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1 Limits of Functions

Definition 1.1 (Pointwise Convergence)

Given a sequence (fy,) of functions with f,: A C R — R, f,, converges pointwise on
Ato f: A— Rif, for each z € A,

lim fa(w) = f(a).

n—o0

This notion of convergence for functions has undesirable properties. For example, even
if all f,, are continuous, it may be the case that their limit function is not a continuous
function. Let’s define a stronger convergence condition for functions.

Definition 1.2 (Uniform Convergence)

Given a sequence (f,) of functions with f,: A C R — R, f,, converges uniformly on
Ato f: A— Rif, for all € > 0, there exists an integer IV such that

[fn(z) — f(2)] <€

forallz € A and n > N.

Note that we can rewrite the definition of pointwise convergence as: for all z € A and
all € > 0, there exists N such that |f,(x) — f(x)| < € for all n > N. The key difference
between pointwise convergence and uniform convergence is that N depends on both = and
€ in pointwise convergence, while N only depends on € in uniform convergence.

Proposition 1.3 (Uniform convergence implies pointwise convergence)

Given a sequence (f,) of functions with f,: A C R — R such that f,, converges
uniformly on A to f: A — R, then f,, converes pointwise on A to f.

Proof. Since f,, converges uniformly on A to f, for all € > 0, there exists an integer
N (e) such that

[fa(z) — f(z)| <€
forallz € Aand n > N.



1 Limits of Functions

Therefore, for all z € A and € > 0, the integer N(¢) has the property that

[fn(2) = f(2)] <

ie., for all z € A, lim,, o0 fn(z) = f(x). Therefore, f, converges pointwise on A to

f.
Theorem 1.4

Given a sequence (f,) of functions with f,: A C R — R, f,, converfes uniformly on
A to f if, and only if,
lim sup |fu(@) — £(x)] = 0.

n—oo tEA

Proof. Suppose f, converges uniformly on A to f. Then, for all € > 0, there exists
an integer N such that |f,(z) — f(z)] < €/2 for all z € A and n > N. This
implies that, for all ¢ > 0, there exists an integer N such that, for all n > N,
Supgea | fn(z) — f(x)| < €. Finally, using the definition of limit, we conclude that

limy, 00 SUP e 4 | fr(z) — f(x)] = 0.
Now, suppose that limy, o sup,e 4 | fn(z)— f(2)| = 0. This implies that, for all e > 0,
there exists an integer N such that, for alln > N, sup e 4 |fn(x)— f(z)| < €/2. Then,

for all € > 0, there exists an integer N such that |f,(z) — f(z)] < e for all z € A
and n > N. Therefore, f, converges uniformly on A to f.

Uniform convergence of f, to f says that, for all € > 0, there exists NV large enough so that
the graph of f,, for all n > N, is entirely in the “e-tube” of the graph of f.

xZ

Figure 1.1: Graph of the “e-tube.” In this example, all f,, for n > 4, are in the e-tube.
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Let fn(z) = ﬁ; and let f be its poitwise limit, i.e., f(x) = 0. Then, f,, uniformly

converges to f on (e, 1), for all e > 0; however, f,, does not converge uniformly to f
on (0,1).

Figure 1.2: Graph of some functions f,(x) = Hﬁ

1.1 Interaction with Boundness

Proposition 1.5 (Pointwise convergence does not preserve boundness)

There exists a sequence of functions f,: A C R — R, all of them bounded on A, and
fn — f pointwise on A for a unbounded function f on A.

Proof. Consider f,,: R — R defined by

fal) = {x |z| <mn

0 otherwise,
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which converges pointwise to f(z) = z on R.

Proposition 1.6 (Uniform convergence preserves boundness)

If f,: A C R — R is bounded for each n, and if f,, — f uniformly on A, then f is
bounded on A.

Proof. Plug ¢ — 1 on the definition of uniformly convergence. Then, there exists N
such that

|fa(z) = f(z)] <1
forall n > N and all x € A.

Since fx is bounded, there exists M such that |fy(x)] < M for all z € A. Finally,
by triangular inequality, we conclude that

[f(@)| < M +1,

for all x € A; therefore, f is bounded.

1.2 Interaction with Continuity

Proposition 1.7 (Uniform convergence preserves continuity)

If f,: A CR — R is continuous for each n, and if f,, — f uniformly on A, then f is
continuous on A.

Proof. Let ¢ € A be arbitrary. Let ¢ > 0 be arbitrary.
Since f,, — f, there exists N such that

[fnl(z) = f(2)] <€/3
for all n > N and x € A.

