
CSCI-SHU 376 NLP Project Report: Meme Caption Generation

Yuchen Wang∗

NYU Shanghai
yw3642@nyu.edu

Yichen Huang∗

NYU Shanghai
yh2689@nyu.edu

Abstract
1 Meme image captioning is a task with
challenges distinct from those in conven-
tional image captioning. In this project,
we propose a pipeline generating format-
ted meme captions based on image in-
put. Our pipeline consists of an encoder-
decoder with a modified middle layer,
a CLIP-model-assisted decoding strategy
and a line break inserter. We train and
test our model on self-scrapped data and
demonstrate that our method outperforms
the standard encoder-decoder approach.

1 Introduction

A meme is ”an image, video, piece of text, etc.,
typically humorous in nature, that is copied and
spread rapidly by internet users, often with slight
variations”[5]. Memes are ubiquitous in today’s
online mediums, often commenting on cultural
symbols, social ideas, or current events. In this
project, we focus on memes where one picture is
captioned with two lines of texts (Figure 1), a pop-
ular type of meme that is easily created and propa-
gated. Given a meme image, we attempt to gener-
ate captions that capture the style and are specific
to the input image. This task is significant for it
involves not only a high level of visual and textual
understanding but also a strong sense of creativity
and diversity in the generation process.

We propose a pipeline consisting of an modi-
fied encoder-decoder model, a decoding strategy
and a line break inserter. We then evaluate the per-
formance of each component, both qualitative and
quantitatively. We demonstrate that our method is
superior to a transformer-based encoder-decoder
baseline.

∗ equal contribution
1Our implementations: https:

//github.com/Zacchaeus14/
CSCI-376-Project-Implementation

Figure 1: An example of the memes we work on

1.1 Challenges

Due to the unique features of meme images and
captions, our task poses a distinct set of chal-
lenges compared with conventional image cap-
tioning. We discuss such challenges in the follow-
ing section.

The image feature extractor should retrieve
higher-level representations. In conventional
image captioning, the desired captions mostly
identify the most salient objects in the images and
describe their relationships. By contrast, meme
captions are often based on more subtle features,
like facial expressions and body languages, that in-
spires a sense of humor.

The model should possess prior knowledge.
Since most memes refer to popular cultures, it will
be helpful for the model to have prior knowledge
of the recurring tropes in such cultures.

Meme pictures and captions constitutes a one-
to-many mapping where one image is mapped to
multiple valid sets of captions (Figure 2). Since
meme captions are not based on concrete physical
features, it is common for an image to have more
than 100 reference captions. Such captions usually
share common features, including topics and the
use of specific n-grams.

Each caption’s specificity to the input image
and diversity is more difficult to assure and mea-
sure since there are many high-frequency phrases

https://github.com/Zacchaeus14/CSCI-376-Project-Implementation
https://github.com/Zacchaeus14/CSCI-376-Project-Implementation
https://github.com/Zacchaeus14/CSCI-376-Project-Implementation

Figure 2: The Conspiracy Keanu meme with dif-
ferent captions. The captions share the same topic
(conspiracy) and style (starting with ”what if”).

associated with almost all meme images.
The line breaks contain significant semantic

meanings. In our interested format of captions,
the upper part of the text often sets up the joke,
whereas the lower part typically functions as the
punchline. The arrangement of these two parts sig-
nificantly influences the humorous effect and the
quality of the generated captions.

2 Related Work

2.1 Encoder-Decoder Models for Image
Captioning

Current image captioning methods mostly utilizes
encoder-decoder models where the input image is
encoded into a latent through an image encoder,
which is then fed into a text decoder. The text de-
coder functions similar to a language model where
the next output token is influenced by the previous
tokens and the input image [2, 4].

Our work is inspired by Dank Learning [1], a
system released in 2018 specializing in meme cap-
tioning. It utilizes a ResNet-based image encoder
and an LSTM-based text decoder to generate cap-
tions similar in format as ours. Its generated re-
sults are passable in style. However, we note that
it frequently outputs captions that are highly fre-
quent but unspecific to the given image, which is
an issue we aim to address.

