
MATH H333 (Algebra I) Lecture Notes

Guilherme Zeus Dantas e Moura
gdantasemo@haverford.edu

Haverford College
Fall 2020

Last updated: December 31, 2020

This is Haverford College’s undergraduate MATH H333, instructed by Tarik Aougab. All errors are my
responsability.

Use these notes only as a guide. There is a non-trivial chance that some things here are wrong or
incomplete (especially proofs).

This class is being taught remotely via Zoom.

Contents

1 Binary Operations (September 09, 2020) 3
1.1 Why Algebra? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Places where Algebra arises in Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Binary Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Groups (September 11, 2020) 5
2.1 Defining Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Subgroups (September 14, 2020) 7

4 Integers (September 16, 2020) 9

5 Cyclic Groups (September 18, 2020) 11

6 Isomorphisms (September 21, 2020) 13

7 Cosets (September 23, 2020) 14

8 Coset Properties (September 25, 2020) 15

9 Normal Subgroups (September 28, 2020) 17

10 Example of Quotients (September 30, 2020) 18

11 Quotient Groups (October 02, 2020) 19

12 First Isomorphism Theorem (October 05, 2020) 20

13 Example of First Isomorphism Theorem (October 07, 2020) 21

14 More Examples (October 09, 2020) 22

15 Rings (October 12, 2020) 23

16 Units, Fields (October 14, 2020) 24

1

mailto:gdantasemo@haverford.edu


17 Generalized Evaluation Map (October 16, 2020) 25

18 Ideals (October 19, 2020) 27

19 Quotient Rings (October 21, 2020) 29

20 Quotient out by an ideal (October 23, 2020) 30

21 Making rings bigger (October 26, 2020) 31

22 Creating fields from rings (October 28, 2020) 32

23 Review lecture: Maximal Ideals (November 11, 2020) 34

24 Polynomials (November 13, 2020) 36

25 Gauss’ Lemma (November 16, 2020) 38

26 Irreducibility over Z[x] and Q[x] (November 18, 2020) 40

27 Field Extensions (November 20, 2020) 42

28 More field extensions (November 30, 2020) 44

29 Quadractic Extensions (December 02, 2020) 45

30 Continuing Quadractic Extensions (December 04, 2020) 46

31 Corollaries of the Multiplicative Degree Theorem (December 07, 2020) 47

32 (December 9, 2020) 49

33 Finite Fields (December 11, 2020) 50
33.1 Finite fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

34 Supplementary Lecture I (December 20, 2020) 51

35 Supplementary Lecture II (December 25, 2020) 52
35.1 Splitting fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

36 Supplementary Lecture III (December 29, 2020) 54
36.1 Preparation for Galois Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

37 Supplementary Lecture IV (December 29, 2020) 57
37.1 Galois Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2



1 Binary Operations (September 09, 2020)

1.1 Why Algebra?

Algebra is the study of symmetry. An object has a symmetry when we can do something to it (transform
it in some way) and without changing its appearance.

Example 1.1

A circle has a rotational symmetry: if we rotate the circle about its center, we get the same circle.

Example 1.2

The algebraic equation x2 + y2 + z2 − 3xyz = 0 has a symmetry: for example, we can change the
roles of x and z, which gives us the same equation.

Symmetry appears all over Mathematics, so Algebra is a prevalent topic abroad Mathematics.

1.2 Places where Algebra arises in Mathematics

Number Theory. The following theorem will be proven in this course.

Theorem 1.1 (Fermat’s Little Theorem)

Let p be a prime integer number. Let a be a positive integer number. Then, ap − a is a multiple of
p.

Topology.

Theorem 1.2

There is no continous bijection f : S → T .

Sketch. Associate a “group” to S and another to T . A continous bujection would send the S-group
perfectly to the T -group. But the two groups are different.

1.3 Binary Operations

Definition 1.3

If S is a set, then a binary operation on S is a function f : S×S → S. Here, S×S = {(a, b) | a, b ∈ S}.

Example 1.3

If S = R, then f(a, b) = a+ b and g(a, b) = a · b are binary operations.

Example 1.4

If S = N, then h(a, b) = a− b is not a binary operation.

Definition 1.4

A binary operation f : S × S → S is associative if, for all a, b, c ∈ S,

f(f(a, b), c) = f(a, f(b, c)).

3



Example 1.5

If S =Mn(R), then f(A,B) = AB is an associative binary operation.

Example 1.6

If S = R, then f(a, b) = a− b is a non-associative binary operation.

A key concept in Algebra is transformation.

Example 1.7

Let S be a non-empty section. Define g(S) = {T : S → S}. Then, composition is an associative
binary operation on g(S), i.e., f(T1, T2) = T1 ◦ T2 is an associative binary operation on g(S).
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2 Groups (September 11, 2020)

In the last class, we focused on binary (associative) operations.

2.1 Defining Groups

Definition 2.1 (Notation)

If a, b ∈ S, then ab or a · b will commonly be used to denote f(a, b). We will also commonly call this
operation a product.

Associativity allows us to be less careful when writing down long products.

