org/citation.cfm?id=647054.715764
https://doi.org/10.1145/1017472.1017479
https://doi.org/10.1145/1017472.1017479
https://doi.org/10.1145/1631687.1596563
https://doi.org/11.1145/237721.237794
https://doi.org/10.1145/2578854.2503790
https://doi.org/10.1145/2578854.2503790

	Abstract
	1 Introduction
	2 Background
	2.1 I/O Event Handling on Different Platforms
	2.2 Design Overview of libuv
	2.3 I/O Multiplexer in Other Languages
	2.4 GHC Threaded RTS
	2.5 Previous Work

	3 Implementation
	3.1 Thread-safe Wake-up Mechanism

	4 Benchmarks
	5 Conclusions and Future Work
	References