2.2 CLIP

Proposed by Radford et al.[7] at OpenAI, CLIP
(Contrastive Language-Image Pre-Training) is a
neural network trained on a variety of (image, text)
pairs. It can be instructed in natural language to

predict the most relevant text snippet, given an im-
age, without directly optimizing for the task, sim-
ilarly to the zero-shot capabilities of GPT-2 and
3. CLIP’s design of effectively connecting im-
ages and text brings about its proximity with our
project. Also, as we observe, CLIP has three ad-
vantages. First, it captures high-level features of
images and text. Second, it utilizes prior knowl-
edge learned from pre-training. Third, it general-
izes well on unseen data.

Figure 3: A diagram of the proposed pipeline.

3 Method

Our pipeline consists of an encoder-decoder model
that generates probabilities for each word token
given the input images and the previous tokens,
a decoding strategy that select tokens given such
probabilities, and a splitter that identifies the po-
sition to insert the line break given the text token
sequence. We alter the standard approach for the
encoder-decoder model by introducing sampling
through reparameterization in the bottleneck layer,
similar to that in the typical variation autoencoder.
For decoding, we explore three strategies: naı̈ve
sampling, maximum mutual likelihood decoding
and CLIP score ranking. For the splitter, we fine-
tune a BERT model to predict the index of the last
token before the line break as a classification task.

https://openai.com/

3.1 Encoder-Decoder

3.1.1 CLIP Image Encoder

For the image encoder, we use a vision transformer
pre-trained as a part of the CLIP model. The en-
coder generates a hidden vector himg give an im-
age.

3.1.2 The Bottleneck Layer

Instead of directing passing himg into the text de-
coder, we adopt an approach commonly seen in
variational autoencoders. We use separate linear
transformations to obtain a mean µ and log vari-
ance log σ2 from himg. We then use the reparame-
terization trick to acquire a latent z sampled from a
normal distribution with corresponding mean and
log variance as shown in the formula below. The
intuition behind this approach is that the sampling
process helps the model capture the one-to-many
mapping between the images and the captions.

z = µ+ σε, ε ∼ N (0, 1)

3.1.3 GPT-2 Text Decoder

The decoder is based on a pre-trained distilgpt2
model. The model produces a hidden vector htxt
based on previous word tokens. We then add htxt
and z before passing them into a linear language
model head to produce a logit for each word token
in our vocabulary.

3.1.4 Training

The encoder-decoder model is trained with a hy-
brid loss consisting of the cross-entropy loss be-
tween the generated captions and a reference cap-
tion and the Kullback Leibler divergence between
the learned latent distribution and the standard
normal distribution. For the CE loss, we consider
only one reference caption at each pass.

Loss = CE(ŷ, y) + βDKL(q(z|x)||N (0, 1))

3.2 Decoding Strategies

Aside from the naı̈ve sampling approach where we
input the logits into a softmax function and di-
rectly sample from the probabilities, we explore
two other approaches: Maximum Mutual Likeli-
hood Decoding and CLIP Score Matching with the
aim of encouraging diversity and specificity to the
input image.

3.2.1 MMI Decoding
Proposed in [3], MMI decoding maximizes the
mutual information between the image and cap-
tions. We choose the MMI-AntiLM approach pro-
posed by the original authors where we maxi-
mize logP (Cap|Img)−λ logP (Cap) where the
prior P (Cap) is obtained using an unmodified
pre-trained GPT-2 language model with the same
vocabulary as ours. We then perform beam search
based on the MMI scores. During our experi-
ments, we have found that this approach leads
to incoherent outputs containing mostly high-
frequency words (like ”pizza”) (Figure 4). For our
purpose, such an approach seems outperformed by
naı̈ve sampling and hence we do not include it in
our evaluations.

Figure 4: Top outputs using MMI decoding where
beam size = 50 and λ = 0.3.

3.2.2 CLIP Score Matching
We introduce a method to rank captions based on
their compatibility with a given image. We fine-
tune a pair of CLIP image and text encoders to
maximize the dot product between the image and
text embeddings.

CLIPscore = himg · htxt

We utilize contrastive training similar to that used
in the original paper, where we maximize the
CLIP score for matching image and texts and min-
imize that for mismatching ones. In the decoding
process, we first generateK candidate captions us-
ing naı̈ve sampling. We calculate the CLIP score
between each candidate and the input image and
choose the one with the top score.

3.3 BERT Caption Splitter

We fine-tune a pre-trained BERT model for cap-
tion splitting. For a batch B of sequences with
length N , an additional linear layer projects the
last hidden states with shape (B,D) to a B-shape

vector at each word position. The resulted (B,N)-
shape vector ŷ is passed into the cross-entropy loss
with the label y of the same dimension for back-
propagation. For each sample i in the batch, the
label yi is a one-hot vector where yi,j = 1 only if
the sentence i splits after position j.