Example 2.1

In general, a1a2a3a4a5a6a7 has no meaning. However, if the binary opperation is associative, no
matter in which order we do the product, there will be no ambiguity about what value the expression
have.

Definition 2.2

A binary operation on S is called commutative if for all a, b ∈ S, ab = ba holds.

Example 2.2 (i) (R,+), (C, ·) have commutative binary operations.
(ii) (Mn(R), matrix multiplication) has a non-commutative operation.

(iii) (R, distance), i.e, f(a, b) = |a− b|, has a commuative, but non-associative operation.

Definition 2.3

Given S equipped with a binary opperation, we say (S, ·), has an identity element if there exists
e ∈ S such that, for all a ∈ S, a · e = e · a = a holds.

Example 2.3

(i) (R,+) has 0 as an identity.
(ii) (R, ·) has 1 as an identity.

(iii) (Mn(R), matrix multiplication) has In as an identity.

Definition 2.4

An element a of (S, ·), that has an identity element (which we are going to call e), is called invertible
if there exists b ∈ S so that ab = ba = e.

Example 2.4

(i) Every element of (R,+) is invertible.
(ii) Every element, except 0, of (R, ·) is invertible.

(iii) Some elements, but not all, of Mn(R), equipped with matrix multiplication, are invertible.

Definition 2.5

A group is a set (G, ·) with a binary opperation so that:

(i) The binary opperation is associative.
(ii) There exists an identity element in G.

(iii) Every element in G is invertible.

If · is commutative, G is called an abelian group.
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Example 2.5

(i) (R,+) is a group.
(ii) (C,+) is a group.

(iii) (Z,+) is a group.
(iv) (R\{0}, ·) is a group.
(v) (C\{0}, ·) is a group.

(vi) (Z\{0}, ·) is not a group, because 2 does not have an inverse element.
– However, (Q\{0}, ·) is a group.

(vii) Mn(R), equipped with matrix multiplication is not a group, because the zero matrix does not
have an inverse element.

– However, if we define GLn(R) = {A ∈ Mn(R) : A is invertible}, then GLn(R), equipped
with matrix multiplication is a group.a

(viii) Define D8 = {affine bijections T : R2 → R2 such that T (S) = S}, where S =
{(0, 0), (0, 1), (1, 0), (1, 1)}, also known as the standard unit square.

aIt is important to prove that matrix multiplication is closed under GLn(R). In addition, this is the first example
of a non-abelian group.
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3 Subgroups (September 14, 2020)

Let’s look more closely to D8 = {affine bijections T : R→ R such that T (S) = S}.

Proposition 3.1

D8 is a group. The order of the group D8 is 8.

Proposition 3.2

Let r, h ∈ D8 be described as follows:

(i) r denotes the rotation of S by 90◦, counter-clockwise.
(ii) h denotes the reflect across the horizontal perpendicular bisector.

If φ ∈ D8, then φ can be expressed as φ = φn ◦ φn−1 ◦ · · ·φ1, where φi = h or φi = r, for all i.

The proposition above should resemble the concept of basis in Linear Algebra. In some sense, h and r
gererate the group D8.

Example 3.1

Let d be the reflection through the diagonal line through (0, 0) and (1, 1). We have d = h◦ r ◦ r ◦ r =
hr3.

Example 3.2

Let v be the reflection though the vertical perpendicular bisector. We have v = hr2.

Note that h2 = r4 = e, and 2 · 4 = 8, which is the number of elements in D8. What a coincidence, isn’t
it?

Definition 3.3

A subgroup H of a group (G, ·) is a subset of G that is a group itself, with respect to the same
operation ·.

Example 3.3

(i) If G is a group, it has an identity, say e. Then {e} is a subgroup of G.
(ii) G is always a subgroup of G.

Lemma 3.4

Given a a group G, a non-empty subset H ⊂ G is a subgroup of G if, and only if, both following
conditions are met:

(i) ab ∈ H, for all a, b ∈ H.
(ii) a−1 ∈ H, for all a ∈ H.
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Example 3.4

2Z = {even integers} is a subgroup of (Z,+).

Definition 3.5 (Symmetric group on n elements)

Given n ∈ N , define Sn = {bijections τ : {1, 2, . . . , n} → {1, 2, . . . , n}}, equipped with composition.

Example 3.5

Let n = 5, then consider τ :

(
1 2 3 4 5
3 4 1 2 5

)
. Then τ ∈ S5.

Alternatively, we can use the following notation for τ = (13)(24)(5), which is called cycle notation.

Example 3.6

Consider τ ′ :

(
1 2 3 4 5
2 4 5 1 3

)
. We can write τ ′ = (124)(35), using cycle notation.

Example 3.7

Consider τ ′′ :

(
1 2 3 4 5
2 3 4 5 1

)
. We can write τ ′′ = (12345), using cycle notation.

Remark. Cycle notation is “not unique”, e.g., (12345) = (34512).
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4 Integers (September 16, 2020)

Proposition 4.1

Sn us a finite group, and |Sn| = n! = n · (n− 1) · · · · · 2 · 1.

