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1 Limits of Functions

Definition 1.1 (Pointwise Convergence)

Given a sequence (fn) of functions with fn : A ⊂ R → R, fn converges pointwise on
A to f : A→ R if, for each x ∈ A,

lim
n→∞

fn(x) = f(x).

This notion of convergence for functions has undesirable properties. For example, even
if all fn are continuous, it may be the case that their limit function is not a continuous
function. Let’s define a stronger convergence condition for functions.

Definition 1.2 (Uniform Convergence)

Given a sequence (fn) of functions with fn : A ⊂ R→ R, fn converges uniformly on
A to f : A→ R if, for all ε > 0, there exists an integer N such that

|fn(x)− f(x)| < ε

for all x ∈ A and n ≥ N .

Note that we can rewrite the definition of pointwise convergence as: for all x ∈ A and
all ε > 0, there exists N such that |fn(x) − f(x)| < ε for all n ≥ N . The key difference
between pointwise convergence and uniform convergence is that N depends on both x and
ε in pointwise convergence, while N only depends on ε in uniform convergence.

Proposition 1.3 (Uniform convergence implies pointwise convergence)

Given a sequence (fn) of functions with fn : A ⊂ R → R such that fn converges
uniformly on A to f : A→ R, then fn converes pointwise on A to f .

Proof. Since fn converges uniformly on A to f , for all ε > 0, there exists an integer
N(ε) such that

|fn(x)− f(x)| < ε

for all x ∈ A and n ≥ N .
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1 Limits of Functions

Therefore, for all x ∈ A and ε > 0, the integer N(ε) has the property that

|fn(x)− f(x)| < ε,

i.e., for all x ∈ A, limn→∞ fn(x) = f(x). Therefore, fn converges pointwise on A to
f . �

Theorem 1.4

Given a sequence (fn) of functions with fn : A ⊂ R → R, fn converfes uniformly on
A to f if, and only if,

lim
n→∞

sup
x∈A
|fn(x)− f(x)| = 0.

Proof. Suppose fn converges uniformly on A to f . Then, for all ε > 0, there exists
an integer N such that |fn(x) − f(x)| < ε/2 for all x ∈ A and n ≥ N . This
implies that, for all ε > 0, there exists an integer N such that, for all n ≥ N ,
supx∈A |fn(x) − f(x)| < ε. Finally, using the definition of limit, we conclude that
limn→∞ supx∈A |fn(x)− f(x)| = 0.

Now, suppose that limn→∞ supx∈A |fn(x)−f(x)| = 0. This implies that, for all ε > 0,
there exists an integer N such that, for all n ≥ N , supx∈A |fn(x)−f(x)| < ε/2. Then,
for all ε > 0, there exists an integer N such that |fn(x) − f(x)| < ε for all x ∈ A
and n ≥ N . Therefore, fn converges uniformly on A to f . �

Uniform convergence of fn to f says that, for all ε > 0, there exists N large enough so that
the graph of fn, for all n ≥ N , is entirely in the “ε-tube” of the graph of f .

x

f1

f2f3

f

ε
ε

Figure 1.1: Graph of the “ε-tube.” In this example, all fn, for n ≥ 4, are in the ε-tube.
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1 Limits of Functions

Example

Let fn(x) = 1
1+nx2 and let f be its poitwise limit, i.e., f(x) = 0. Then, fn uniformly

converges to f on (ε, 1), for all ε > 0; however, fn does not converge uniformly to f
on (0, 1).

y

x

f1

f2

f4

f8
f16

Figure 1.2: Graph of some functions fn(x) = 1
1+nx2 .

1.1 Interaction with Boundness

Proposition 1.5 (Pointwise convergence does not preserve boundness)

There exists a sequence of functions fn : A ⊂ R→ R, all of them bounded on A, and
fn → f pointwise on A for a unbounded function f on A.

Proof. Consider fn : R→ R defined by

fn(x) =
{
x |x| < n

0 otherwise,
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1 Limits of Functions

which converges pointwise to f(x) = x on R. �

Proposition 1.6 (Uniform convergence preserves boundness)

If fn : A ⊂ R → R is bounded for each n, and if fn → f uniformly on A, then f is
bounded on A.

Proof. Plug ε 7→ 1 on the definition of uniformly convergence. Then, there exists N
such that

|fn(x)− f(x)| < 1

for all n ≥ N and all x ∈ A.