Since fy is continous at ¢, there exists § > 0 such that

|fn(z) = fn(c)| <€/3

for all x € A satisfying |z — ¢| < §.
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Therefore, by triangle inequality,

[f(e) = f(@)| = |f(¢) = fule) + fulc) = fu() + ful(z) — f(2)]
< [f(e) = fale)| + [fnlc) = fa(@)] + [ fu(z) = f(2)]

<€

for all x € A satisfying |x —c| < §. Since € was arbitrary, this implies f is continuous
at c. Since ¢ was arbitrary, this implies f is continuous on A.

1.3 Interaction with Differentiability

Proposition 1.8 (Uniform convergence does not preserve differentiability)

There exists a sequence of functions f,: A C R — R, all of them differentiable on A,
and f,, — f uniformly on A for a non-differentiable function f on A.

Theorem 1.9

If
i. f, is differentiable on [a, b], for all integers n,
ii. f] converges uniformly on [a,b] to g, and
iii. f,, converges pointwise on [a,b] to f,

then f is differentiable on [a, ], and f' = g.

Aside: Series solutions for differential equations

Question. Derive functions y(z) that obey

d?y  dy
— =0.
wde aF dr +zy

Proof (Sketch). Plug y(x) = >-72 japz™ in the equation above yields
a1+ > ((n+1)2ans1 +an 1) 2" =0,
n=1

thus we can infer ag,y1 = 0 and (2k)2agy, + agp_o = 0 for all k € {1,2,...}.
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1.4 Uniformly Cauchy

Definition 1.10 (Uniformly Cauchy)

The sequence of functions f,: A — R is uniformly Cauchy on A if, for all € > 0,
there exists a positive integer N such that, for all z € A and all m,n > N,

|fm($) - fn($)| <€

The sequence of functions f,: A — R converges uniformly on A if, and only if, it is
uniformly Cauchy on A.

Proof (Uniformly Convergence implies Uniformly Cauchy). If f,: A — R converges
uniformly on A, then for all e > 0, there exists a positive integer N such that

[fo(@) = f(2)] <€/2
forall z € A and all n > N.

Therefore, it follows that, for all €, there exists a positive integer N such that

[fm(z) = fo(@)| = |fm(x) = f(@)| + [f(2) = fulz)] <e

for all x € A and all m,n > N.

Proof (Uniformly Cauchy implies Uniformly Convergence). To be done.

1.5 Weierstrass M-test

Theorem 1.12 (Weierstrass M-test)

If g,: A — R is a sequence of functions and if there exists constants M,, > 0 so that
lgn(2)| < M,

for all z € A and >_,, M,, converges, then >, g,(x) converges uniformly on A.
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Proof. Since Y M, converges, by the Cauchy criterion, for all ¢ > 0, there exists a
positive integer IV such that

Mm+1+"'+Mn:‘Mm+1+"'+Mn‘<€

for all n > m > N.

Thus, for all €, for the N above, implies that
|gm+1(z) + - + gn(2)| < €.

forall m >n > N and all z € A.

10



2 Function Spaces

2.1 Our first function spaces

Definition 2.1

Given A C R, let C(A) be the set of all functions that are continuous on A, and let
B(A) be the set of all functions that are bounded on A.

Proposition 2.2
C([a,b]) € B([a, b]).

Definition 2.3 (Infinity Norm)

Given a bounded function f: [a,b] — R, let

£ lloc = sup |f(2)|.

z€[a,b]

The infinity norm is a valid norm for both B([a,b]) and C([a, b]).

2.2 Topology in function spaces

Last semester, we defined e-neighborhoods, open sets, sequence convergence, closed sets,
etc. on normed vector spaces. Therefore, we have those definitions for C([a, b]) and B(]a, b])

The set {f € C[(0,1)] : f(1/3) + f(2/3) < 1} is open, but not closed.
The set {f € C[(0,1
The set {f € C](0,1
The set {f € C[(0, 1

)] :
)] - £(0) = 0} is closed, but not open.

)] : f is a constant function} is closed, but not open.
)

| : f is a polynomial} is neither open nor closed.

11
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Proposition 2.4

Convergence with respect to the infinity norm is equal to uniform convergence.

Proof. Note that f,, — f with respect to || ® ||~ is equivalent to ||f,, — f]lcc — 0. In
turn, this is equivalent to limy, o0 SUP,e(qp) | fn(z) — f(2)]. Finally, this is equivalent
to fn — f uniformly.

2.3 Measure

We are going to cheat a little.

Definition 2.5 (Measure Zero)

A set A C R has measure zero if, for all € > 0, there exists a finite or countable
collection of open intervals (ay, by,) such that

AC U(an, bn) and Z(bn —ap) <e.

n

Proposition 2.6

If A has measure zero, and B has measure zero, then A U B has measure zero.

Proposition 2.7

If C is a countable collection of sets with measure zero, then their union also has
measure zero.