Proof. An arbitrary element τ ∈ Sn is described by determining τ(1), τ(2), . . . , τ(n). We have n choices
for τ(1); after that, we have n− 1 choices for τ(2); . . . ; after that, we have 1 choice for τ(n). �

Example 4.1

Suppose q, p ∈ S5, q = (14325) and p = (15)(34). Determine qp in cycle notation.

Answer (Cheat). qp = (14325)(15)(34).

Answer (More useful). qp = (425).

Definition 4.2

Given τ ∈ Sn, define Mτ as a n×n matrix obtained by permuting the rows of In in accordance with
τ .

Example 4.2

If τ ∈ S4, τ = (134), then

Mτ =


0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0

 .

Given ~x =


x1

x2

x3

x4

, we have Mτ~v =


x4

x2

x1

x3

 .

Theorem 4.3

Given τ ∈ Sn, ~x =


x1

x2

...
xn

, then Mτ~x =


xτ−1(1)

xτ−1(2)

...
xτ−1(n)

.

Theorem 4.4

det(Mτ ) = ±1.

Theorem 4.5

Given p, q ∈ Sn, then Mpq = MpMq.

Definition 4.6

The sign of τ ∈ Sn is either ±1, and it is just det(Mτ ).

Problem 4.1

If G = (Z,+), what are all subgroups of G?
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Solution. Let H be a subgroup of G. 0 ∈ H, because 0 is the identity element.

If H = {0}, we have a group – note that H = 0Z. Otherwise, H has an element distinct from 0. Since
a ∈ H ⇐⇒ −a ∈ H, then there is a positive integer in H.

Let h be the smallest positive integer in H. Since addition is a binary opperation in H, we have hZ ⊂ H.

Supposse H 6= hZ. Therefore, there is an element x ∈ H, such that x 6∈ hZ. Therefore, by Euclid’s
Algorithm, there is an integer q such that nh < x < (n + 1)h; namely, q the quotient of x when evenly
divided by h. Therefore, 0 < x− qh < h.

However, qh, x ∈ S implies that x − qh ∈ H. This is a contradition, because we have found a positive
ineger smaller than h (the smallest positive element of H), which is also an element of H.

Therefore, H = hZ, with H ∈ Z≥0, are all the subgroups of G.

Let us see some applications of Problem 4.1.

Given a, b ∈ Z, consider S = aZ + bZ = {n ∈ Z : n = ra+ sb, r, s ∈ Z}. Verify that S is a subgroup of Z.
Using Problem 4.1, we have that S = dZ, for some integer d.
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5 Cyclic Groups (September 18, 2020)

Recall that every subgroup S of (Z,+) is of the form dZ, for some integer d.

Also, if a, b are integers, we can consider S = aZ + bZ, which is a subgroup of Z. Therefore, SZ = dZ.
for some integer d.

Since a, b ∈ S = aZ + bZ, then a, b ∈ dZ, which means that d is a divisor of both a, b.

Now, let n ∈ Z such that n divides both a and b. Thus, n divides any number of the form sa+ rb. But,
dZ = aZ + bZ, which means d = ra+ bs, for right choices of r and s. Therefore, n divides d.

Definition 5.1

For a, b ∈ Z, we define d as above as the greatest common divisor of a and b, which we denote by
gcd(a, b).

We have shown not only that d is the greatest common divisor of a and b, but also that any other common
divisor of a and b divides d.

Algorithm 5.2 (Euclidean Algorithm)

Example 5.1

Let a = 314 and b = 136. We divide 314 by 136 and get 314 = 2 · 136 + 42. Thus,

n ∈ 314Z + 136Z ⇐⇒ n = r · 314 + s · 136

⇐⇒ n = r · (2 · 136 + 402) + s · 136

⇐⇒ n = r · (2r + s) · 136 + r · 42

⇐⇒ n ∈ 136Z + 42Z.

Therefore, gcd(314, 136) = gcd(136, 42). We can further use

Definition 5.3

Given a, b ∈ Z, a, b 6= 0, then a and b are relatively prime if, and only if, gcd(a, b) = 1.

Proposition 5.4

The gcd(a, b) is the product of the prime powers common to prime factorizations of a and b.

Example 5.2

Let a = 52 = 22 · 13, and b = 23 · 3. Therefore, gcd(52, 24) = 22.

Corollary 5.5

If a and b are relatively prime if, and only if, there are integers r and s such that ra+ sb = 1.

Corollary 5.6

Suppose p is a prime. Then, given a, b ∈ Z, if p divides ab, therefore p divides a or p divides b.

Proof. If p divides a, we are done.

Suppose that p does not divide a. Thus, gcd(p, a) = 1. It implies that

1 = rp+ sa,
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for some integers r and s. If we multiply both sides by b, we have

b = rbp+ sab.

Notice that p divides both rbp and sab, therefore, p divides their sum, which is b. �

Theorem 5.7

Let G = (G, ·) be a group, let I be a set, and let {Hi}i∈I be a family of subgroups of G indexed by
I. Then, the set ⋂

i∈I
Hi

is a group.

