eagleScope

project

JeagleScope [y

#PRUSSV2 - Am33xx

- Electronics Lovers

#Open Hardware - Beaglebone black - Generic

#0Open Operating System - Linux - Modular
- Ready to use

Example applications:

Oscilloscope Ultrasound scanners

RriogriammableiRealztimeUnitSulorsystemiRRUSS))

- Two 32-bit 200MHz real-time cores

- Independent from the MPU

- No caching or pipe-lining, 100% predictable timings
- Most commands executing in a single cycle

- Connected to various peripherals memories, interrupt controller
- Can toggle the GPIOs at about 50MHz max

Programmable Real-Time Unit Subsystem &

Industrial Communication Subsystem
(PRU-ICSS)

PRUO

Inst. Data
Shared RAM RAM ‘ RAM

Programmable Real-Time Unit (PRU)

FRUD FRUL

{(F008AHZ) (2DOMHZY

PRUSS - Peripheral connect =>

Now back to the projecit.

Hardwares used:

DC782A-P-ND BeagleBone Black

How will the project go 7

The project will be in the form of a parallel bus

UserSpace

Consists of - g S

-- Bus driver

it

- Subsystem

a3

parallel_bus_interface driver

pru + remoteproc based interface

Fig. 1 - Overall
| Hardware |

-- Device driver

MNote:

Initialty single driver
(like the V1 block)
will be containing all
the code. It will be
then broken down to
useful blocks as is
shown.

PRU and parallel_bus_shutdown parallel_bus_boot
parallel bus interface parallel_bus_i nterface parallel_bus_set clock parallel_bus_read

driver

virtio_rpmsg_bus I callbacks

callbacks
vdev > (register
vrings) | vdev

remoteproc]

kick :
callbacks boots up with
PRUO the firmware | Initializes INTC and
Shared L and later other resources as per
Memory, shuts down the resource table
interrupts

4

boots up with the
firmware and later
shuts down

[capture parallel data. write to register/shared memory]
PRU 1 [configurable bit resolution] [configurable frequency]

-
D
=
-
S
7P
-
an

R30 register in parallel capture mode Fig. 2 - Probable working of

parallel_bus_interface

iio device
driver
Callbacks and
APls

pp_offload_sleep pp_offload register dev | pp_offload _set smps

pp_offload_set mode_of op pp_offload_read

Parallel-offload-
Subsystem Data transaction
-start clock
Device -wait for data
Bus status e reqgistration ready

A -to register -read data

-free/busy configuration . j _
_shutdown/boot | -set word length | 9€Vice repeat if

up -set clock
frequency

required
Data -single read or
reformatting continuous read
-managing read
from bus

é Callbacks and
APls

parallel_bus_interface Fig. 3 Showing possible
/ “driver APIs for subsystem

—
ap)
e
P
—
P
OO
-
D)
-
O
-
b m—
-
D
O
. S
O
o _

| am,

Zubeen Tolani
Undergraduate student at Jabalpur Engineering College, India

- Love coding and electronics
- Worked on Embedded system, Linux, Android and i10S

me.zubeen3@gmail.com

github.com/zeekhuge

BeagIeScope

project
beagleboard.ord

Mentors:

Kumar Abhishek S. Lockwood-Childs

Hunyue Yau Michael Welling