Since fN is bounded, there exists M such that |fN (x)| < M for all x ∈ A. Finally,
by triangular inequality, we conclude that

|f(x)| < M + 1,

for all x ∈ A; therefore, f is bounded. �

1.2 Interaction with Continuity

Proposition 1.7 (Uniform convergence preserves continuity)

If fn : A ⊂ R→ R is continuous for each n, and if fn → f uniformly on A, then f is
continuous on A.

Proof. Let c ∈ A be arbitrary. Let ε > 0 be arbitrary.

Since fn → f , there exists N such that

|fn(x)− f(x)| < ε/3

for all n ≥ N and x ∈ A.

Since fN is continous at c, there exists δ > 0 such that

|fN (x)− fN (c)| < ε/3

for all x ∈ A satisfying |x− c| < δ.
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1 Limits of Functions

Therefore, by triangle inequality,

|f(c)− f(x)| = |f(c)− fn(c) + fn(c)− fn(x) + fn(x)− f(x)|
≤ |f(c)− fn(c)|+ |fn(c)− fn(x)|+ |fn(x)− f(x)|
< ε

for all x ∈ A satisfying |x−c| < δ. Since ε was arbitrary, this implies f is continuous
at c. Since c was arbitrary, this implies f is continuous on A. �

1.3 Interaction with Differentiability

Proposition 1.8 (Uniform convergence does not preserve differentiability)

There exists a sequence of functions fn : A ⊂ R→ R, all of them differentiable on A,
and fn → f uniformly on A for a non-differentiable function f on A.

Theorem 1.9
If

i. fn is differentiable on [a, b], for all integers n,
ii. f ′n converges uniformly on [a, b] to g, and

iii. fn converges pointwise on [a, b] to f ,

then f is differentiable on [a, b], and f ′ = g.

Aside: Series solutions for differential equations

Question. Derive functions y(x) that obey

x
d2y

dx2 + dy

dx
+ xy = 0.

Proof (Sketch). Plug y(x) =
∑∞

n=0 anx
n in the equation above yields

a1 +
∞∑

n=1

(
(n+ 1)2an+1 + an−1

)
xn = 0,

thus we can infer a2k+1 = 0 and (2k)2a2k + a2k−2 = 0 for all k ∈ {1, 2, . . . }. �
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1 Limits of Functions

1.4 Uniformly Cauchy

Definition 1.10 (Uniformly Cauchy)

The sequence of functions fn : A → R is uniformly Cauchy on A if, for all ε > 0,
there exists a positive integer N such that, for all x ∈ A and all m,n ≥ N ,

|fm(x)− fn(x)| < ε.

Theorem 1.11
The sequence of functions fn : A→ R converges uniformly on A if, and only if, it is
uniformly Cauchy on A.

Proof (Uniformly Convergence implies Uniformly Cauchy). If fn : A → R converges
uniformly on A, then for all ε > 0, there exists a positive integer N such that

|fn(x)− f(x)| < ε/2

for all x ∈ A and all n ≥ N .

Therefore, it follows that, for all ε, there exists a positive integer N such that

|fm(x)− fn(x)| = |fm(x)− f(x)|+ |f(x)− fn(x)| < ε.

for all x ∈ A and all m,n ≥ N . �

Proof (Uniformly Cauchy implies Uniformly Convergence). To be done. �

1.5 Weierstrass M-test

Theorem 1.12 (Weierstrass M-test)

If gn : A→ R is a sequence of functions and if there exists constants Mn ≥ 0 so that

|gn(x)| ≤Mn

for all x ∈ A and
∑

nMn converges, then
∑

n gn(x) converges uniformly on A.
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1 Limits of Functions

Proof. Since
∑
Mn converges, by the Cauchy criterion, for all ε > 0, there exists a

positive integer N such that

Mm+1 + · · ·+Mn = |Mm+1 + · · ·+Mn| < ε

for all n > m ≥ N .

Thus, for all ε, for the N above, implies that

|gm+1(x) + · · ·+ gn(x)| < ε.

for all m > n ≥ N and all x ∈ A. �
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2 Function Spaces

2.1 Our first function spaces

Definition 2.1

Given A ⊂ R, let C(A) be the set of all functions that are continuous on A, and let
B(A) be the set of all functions that are bounded on A.

Proposition 2.2

C([a, b]) ⊆ B([a, b]).