Proof. We want to show:

(i)
⋂
i∈I Hi 6= ∅.

For this item, e ∈
⋂
i=I Hi.

(ii) a, b ∈
⋂
i∈I Hi =⇒ ab ∈

⋂
i∈I .

For this item, a, b ∈ Hi, for all i ∈ I, which implies ab ∈ Hi for all i

�

Back to (Z,+). Given a, b ∈ Z, let S = aZ ∩ bZ. By the last theorem, S is a subgroup. By Wednesday’s
theorem, S = aZ + bZ = mZ, for some m ∈ Z. Since m ∈ mZ = aZ ∩ bZ, m is a multiple of a and b.

Now, for any number n that is multiple of both a and b =⇒ n ∈ aZ∩ bZ = mZ =⇒ n is a multuple of
m.

Definition 5.8

The m described above is called the lowest common multiple of a and b, denoted by lcm(a, b).

We have proved above only only that m is the lowest common multiple, but also that m divides every
common multiple of a and b.

Definition 5.9

Let (G, ·) be a group and x ∈ G. Then the cyclic subgroup generated by x, denoted by < x >, is all
powers of x, i.e.,

〈x〉 = {. . . , x−1, e, x1, x2, . . . }.

Theorem 5.10

In G, let Γ(x) = {H ⊆ G : H is a subgroup of G and x ∈ H}. Then⋂
H∈Γ(x)

H = 〈x〉 .
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6 Isomorphisms (September 21, 2020)

This class happened during IMO. The lecture notes are to do.
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7 Cosets (September 23, 2020)

This class happened during IMO. The lecture notes are to do.
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8 Coset Properties (September 25, 2020)

Definition 8.1 (Equivalence Relation)

An equivalence relation is a relation on a set S, i.e., a way to say that certain pairs of elements
can be in relationship to one another; so long as the pair satisfies whatever rules we choose for that
relationship, AND our rules need to satisfy these properties.

(i) x ∼ x;
(ii) if x ∼ y, then y ∼ x;

(iii) if x ∼ y and y ∼ z, then x ∼ z.

Remark. If a pair (x, y) satisfy our rules, we write x ∼ y, “x is equivalent to y”.

Definition 8.2 (Equivalence Class)

Given a set S, s ∈ S, and an equivalence relation ∼, the equivalence class of x, denoted [x], is
[x] = {y ∈ S : x ∼ y}.

Example 8.1

Let S = Z× (Z− {0}), and we will say that (a, b) ∼ (c, d) ⇐⇒ ad = bc. Let us check if the three
properties are ensured:

(i) (a, b) ∼ (a, b), because ab = ba;
(ii) (a, b) ∼ (c, d) ⇐⇒ ad = bc ⇐⇒ cb = da ⇐⇒ (c, d) ∼ (a, b);

(iii) If (a, b) ∼ (c, d) and (c, d) ∼ (r, s). Then, ad = bc and cs = dr. Therefore, adcs = bcdr, which
means that as = br (since c 6= 0 6= d). In other words, (a, b) ∼ (r, r).

In this case, [(a, b)] = {(c, d) ∈ S : ad = bc}.

Theorem 8.3

If S is a set, with an equivalence relation ∼, then the equivalence classes of ∼ disjointly partition S,
i.e., every element of S is contained in exactly one equivalence class.

Given S, equipped with an equivalence class ∼ on S, we define S̄ = {[x] : x ∈ S}, i.e., the set of
equivalence classes.

In this situation, there exists a map π : S → S̄, defined by x 7→ [x].

Example 8.2

Let S = Z, and a ∼ b ⇐⇒ a− b is a multiple of 5. (You should verify that this is an equivalence
relation.)

Then S̄ = {[0], [1], [2], [3], [4]}. E.g., π(7) = [2].

Definition 8.4

Let H ≤ G be groups, and a ∈ G. Then, the right coset of H with respect to a is

Ha = {g ∈ G : ∃h ∈ H such that ha = g} = {ha : h ∈ H}.

Lemma 8.5

Ha = Hb ⇐⇒ ab−1 ∈ H

Lemma 8.6

Given H ≤ G groups, the relation defined by a ∼ b ⇐⇒ ab−1 ∈ H is an equivalence relation.
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So, what are the equivalence classes of this equivalence relation? They are exactly the right cossets of
H, i.e, [a] = Ha.

Therefore, right cosets, if distinct, share no elements in common.

On Monday, we’ll prove the following theorem.

Theorem 8.7 (Lagrange’s Theorem)

If G is a finite group and H is a subgroup of G, then |H| divides |G|.
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9 Normal Subgroups (September 28, 2020)

Lemma 9.1

Given H ≤ G, if |G| <∞, then given a, b ∈ G, it holds #(Ha) = #(Hb).

Proof. Note that H is a right coset (H = He). So, suffices to show that for all a ∈ G, #(Ha) = |H|.
Define a function ϕ : H → Ha, defined by h 7→ ha. We shall prove that ϕ is a bijection.

Let’s show that ϕ is onto. Given g ∈ Ha, then g = ha for some h ∈ H. But φ(h) = ha = g, which means
that g ∈ Im(ϕ).