The sets {4,8}, N, Q, and the cantor set C' have measure zero.

Proposition 2.8

If a < b, then [a, b] does not have measure zero.

Proof (Sketch). Suppose we could cover [a,b] with an open cover with total length
at most bjTa. Since [a, b] is compact, this cover has a finite sub-cover; which still has
length at most bfT“. Suppose that that subcover contains (ay,b1), ..., (an, by), with

12



2 Function Spaces

a1 < ag <---<a,. To be finished.

Corolary 2.9

If a < b, then (a,b], [a,b), (a,b) do not have measure zero.

2.3.1 Step Functions

A step function is a function that is non-zero on a finite set of disjoint bounded intervals,
constant on each of those intervals, and zero everywhere else.

Definition 2.10 (Characteristic Function)

Given S C R, the corresponding characteristic function is

1 z€8
Xs(w)Z{O v ¢S

Definition 2.11 (Step Function)
A step function is a function of the form
f(l’) =CaXn (x) + caX1, (:I?) + -+ CaXa, (x)v

where c; are real numbers and I; is a collection of disjoint bounded intervals. Equiv-
alently, I; can be a collection of (not necessarily disjoint) bounded intervals.

Definition 2.12 (Lebesgue integral of a step function)

Given a step function

f(@) = eixny (%) + coxr, () + -+ + e, (2),

we define its Lebesgue integral to be
/ f(x) =crm(ly) + com(Iz) + - - - + cpym(1y),

where m(1;) is the absolute value of the difference of I;’s endpoints.

13



2 Function Spaces

Definition 2.13 (Lebesgue integral of some other functions)

Given a function f: R — R, if we can find a sequence ¢,, of step functions such that
i. ¢1(x), p2(x), p3(x), ... is monotone increasing for each x € R, and
ii. ¢, — f pointwise except possibly on a set of measure zero,

then we define

| t@ide = tim [ ou(a)dz,

if that limit exists.

Consider f: R — R defined by

f(x)z{l ifz€Qand z€|0,]1]

0 otherwise.

Note that ¢, (x) := 0 converges pointwise to f except on QN[0, 1], which has measure
zero. Therefore,

[ swie=tim [ on@i=o

Consider f: R — R defined by
@) =1,

bul) = {1 if x € [-n,n]

0 otherwise.

Define ¢,: R — R by

Since ¢, converges pointwise to f,

/_oo f(z)dx = nh_)II;o /_oo On(x)de = nh_)n(f)lo 2n = +4o00.

Consider f: R — R defined by

1/2F ifk—1<z<kforkeN
@y =1Y .
0 otherwise.
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Define ¢,,: R — R by

128 ifk—1<z<kforke{l,2,...,n}

0 otherwise.

On(z) = {
Since ¢,, converges pointwise to f,
| t@da= tim [~ ou(@)do

=~ fm ) o=t

Consider f: R — R defined by

f(x):{l/\/i for0<z<1

0 anywhere.

Define ¢,: R — R by
by =1 () =2
R TN A

if B=1° - < K2 Since ¢,, converges pointwise to f
= <& - ges pointwise to f,

n—oo

/_O:o f(z)dz = lim /_O:o On(x)dx

2" 5%~ (j = 1)

=E2 2

Jj=1 J ar
1 &2 (1)
= lim —Zj—(j )
n—oo QN 4 9
J=1

To be continued.

Definition 2.14

Let L°(R) be the set of functions f: R — R such that there exists a sequence ¢,, of
step functions satisfying
i. ¢n(x) < ¢py1(x) for all m € N and z € R;

15



2 Function Spaces

ii. ¢, — f pointwise, expect on a set of measure zero;
iii. limy, o0 [Z0 &n(2) is a real number.

This definition only makes sense given the following theorem:

Theorem 2.15

If two sequence of step functions converge pointwise to f, then the limit of their
integrals are equal (or both don’t exist).

Definition 2.16

Let L'(R) be the space of functions f such that there are g,h € L%(R) satisfying
f =g — h. In that case, we define

/oo f(x)dxz/oo g(x)dm—/oo h(z) dz.

—0o0 —00 —00

Theorem 2.17 (L'(R) is a vector space)

L'(R) is a vector space.

Theorem 2.18 (Order Integral Theorem)

If f1, fo € LY(R) and fi(x) > fo(x) for all x € R, then
/_OO fi(z)dz > /_oo fo(x) dx.

Theorem 2.19
If f € L'(R), then |f| € L*(R), and

[

< [ 1f(@) da.

—00

Definition 2.20 (1-“norm”

Given f € L'(R), let [|fll = [Z, |f(2)].

