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#PRUSSV2 - Am33xx

- Electronics Lovers

#Open Hardware - Beaglebone black - Generic

#0Open Operating System - Linux - Modular
- Ready to use




Example applications:

Oscilloscope Ultrasound scanners




RriogriammableiRealztimeUnitSulorsystemiRRUSS))

- Two 32-bit 200MHz real-time cores

- Independent from the MPU

- No caching or pipe-lining, 100% predictable timings
- Most commands executing in a single cycle

- Connected to various peripherals memories, interrupt controller
- Can toggle the GPIOs at about 50MHz max



Programmable Real-Time Unit Subsystem &
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Now back to the projecit.




Hardwares used:

DC782A-P-ND BeagleBone Black




How will the project go 7




The project will be in the form of a parallel bus
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parallel_bus_interface driver

pru + remoteproc based interface

Fig. 1 - Overall
| Hardware |

-- Device driver

MNote:

Initialty single driver
(like the V1 block )
will be containing all
the code. It will be
then broken down to
useful blocks as is
shown.




PRU and parallel_bus_shutdown parallel_bus_boot
parallel bus interface parallel_bus_i nterface parallel_bus_set clock parallel_bus_read

driver

virtio_rpmsg_bus I callbacks

callbacks
vdev > ( register
vrings ) | vdev

remoteproc ]

kick :
callbacks boots up with
PRUO the firmware | Initializes INTC and
Shared L and later other resources as per
Memory, shuts down the resource table
interrupts
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boots up with the
firmware and later
shuts down

[capture parallel data. write to register/shared memory]
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R30 register in parallel capture mode Fig. 2 - Probable working of

parallel_bus_interface




iio device
driver
Callbacks and
APls

pp_offload_sleep pp_offload register dev | pp_offload _set smps

pp_offload_set mode_of op pp_offload_read

Parallel-offload-
Subsystem Data transaction
-start clock
Device -wait for data
Bus status e reqgistration ready

A -to register -read data

-free/busy configuration . j _
_shutdown/boot | -set word length | 9€Vice repeat if

up -set clock
frequency

required
Data -single read or
reformatting continuous read
-managing read
from bus

é Callbacks and
APls

parallel_bus_interface Fig. 3 Showing possible
/ “driver APIs for subsystem
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Zubeen Tolani
Undergraduate student at Jabalpur Engineering College, India

- Love coding and electronics
- Worked on Embedded system, Linux, Android and i10S

me.zubeen3@gmail.com

github.com/zeekhuge
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