4 Data

4.1 Data Source

We fetch our data ourselves from the Internet with
a Python scrapper script. The data source we
adopt is memegenerator.net, where people
upload new images or post meme captions on an
existing image. We choose this website because
it organizes memes in a scrapper-friendly way,
and the quantity of the data is enough for our
project. We fetch nI = 3000 images, denoted
as {Ii}0≤i≤nI−1. Each image Ii corresponds to
min(ui, nC) most popular (measured by number
of upvotes) captions, where ui is the total number
of captions available for image Ii and nC = 225.
Each caption Ci,j contains one and only one line
break, splitting the two lines. The resulted dataset
D = {(Ii, Ci,j)} 0≤i≤nI−1

0≤j≤min(ui,nC)−1

.

4.2 Preprocessing

4.2.1 Preprocessing Image
All images fetched from memegenerator.net
have resolution 300 × 300 and are RGB. Before
feeding them into the CLIP Encoder, we use a
built-in preprocessor provided in CLIP’s official
source code. The preprocessor executes the fol-
lowing precedures sequentially:

1. Resizing the images to 224 × 224 to fit the
CLIP model;

2. Cropping the images at center, which is trival
on our dataset where all images are quadrate;

3. Converting the images into RGB, which is
trival on our dataset where all images are
RGB;

4. Convert the images to PyTorch Tensor;

5. Normalizing the images with parameters
mean µ2 and standard deviation σ3.

2µ = (0.48145466, 0.4578275, 0.40821073)
3σ = (0.26862954, 0.26130258, 0.27577711)

4.2.2 Preprocessing Text
The captions from memegenerator.net are
noisy. For instance, some samples are non-
English, etc. we adopt a cleaning pipeline to re-
move three types of captions:

• Captions that include characters that do not
belong to the ASCII Table;

• Captions with length beyond a preferred
range [min len,max len]4;

• Captions that include words which are ex-
ceedingly long5;

• Captions without any alphabetical character.

The cleaned dataset has 13% fewer captions. They
are subsequently tokenized by different tokenizers
depending on the model.

5 Experiments and Evaluation

We evaluate the performance of four methods:
a baseline model with standard encoder-decoder
structure (no sampling in the bottleneck layer)
decoded using naı̈ve sampling, our purposed
encoder-decoder model respective with naı̈ve sam-
pling and CLIP score matching and finally, a
sampling-only pipeline where we use CLIP score
matching to find the most suitable caption from
our training set. Our training/validation/test split
in terms of the number of images is 2400:300:300.
The encoder-decoder, fine-tuned CLIP model for
decoding and the BERT splitter are trained sepa-
rately. We evaluate the overall quality of the gener-
ated captions using BLEU-1, BLEU-2 and BLEU-
3 [6], all with uniform weights. We also evalu-
ate the diversity using unigram and bigram counts
where we generate one caption for each of the 300
test images and count the unique unigrams and bi-
grams (Table 1).

Our results show that the proposed model with
CLIP score matching achieves the best BLEU
scores. We note that the BLEU scores, espe-
cially BLEU-3, is relatively low for all approaches
compared to top results in conventional image
captioning, indicating that none of the evalu-
ated approaches can perfectly predict more ex-
tended meme captions. In terms of diversity,
all approaches are on a comparable level except
the sampling and CLIP score matching approach,

4min len = 3,max len = 128
5threshold is 16

memegenerator.net
memegenerator.net
memegenerator.net
http://www.asciitable.com/

Method BLEU-1 BLEU-2 BLEU-3 Unigram Count Bigram Count
Baseline 0.479 0.164 0.046 2505 1335
Proposed (Naive sampling) 0.491 0.158 0.050 2439 1229
Proposed (CLIP score matching) 0.524 0.183 0.071 2299 1249
Sampling + CLIP score matching 0.362 0.143 0.077 1359 85

Table 1: BLEU scores and n-gram counts for the entire pipeline.

Method Precision
Finetuned CLIP 0.545
Unmodified CLIP 0.116

Table 2: Precision of the finetuned CLIP model
used in the decoding. We tested the model on 1000
images. For each image, the model should identify
1 matching caption from 127 irrelevant captions.