Definition 2.3 (Infinity Norm)

Given a bounded function f : [a, b]→ R, let

||f ||∞ = sup
x∈[a,b]

|f(x)|.

The infinity norm is a valid norm for both B([a, b]) and C([a, b]).

2.2 Topology in function spaces

Last semester, we defined ε-neighborhoods, open sets, sequence convergence, closed sets,
etc. on normed vector spaces. Therefore, we have those definitions for C([a, b]) and B([a, b])

Example

The set {f ∈ C[(0, 1)] : f(1/3) + f(2/3) < 1} is open, but not closed.

The set {f ∈ C[(0, 1)] : f(0) = 0} is closed, but not open.

The set {f ∈ C[(0, 1)] : f is a constant function} is closed, but not open.

The set {f ∈ C[(0, 1)] : f is a polynomial} is neither open nor closed.
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2 Function Spaces

Proposition 2.4

Convergence with respect to the infinity norm is equal to uniform convergence.

Proof. Note that fn → f with respect to || • ||∞ is equivalent to ||fn − f ||∞ → 0. In
turn, this is equivalent to limn→∞ supx∈[a,b] |fn(x)−f(x)|. Finally, this is equivalent
to fn → f uniformly. �

2.3 Measure

We are going to cheat a little.

Definition 2.5 (Measure Zero)

A set A ⊂ R has measure zero if, for all ε > 0, there exists a finite or countable
collection of open intervals (an, bn) such that

A ⊂
⋃
n

(an, bn) and
∑

n

(bn − an) ≤ ε.

Proposition 2.6

If A has measure zero, and B has measure zero, then A ∪B has measure zero.

Proposition 2.7

If C is a countable collection of sets with measure zero, then their union also has
measure zero.

Example

The sets {4, 8}, N, Q, and the cantor set C have measure zero.

Proposition 2.8

If a < b, then [a, b] does not have measure zero.

Proof (Sketch). Suppose we could cover [a, b] with an open cover with total length
at most b−a

4 . Since [a, b] is compact, this cover has a finite sub-cover; which still has
length at most b−a

4 . Suppose that that subcover contains (a1, b1), . . ., (an, bn), with
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2 Function Spaces

a1 ≤ a2 ≤ · · · ≤ an. To be finished. �

Corolary 2.9

If a < b, then (a, b], [a, b), (a, b) do not have measure zero.

2.3.1 Step Functions

A step function is a function that is non-zero on a finite set of disjoint bounded intervals,
constant on each of those intervals, and zero everywhere else.

Definition 2.10 (Characteristic Function)

Given S ⊂ R, the corresponding characteristic function is

χS(x) =
{

1 x ∈ S
0 x /∈ S

Definition 2.11 (Step Function)

A step function is a function of the form

f(x) = c1χI1(x) + c2χI2(x) + · · ·+ cnχIn(x),

where cj are real numbers and Ij is a collection of disjoint bounded intervals. Equiv-
alently, Ij can be a collection of (not necessarily disjoint) bounded intervals.

Definition 2.12 (Lebesgue integral of a step function)

Given a step function

f(x) = c1χI1(x) + c2χI2(x) + · · ·+ cnχIn(x),

we define its Lebesgue integral to be∫ ∞
−∞

f(x) = c1m(I1) + c2m(I2) + · · ·+ cnm(In),

where m(Ii) is the absolute value of the difference of Ii’s endpoints.
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2 Function Spaces

Definition 2.13 (Lebesgue integral of some other functions)

Given a function f : R→ R, if we can find a sequence φn of step functions such that
i. φ1(x), φ2(x), φ3(x), . . . is monotone increasing for each x ∈ R, and

ii. φn → f pointwise except possibly on a set of measure zero,

then we define ∫ ∞
−∞

f(x)dx = lim
n→∞

∫ ∞
−∞

φn(x)dx,

if that limit exists.

Example

Consider f : R→ R defined by

f(x) =
{

1 if x ∈ Q and x ∈ [0, 1]
0 otherwise.

Note that φn(x) := 0 converges pointwise to f except on Q∩[0, 1], which has measure
zero. Therefore, ∫ ∞

−∞
f(x)dx = lim

n→∞

∫ ∞
−∞

φn(x)dx = 0.

Example

Consider f : R→ R defined by
f(x) = 1.

Define φn : R→ R by

φn(x) :=
{

1 if x ∈ [−n, n]
0 otherwise.