Let’s show that ϕ is one-to-one. If ϕ(h1) = ϕ(h2) =⇒ h1a = h2a = =⇒ h1aa
−1 = h2aa

−1 =⇒ a =

Therefore ϕ is a bijection, which implies that #(Ha) = |H|, and we’re done! �

Theorem 9.2 (Lagrange’s Theorem)

If H ≤ G are finite groups, then |H| divides |G|.

Proof. The right cosets of H partitionate G, i.e., they are disjoint and their union is G; and they all have
the same number of elements. Let [G : H] denote the number of right cosets of H sitting inside G, which
is called index of H in G. Therefore,

G = [G : H] · |H|.
�

Corollary 9.3

Given a group G and a ∈ G, if |G| <∞, then order(a) divides |G|.

Proof. Consider 〈a〉 ≤ G, then, by Lagrange’s Theorem, |〈a〉| = order(a) divides |G| �

Definition 9.4

A subgroup H of G is called normal, denoted by H C G if, for all g ∈ G, the image of H under
the g-conjugation isomorphism (the g-conjugation isomorphism is the map φg : G → G defined by
a 7→ gag−1) is cointained in H, i.e, φg(H) ⊂ H, for all g ∈ G.

Lemma 9.5

If G and G′ are subgroups, φ : G→ G′ a homomorphism, then Kerφ / G.

Example 9.1

SLn(R) C GLn(R).

Use Lemma 9.5 with det : GLn(R)→ R×.

Example 9.2

〈(1 2)〉 6 G, because φ(2 3)(〈(1 2)〉) = {e, (1 3)} 6⊂ H

Theorem 9.6

The following are equivalent:

(i) H C G;
(ii) gHg−1 = H, for any g ∈ G;

(iii) gH = Hg, for any g ∈ G;
(iv) Every left coset of H is a right coset of H.
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10 Example of Quotients (September 30, 2020)

From last time, we discussed the following theorem:

Theorem 10.1

The following are equivalent:

(i) H C G;
(ii) gHg−1 = H, for any g ∈ G;

(iii) gH = Hg, for any g ∈ G;
(iv) Every left coset of H is a right coset of H.

Proof (i =⇒ ii). H C G =⇒ φg(H) ∈ H =⇒ gHg−1 ⊂ H. Analougously, g−1Hg ⊂ H. This last one
implies that H ⊂ gHg−1.

Therefore, gHg−1 = H. �

Proof (ii ⇐⇒ iii). gHg−1 = H ⇐⇒ gH = Hg. �

Proof (iii =⇒ iv). If gH = Hg, then gH is a right coset. �

Proof (iv =⇒ iii). Assume that, given aH, then there is b such that aH = Hb. Note that gH sahres
an element shares an element (namely, g) with Hg. Since gH is a left coset, then gH = Hb for some b.

Since g ∈ gH = Hb, then Hb intersects with Hg, then Hb = Hg (because, if two left cosets share an
element, then they are equal). �

Proof (ii =⇒ i). gHg−1 = φg(H) = H, then φg ⊂ H, which implies H C G. �

Recall from Linear Algebra:

Theorem 10.2

Let T : V →W a linear map, then

dimV = dim kerT + dim Im T.

If T is onto, then
dimV = dim kerT + dimW.

The goal is to reproduce this idea with groups and homomorphisms, i.e., given G,G′ groups, and an onto
homomorphism φ : G → G′, then understand G as being a ”stacking” of cosets of ker(φ) and when we
collapse each coset to a point, we get G′.

Our goal will be realted to the following theorem:

Theorem 10.3

Given G and a subgroup H, then H C G if, and only if, there is a group G′ and a homomorphism
φ : G→ G′ such that ker φ = H.

Definition 10.4 (Notation)

Let G/H (“G mod H”) be the set of all right cosets of H sitting inside G.

Theorem 10.5

When H C G, there exists a binary operation on G/H and an homomorphism φ : G → G/H such
that ker φ = H.

Spoiler: The operation ∗ will be, for A,B ∈ G/H, A ∗B = AB = {g ∈ G : ∃ a1 ∈ A, b1 ∈ B, g = a1b1}.
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11 Quotient Groups (October 02, 2020)

Here’s a rephrasing of our motivation from Linear Alegbra:

Suppose V is a vector space, and S ⊂ V a subspace. Let ~x ∈ V . In Linear Algebra, we learned we write
~x as a sum of a vector in S with an vector ~z ortogonal to S, a.k.a., ~z ∈ S⊥.

V can be decomposed into parallel copies of S, and there exists a vector space W and a linear map
T : V →W so that T has the effect of collapsing each parallel copy of S to a point. And, ker T = S.

To summarize: Given S a subspace of V , there exists a decomposition of V into parallel copies of S and
there exists a vector space W and a linear map T : V → W so that T collapses the parallel copies to
points and ker T = S.

Our goal in the Group Theory setting: Given H C G, there exists a decomposition of G into right cosets
of H in G and there exists a group G′ and a homomorphism φ : G→ G′ so that φ collapses a right cosets
of H to a point and kerφ = H.