The 1-“norm” is not actally an norm. Let’s “fix” L!(R) so that 1-“norm” is actually

16



2 Function Spaces

Definition 2.21

Let L. .(R) be the equivalent classes of functions, in which f and g are equivalent
if, and only if, f and g agree except on a set of measure zero.

Notationally, nobody calls this L}, .(R); they just call it L'(R). And most of the time,
they describe an object in L!(R) as if it were a function, even though in fact is a “collection
of functions that all equal each other except on a set of measure zero”.

Definition 2.22

If f: A D [a,b] — R and the restriction of f to [a,b] is in L!([a,b]), then

b [e%9)
[ f@dai= [~ ga)as.
where ¢g: R — R is defined by
o(z) {f(a:) x € [a,b)

0 otherwise.

Since we are lazy, we will say that f € L'([a,b]).

Proposition 2.23

If f € L'([a,b]) and f € L'([b,c]), then f € L'([a,c] and
G b c
/a f(z)dx =/a f(ac)d:c—i—/b f(z) dz.

Theorem 2.24 (Lebegue’'s Fundamental Theorem of Calculus)

If f € L'([a,b]) define F(x) = f: f(t)dt for any = € [a,b]. If f is continuous at
¢ € (a,b), then F'(c) exists and equals f(c).

Proof. Let € > 0 be arbitrary.

Since f is continous at ¢, there exists § > 0 so that for every x d-close to ¢ we have
|f(z) = f(e)] < 6.
Let h be arbitrary such that 0 < |h| < §. Without loss of generality, suppose

17



2 Function Spaces

0< h<?d.
— c ct+h _rc
F(c+hi)z F(c) o) = [ £ dth Jef@tydt 4o
R (O e (L
h h
|G — Sepdr|
; .

Therefore, the result follows.

Theorem 2.25 (More Familiar Fundamental Theorem)

If f is continuous on all [a, b] and F(z) is any antiderivative of f(x), i.e., F'(z) = f(x)
for all z € [a, b], then

Theorem 2.26 (L'([a,b]) is complete)

If f, € L'([a,b]) is a Cauchy sequence (with respect to | e ||1), then there exists
f € LY([a,b]) such that f, — f.

Definition 2.27

For p > 1, we say that f € LP(R) if f is a measurable function and [_|f(z)|P dx is
a finite number.

2.3.2 Aside: Measure

Example (Non-measurable set)

Endow [0,1) with an equivalence relation defined by a ~ b <= a —b € Q. Using
the Axiom of Choice, construct a set V' by picking one representant from each set.

If the measure of V' is 0, then we can conclude that every V + ¢ (mod 1) also have
measure zero, for rationals ¢ € [0,1), but then their union, which is [0, 1), also has
measure zero.

If the measure of V is € > 0, then we can conclude that every V 4 ¢ (mod 1) also

18



2 Function Spaces

have measure e, for rationals ¢ € [0, 1), but the union of more than 1/e has measure
greater than 1, but is contained in [0, 1).

Example (Non-measurable function)

Consider xy .

Definition 2.28 (p-norm)

Given f € LP(R), define

170 =( °;|f<x>|pdx)””.

2.4 Convex Functions

Definition 2.29 (Convex Function)

Given an interval A C R, a function f: A — R is convez if, and only if,

fAz+ (1= Ny) <Af(z) + (1 =N f(y),

for all z,y € A and X € [0, 1].

The functions f: R — R and g¢: [0,4+00) — R defined by f(z) = |z| and g(z) = 2P,
for p > 1, are convex functions.

Theorem 2.30

Given an interval A, and a convex function f: A — R, if f(A) is an interval and
g: f(A) — R is a convex function, then g o f is convex on A.

Proposition 2.31

The p-norm indeed satisfies the triangle inequality. In other words, for all f,g €
LP(R),

(J 2 v+ step ae) " ([~ 1P as) "y ([~ o) "

19



2 Function Spaces
2.5 L*(R) is special

Theorem 2.32

If f,g € L?(R), then fg € L*(R), with

| @@l ds <11 £lalgl

—00

Definition 2.33 (Inner product in L?(R))

Given f,g € L*(R), we define their inner product by

(f,9) = /_ O:o Al i

Proposition 2.34

For all f,g,h € L?(R) and ¢ € R,
i‘ <fvg> = <g7f>
ii. (f, f) >0, and the equality holds if, and only if, f = 0.
iii. <f +g=h> = <f= h> + <g’ h>
- {ef,9) = c{f, 9)-

j—)

iv

2.6 The Fourier and inverse-Fourier transform

Definition 2.35 (Fourier transform)

Given a function f of a real variable, we define its Fourier transform, denoted by f )
by

fw)= [ e siw)ds,

—00

and we define its “inverse” Fourier transform, denoted by f , by

f@) =5 [ gw)de.

—00
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