Since φn converges pointwise to f ,∫ ∞
−∞

f(x)dx = lim
n→∞

∫ ∞
−∞

φn(x)dx = lim
n→∞

2n = +∞.

Example

Consider f : R→ R defined by

f(x) =
{

1/2k if k − 1 < x ≤ k for k ∈ N
0 otherwise.
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2 Function Spaces

Define φn : R→ R by

φn(x) :=
{

1/2k if k − 1 < x ≤ k for k ∈ {1, 2, . . . , n}
0 otherwise.

Since φn converges pointwise to f ,∫ ∞
−∞

f(x)dx = lim
n→∞

∫ ∞
−∞

φn(x)dx

= lim
n→∞

n∑
k=1

1
2n

= 1.

Example

Consider f : R→ R defined by

f(x) =
{

1/
√
x for 0 < x ≤ 1

0 anywhere.

Define φn : R→ R by

φn(x) := f

(
k2

4n

)
= 2n

k
,

if (k−1)2

4n < x ≤ k2

4n . Since φn converges pointwise to f ,∫ ∞
−∞

f(x)dx = lim
n→∞

∫ ∞
−∞

φn(x)dx

= lim
n→∞

2n∑
j=1

2n

j

j2 − (j − 1)2

4n

= lim
n→∞

1
2n

2n∑
j=1

j2 − (j − 1)2

j

To be continued.

Definition 2.14

Let L0(R) be the set of functions f : R→ R such that there exists a sequence φn of
step functions satisfying

i. φn(x) ≤ φn+1(x) for all n ∈ N and x ∈ R;

15



2 Function Spaces

ii. φn → f pointwise, expect on a set of measure zero;
iii. limn→∞

∫∞
−∞ φn(x) is a real number.

This definition only makes sense given the following theorem:

Theorem 2.15
If two sequence of step functions converge pointwise to f , then the limit of their
integrals are equal (or both don’t exist).

Definition 2.16

Let L1(R) be the space of functions f such that there are g, h ∈ L0(R) satisfying
f = g − h. In that case, we define∫ ∞

−∞
f(x) dx =

∫ ∞
−∞

g(x) dx−
∫ ∞
−∞

h(x) dx.

Theorem 2.17 (L1(R) is a vector space)

L1(R) is a vector space.

Theorem 2.18 (Order Integral Theorem)

If f1, f2 ∈ L1(R) and f1(x) ≥ f2(x) for all x ∈ R, then∫ ∞
−∞

f1(x) dx ≥
∫ ∞
−∞

f2(x) dx.

Theorem 2.19

If f ∈ L1(R), then |f | ∈ L1(R), and∣∣∣∣∫ ∞
−∞

f(x) dx
∣∣∣∣ ≤ ∫ ∞

−∞
|f(x)| dx.

Definition 2.20 (1-“norm”)

Given f ∈ L1(R), let ‖f‖1 =
∫∞
−∞ |f(x)|.

The 1-“norm” is not actally an norm. Let’s “fix” L1(R) so that 1-“norm” is actually
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2 Function Spaces

Definition 2.21

Let L1
nvs(R) be the equivalent classes of functions, in which f and g are equivalent

if, and only if, f and g agree except on a set of measure zero.

Notationally, nobody calls this L1
nvs(R); they just call it L1(R). And most of the time,

they describe an object in L1(R) as if it were a function, even though in fact is a “collection
of functions that all equal each other except on a set of measure zero”.

Definition 2.22

If f : A ⊃ [a, b]→ R and the restriction of f to [a, b] is in L1([a, b]), then∫ b

a
f(x) dx :=

∫ ∞
−∞

g(x) dx,

where g : R→ R is defined by

g(x)
{
f(x) x ∈ [a, b]
0 otherwise.

Since we are lazy, we will say that f ∈ L1([a, b]).

Proposition 2.23

If f ∈ L1([a, b]) and f ∈ L1([b, c]), then f ∈ L1([a, c] and∫ c

a
f(x) dx =

∫ b

a
f(x) dx+

∫ c

b
f(x) dx.

Theorem 2.24 (Lebegue’s Fundamental Theorem of Calculus)

If f ∈ L1([a, b]) define F (x) =
∫ b

a f(t) dt for any x ∈ [a, b]. If f is continuous at
c ∈ (a, b), then F ′(c) exists and equals f(c).

Proof. Let ε > 0 be arbitrary.

Since f is continous at c, there exists δ > 0 so that for every x δ-close to c we have
|f(x)− f(c)| < δ.