On Wednesday, we defined G/H = {right cosets of H in G} as our candidate for G′.

Given Ha,Hb ∈ G/H, we defined Ha ∗Hb = (Ha)(Hb) = {h1ah2b : h1, h2 ∈ H}.

We know that aH = Ha, then HaHb = HHab. Since H is closed under operation and He = H, we have
that HH = H. Thus,

Ha ∗Hb = (Ha)(Hb) = H(ab),

which means that ∗ is a binary operation.

So far, we have that G/H has a binary operation. We also have a candidate for φ! Define φ : G→ G/H,
with g → Hg. Given, a, b ∈ G,

φ(ab) = H(ab) = (Ha)(Hb) = φ(a)φ(b),

thus φ has the homomorphism property. Note also that φ is onto.

Lemma 11.1

If G is a group, Y is a set with a binary operation, φ : G→ Y such that φ has the homomorphism
property, and φ is onto. Then Y is a group and φ is a homomorphism.

Proof. We need to show the following items:

(i) Assoiativity. Given a, b, c ∈ Y , since φ is onto, we have a = φ(a′), b = φ(b′), c = φ(c′), for some
a′, b′, c′ ∈ G. So

(ab)c = (φ(a′)φ(b′))φ(c′)

= φ(a′b′)φ(c′)

= φ((a′b′)c′)

= φ(a′(b′c′))

= φ(a′)φ(b′c′)

= φ(a′)(φ(b′)φ(c′))

= a(bc).

(ii) Identity. The same strategy as above.
(iii) Inverses. The same strategy as above.

Thus, Y is a group. �
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12 First Isomorphism Theorem (October 05, 2020)

Summary of our work from last week:

Start with a group G and a normal subgroup H in G. Then, we showed that there exists a way to turn
G/H into a group, and, the “natural” map φ : G→ G/H, defined by g → Hg is an onto homomorphism.
The identity of G/H is H. Also, ker(φ) = H. AND, φ has the effect of collapsing each coset of H to a
single element.

So, starting with H C G, we constructed an onto homomorphism φ : G→ G/H.

Question. If we start with and onto homomorphism φ : G → G′, when is it the case that φ arose via
what we did last week?

Theorem 12.1 (1st Isomorphism Theorem)

If φ : G→ G′ is an onto homomorphism, and N denotes ker(φ), then G′ is isomorphic to G/N .

And, there exists an unique isomorphism φ̄ : G/n → G′ so that φ̄ commutes with the natural map
π : G→ G/N , defined by g 7→ G/N , i.e.,

φ̄ ◦ π = φ.

Proof. We want to find a map φ̄ : G/N → G. Let’s define

φ(̄Ng) = φ(g).

There is a subtle problem: what if Ng = Nh? As we defined φ̄, it sends Ng to φ(g), and Na to φ(a).
This is a problem unless φ(g) = φ(h).

This definition is coherent, because

Ng = Nh =⇒ gh−1 ∈ N = kerφ

=⇒ φ(gh−1) = e′ (e′ is the identity element of G′)

=⇒ φ(g)φ(h)−1 = e′

=⇒ φ(g) = φ(h).

Let’s show that φ̄ is a homomorphism:

φ̄(NaNb) = φ̄(Nab) (N is normal)

= φ(ab)

= φ(a)φ(b) (φ is a homomorphism)

= φ̄(Na)φ̄(Nb).

Let’s show that φ̄ is onto: Given g′ ∈ G′, there exists y ∈ G such that φ(y) = g′, since φ is onto. So,
consider π(y) = Ny ∈ G/H. Then, φ̄(Ny) = φ(y) = g′.

Let’s show that φ̄ is one-to-one:

φ̄(Na) = φ̄(Nb) =⇒ φ(a) = φ(b)

=⇒ φ(a)φ(b)−1 = e′

=⇒ φ(ab−1) = e′

ab−1 ∈ N
Na = Nb.

Thus, φ̄ satisfies the commuting property! �
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13 Example of First Isomorphism Theorem (October 07, 2020)

General idea of today’s lecture: 1st iso thm and the conversation about quotient groups from last week
are useful for studying a group G from the point of view of onto hom’s φ : G→ something else.

Example 13.1

G′ = Z2 = {(a, b) : a, b ∈ Z}, (a, b) + (c, d) = (a + c, b + d). Note: Z2 is an abelian group (vector
addition is commutative).

G = F2 = “free group on 2 generators” = {finite strings using symbols a, b, a−1, b−1, e}, with the
operation of concatenation.

Define φ : F2 → Z2 by φ(a) = (1, 0), φ(b) = (0, 1) and send anything else to where you would have
to sent it to make φ a homomorphism, e.g., g ∈ F2, g = a3b−2a5; then

φ(g) = 3φ(a)− 2φ(b) + 5φ(a)

= (8,−2).

The function φ is onto, since φ(acbd) = (c, d), for every (c, d) ∈ Z2.

Then, by the 1st iso thm, Z2 ' F2/ kerφ. (Which implies that, e.g., F2/ kerφ is abelian.)