Method Precision
Finetuned BERT 0.823
Naive 0.196

Table 3: Precision of the finetuned BERT caption
splitter. We compare our model with the naive ap-
proach where we always insert the line break in
the middle of the caption.

which scores notably low. Qualitatively, we found
that the sampling and CLIP score matching gen-
erates the best-quality results with coherent and
relevant captions. Thanks to the finetuned CLIP
model, the approach generalizes very well to un-
seen images. The obvious downside of this ap-
proach is the limited diversity due to the lack of
any generation process.

The proposed model with CLIP score matching
generates satisfactory results that are usually lim-
itedly coherent and only captures a general senti-
ment conveyed by the input image. We attribute
the limit in its performance to the noises in our
dataset and the challenging training process.

6 Conclusion and Future Work

We have introduced a complete pipeline that gen-
erates formatted meme captions based on image
inputs. We demonstrated that our approach out-
performs the standard encoder-decoder model. We
expect further performance improvement if we ap-
ply better datasets and training. In particular, we
note that our dataset is extremely noisy with low-
quality or even grammatically incoherent refer-
ence captions. We also observe inappropriate el-

Figure 5: Example outputs using the sampling and
CLIP score matching method.

ements like swearing and racism in our dataset.
These challenges suggest a need for better data
sources and stricter data cleaning.

To further improve our approach, since we find
that one image can correspond to captions of dif-
ferent topics, clustering the captions by topic and
applying conditional generation can be a way to
address the one-to-many mapping problem and in-
troduce controllability. We also see ways to ap-
ply our approach to more complex examples with
multiple sub-images and text fields.

Figure 6: Example outputs using the proposed
encoder-decoder with CLIP score matching.

References

[1] Abel L Peirson V au2 and E Meltem Tolunay.
Dank Learning: Generating Memes Using
Deep Neural Networks. 2018. arXiv: 1806.
04510 [cs.CL].

[2] Marcella Cornia et al. Meshed-Memory
Transformer for Image Captioning. 2020.
arXiv: 1912.08226 [cs.CV].

[3] Jiwei Li et al. A Diversity-Promoting Objec-
tive Function for Neural Conversation Mod-
els. 2016. arXiv: 1510.03055 [cs.CL].

[4] Xiujun Li et al. Oscar: Object-Semantics
Aligned Pre-training for Vision-Language
Tasks. 2020. arXiv: 2004 . 06165
[cs.CV].

[5] MEME: Definition of MEME by Oxford
Dictionary on Lexico.com also meaning of
MEME. URL: https://www.lexico.
com/definition/meme.

[6] Kishore Papineni et al. “Bleu: a Method
for Automatic Evaluation of Machine Trans-
lation”. In: Proceedings of the 40th An-
nual Meeting of the Association for Com-

putational Linguistics. Philadelphia, Penn-
sylvania, USA: Association for Computa-
tional Linguistics, July 2002, pp. 311–318.
DOI: 10 . 3115 / 1073083 . 1073135.
URL: https : / / www . aclweb . org /
anthology/P02-1040.

[7] Alec Radford et al. “Learning Transferable
Visual Models From Natural Language
Supervision”. In: CoRR abs/2103.00020
(2021). arXiv: 2103 . 00020. URL:
https://arxiv.org/abs/2103.
00020.

https://arxiv.org/abs/1806.04510
https://arxiv.org/abs/1806.04510
https://arxiv.org/abs/1912.08226
https://arxiv.org/abs/1510.03055
https://arxiv.org/abs/2004.06165
https://arxiv.org/abs/2004.06165
https://www.lexico.com/definition/meme
https://www.lexico.com/definition/meme
https://doi.org/10.3115/1073083.1073135
https://www.aclweb.org/anthology/P02-1040
https://www.aclweb.org/anthology/P02-1040
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020

	Introduction
	Challenges

	Related Work
	Encoder-Decoder Models for Image Captioning
	CLIP

	Method
	Encoder-Decoder
	CLIP Image Encoder
	The Bottleneck Layer
	GPT-2 Text Decoder
	Training

	Decoding Strategies
	MMI Decoding
	CLIP Score Matching

	BERT Caption Splitter

	Data
	Data Source
	Preprocessing
	Preprocessing Image
	Preprocessing Text

	Experiments and Evaluation
	Conclusion and Future Work