Let h be arbitrary such that 0 < |h| < δ. Without loss of generality, suppose
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2 Function Spaces

0 < h < δ. ∣∣∣∣F (c+ h)− F (c)
h

− f(c)
∣∣∣∣ =

∣∣∣∣∣
∫ c+h

a f(t) dt−
∫ c

a f(t) dt
h

− f(c)
∣∣∣∣∣

=
∣∣∣∣∣
∫ c+h

c f(t) dt|
h

−
∫ c+h

c f(c) dt
h

∣∣∣∣∣
=
∣∣∣∣∣
∫ c+h

c (f(t)− f(c)) dt|
h

∣∣∣∣∣ < ε.

Therefore, the result follows. �

Theorem 2.25 (More Familiar Fundamental Theorem)

If f is continuous on all [a, b] and F (x) is any antiderivative of f(x), i.e., F ′(x) = f(x)
for all x ∈ [a, b], then ∫ b

a
f(x) dx = F (b)− F (a).

Theorem 2.26 (L1([a, b]) is complete)

If fn ∈ L1([a, b]) is a Cauchy sequence (with respect to ‖ • ‖1), then there exists
f ∈ L1([a, b]) such that fn → f .

Definition 2.27

For p > 1, we say that f ∈ Lp(R) if f is a measurable function and
∫∞
−∞ |f(x)|p dx is

a finite number.

2.3.2 Aside: Measure

Example (Non-measurable set)

Endow [0, 1) with an equivalence relation defined by a ∼ b ⇐⇒ a − b ∈ Q. Using
the Axiom of Choice, construct a set V by picking one representant from each set.

If the measure of V is 0, then we can conclude that every V + q (mod 1) also have
measure zero, for rationals q ∈ [0, 1), but then their union, which is [0, 1), also has
measure zero.

If the measure of V is ε > 0, then we can conclude that every V + q (mod 1) also
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2 Function Spaces

have measure ε, for rationals q ∈ [0, 1), but the union of more than 1/ε has measure
greater than 1, but is contained in [0, 1).

Example (Non-measurable function)

Consider χV .

Definition 2.28 (p-norm)

Given f ∈ Lp(R), define

‖f‖p =
(∫ ∞
−∞
|f(x)|p dx

)1/p

.

2.4 Convex Functions

Definition 2.29 (Convex Function)

Given an interval A ⊂ R, a function f : A→ R is convex if, and only if,

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y),

for all x, y ∈ A and λ ∈ [0, 1].

Example

The functions f : R → R and g : [0,+∞) → R defined by f(x) = |x| and g(x) = xp,
for p > 1, are convex functions.

Theorem 2.30

Given an interval A, and a convex function f : A → R, if f(A) is an interval and
g : f(A)→ R is a convex function, then g ◦ f is convex on A.

Proposition 2.31

The p-norm indeed satisfies the triangle inequality. In other words, for all f, g ∈
Lp(R),(∫ ∞

−∞
|f(x) + g(x)|p dx

)1/p

≤
(∫ ∞
−∞
|f(x)|p dx

)1/p

+
(∫ ∞
−∞
|g(x)|p dx

)1/p

.
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2 Function Spaces

2.5 L2(R) is special

Theorem 2.32

If f, g ∈ L2(R), then fg ∈ L1(R), with∫ ∞
−∞
|f(x)g(x)| dx ≤ ‖f‖2‖g‖2.

Definition 2.33 (Inner product in L2(R))

Given f, g ∈ L2(R), we define their inner product by

〈f, g〉 =
∫ ∞
−∞

f(x)g(x) dx.

Proposition 2.34

For all f, g, h ∈ L2(R) and c ∈ R,
i. 〈f, g〉 = 〈g, f〉.

ii. 〈f, f〉 ≥ 0, and the equality holds if, and only if, f = 0.
iii. 〈f + g, h〉 = 〈f, h〉+ 〈g, h〉.
iv. 〈cf, g〉 = c〈f, g〉.

2.6 The Fourier and inverse-Fourier transform

Definition 2.35 (Fourier transform)

Given a function f of a real variable, we define its Fourier transform, denoted by f̂ ,
by

f̂(ω) =
∫ ∞
−∞

eiωxf(x) dx,

and we define its “inverse” Fourier transform, denoted by f̌ , by

f̌(x) = 1
2π

∫ ∞
−∞

g(ω) dω.
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