So far, we have that Z2 ' F2/ kerφ. So, the idea is: learn something about F2 by understanding
what kerφ is. Thus, we want to understand what kerφ is.

For example, aba−1b−1 ∈ kerφ. More generally, if g1, g2 ∈ F2, then g1g2g
−1
1 g−1

2 ∈ kerφ.

So, kerφ ⊃ group generated by all expressions of the form g1g2g
−1
1 g−1

2 . It is left to the reader to
show that the equality holds. (Think about what it really means for something to be in the kernel.)

Remember, F2 is not abelian. And a group G is abelian ⇐⇒ gh = hg ⇐⇒ ghg−1h−1.

The 1st isomorphism theorem says that the elements of Z2 are representing cosets of kerφ. This
means that g ∈ kerφ ⇐⇒ π(g) = itentity in F2/ kerφ.

All this to say: φF2 → Z2 collapses kerφ to a point and collapses each coset of kerφ to a different
point.

Remember that kerφ = 〈commutators〉. The commutators are exactly the stuff that, if they’re not
identity, the group is not abelian.

So, F2 is not abelian because 〈commutators〉 6= {identity element} and we get an abelian group
when we quotient out by this subgroup.

In summary:

– We characterized kerφ as 〈commutators = g1g2g
−1
1 g−1

2 〉 and commutators prevent abelian-
ness. So, F2/ kerφ should be abelian. And, 1st iso thm implies F2/ kerφ ' Z2, which is
abelian.
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14 More Examples (October 09, 2020)

Remark. This class has a lot of drawings, which are on Moodle’s video of the lecture. The lecture notes
for this class are not really useful without the drawings.

Let’s show another example of the first isomorphism theorem:

In spirit, the first isomorphism theorem says that if φ : G → G′ onto, then G is comprised of copies of
kerφ, organized into the pattern of G′.

Example 14.1

Let G = (Z,+) and G′ = {0, 1, 2, 3, 4}, eqquipped with addition modulo 5. Let φ : Z → G′ be the
map defined by k 7→ k (mod 5).

Then, the first isomorphism theorem implies that:

(i) G′ ' Z/ kerφ.
(ii) If π : Z→ Z/ kerφ is the natural map defined by n 7→ (kerφ)n, then there is an isomorphism

φ̄ : Z/ kerφ→ G′ such that φ = φ̄ ◦ π.
This implies that, for any k1, k2 ∈ Z, it holds that φ(k1) = φ(k2) ⇐⇒ π(k1) = π(k2), i.e.,
(kerφ) + k1 = (kerφ) + k2. (Here, we are using + because that is the group operation.)

SEE THE PICTURES IN THE LECTURE VIDEO.

Example 14.2

Let’s apply the same reasoing for φ : F2 → Z2, from last class.

SEE THE PICTURES IN THE LECTURE.
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15 Rings (October 12, 2020)

For groups, our prototype was the symmetries of a geometric object.

For rings, our prototypes will be (Z,+, ·), and ({f : R→ R},+, ·).

Definition 15.1

A ring is a set R, equipped with two binary opperations, + and ·, satisfying:

(i) (R,+) is an abelian group.
(ii) The operation · is commutative, associative, and has an identity.

(iii) For all a, b, c ∈ R, it holds that (a+ b) · c = a · c+ b · c.

Definition 15.2 (Notations)

We denote (R,+) as R+. We denote the additive element as 0. We denote the multiplicative element
as 1.

Definition 15.3

A subring of a ring R is a subset S ⊂ R, equipped with the same opperations as R.

Subrings of C were studied as examples of rings in the lecture. The notes for this segment of the class
are to do.
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16 Units, Fields (October 14, 2020)

Definition 16.1

An element r ∈ R is called a unit if there exists s ∈ R such that rs = 1.

Lemma 16.2

0 is never a unit, unless R is the trivial group, {0}.

Definition 16.3

Any non-trivial ring R in which every element except 0 is a unit is called a field.

In other words, a field is a ring in which all non-zero elements have multiplicative inverses.

Example 16.1

C, R, Q, Z/pZ (p is prime) are examples of fields.
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17 Generalized Evaluation Map (October 16, 2020)

In last class, we learned about the substituion principle. If φ : R → R′ is a ring homomorphism, and
a ∈ R′, then there exists a unique ring homomorphism Φ : R[x]→ R′ satisfying

(i) Φ|R = φ. (In general, if f : X → Y and A ⊂ X, we can consider f |A : A→ Y given by restricting
the domain of f to A)

(ii) Φ(x) = a.

On Wednesday, we said that “in spirit”, this is saying that any ring homomorphism “looks like” a
restriction of an evaluation map.

Example 17.1 (Example of Evaluation Map)

Given R a ring and a ∈ R, let φa : R[x] → R be defined by p(x) = anx
n + · · · + a1x + a0 7→

ana
n + · · ·+ a1a+ a0. This is an evaluation map, and it is a ring homomorphism

Definition 17.1 (Generalized Evaluation Map)

Assume φ : R→ R′ is a ring homomorphism and fix a ∈ R′. Let φa : R[x]→ R′ be defined by

p(x) = anx
n + · · ·+ a1x+ a0 7→ φ(an)an + · · ·+ φ(a1)a+ φ(a0).

Every ring homomorphism φ : R → R′ is the restriction of a generalized evaluation map from R[X] to
R′. And, if we specify a ∈ R′, there is a unique generalized evaluation φa : R[x] → R′ such that φ is a
restriction of φa.

Therefore, we can interpret the substitution principle as follows:

Theorem 17.2

Given φ : R→ R′, and a ∈ R′, the generalized evaluation map φa is a ring homomorphism and it is
the only ring homomorphism from R[x] to R′ agreeing with φ on R and sending x to a.

Let’s prove the theorem above (and, consequently, prove the substitution principle).

Proof. We are given φ : R→ R′ and a ∈ R′. We want to show that:

(i) The map Φ : R[x]→ R′ defined by p(x) = anx
n + · · ·+ a1x+ a0 7→ φ(an)an + · · ·+ φ(a1)x+ φ(a0)

is a ring homomorphism.
(ii) It holds that Φ|R = φ, and Φ(x) = a.

(iii) The map Φ the only ring homomorphism with these properties.

Let’s prove each item:

(i) We need to show the following items
(a) Φ(1R) = 1R′ , because Φ(1R) = φ(1R) = 1R′ .
(b) Φ(f + g) = Φ(f) + Φ(g). This item is left to the reader.*

*Use the definition of Φ and use that φ is a ring homomorphism.
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(c) Φ(fg) = Φ(f)Φ(g). Let f =
∑
i aix

i and g =
∑
j bjx

j . Then,

Φ(fg) = Φ

∑
i

∑
j

aibjx
i+j


=
∑
i

∑
j

φ(aibj)a
i+j

=
∑
i

∑
j

φ(ai)φ(bj)a
i+j

=

(∑
i

φ(ai)a
i

)∑
j

φ(bj)a
j


= Φ(f)Φ(g)

(ii) Exercise left to the reader.
(iii) Try it!

�

Theorem 17.3 (Slightly more general version of subprinciple)

If φ : R → R′ is a ring homomorphism and α1, α2, . . . αn ∈ R′, then there exists a unique ring
homomorphism Φ : R[x1, x2, . . . , xn]→ R′ satisfying Φ |R= φ and Φ(xi) = αi.

Theorem 17.4

For any ring R, it holds that R[x, y] ' (R[x])[y].

Proof. R is a subring of R[x] and R[x] is a subring of (R[x])[y]. Thus, R is a subring of (R[x])[y].
Therefore, we have a natural obvious ring homomorphism φ : R→ (R[x])[y].

The substitution principle for n = 2, there exists a ring homomorphism Φ : R[x, y]→ (R[x])[y], extending
φ.

R[x] is also a subring of R[x, y]. Therefore, we have γ : R[x]→ R[x, y]. The substitution principle, there
exists Γ : (R[x])[y]→ R[x, y].

Check that Γ is the inverse of Φ. �
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18 Ideals (October 19, 2020)

Our plan is to build up the analog of normal subgroups and quotient groups (kernels of homomorphisms),
but for rings.

Definition 18.1

An ideal in a ring (R,+, ·) is a non-empty subset I ⊆ R, such that

(i) I is closed under +.
(ii) For all r ∈ R and s ∈ I, then rs ∈ I.

Lemma 18.2

If φ : R→ R′ is a ring homomorphism, then kerφ = {r ∈ R | φ(r) = 0R′} is an ideal of R.

Proof. Left to the reader. (It is straightfoward). �

Lemma 18.3

I is an ideal if, and only if I 6= ∅ and any linear combination r1s1 + · · ·+ rksk is in I.

Prove this on your own.

Example 18.1 (i) Kernels of ring homomorphisms.
(ii) (Principal ideal generated by a) If a ∈ R, then {ra | r ∈ R} forms an ideal. We write (a) to

refer to this ideal.
(iii) More generally, given a1, . . . , an, the ideal denoted by (a1, . . . , an) is {a1r1 + · · · anrn} is an

ideal.

Definition 18.4

A proper ideal of R is an ideal of R that is not {OR} nor R.

Lemma 18.5

A proper ideal is never a subring.

Example 18.2

Let φ : R[x]→ R given by φ(p(x)) = p(17). Then, by the lemma, kerφ is an ideal in R[x].

kerφ = {p ∈ R[x] | p(17) = 0}
= {f(x)(x− 17) | f ∈ R[x]}
= (x− 17).

Proposition 18.6

If F is a field, then any ideal in F [x] is principal.

Algorithm 18.7 (Polynomial division)

Given g ∈ R[x] and f ∈ R[x] monic, there are unique polynomials p, r ∈ R[x] such that g = fp+ r,
and deg(r) < deg(f).

Definition 18.8

If R is a ring and every ideal of R is principal, then it is called a principal ideal domain.
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Proposition 18.9 (Rewrite of Proposition 18.6)

If F is a field, then F [x] is a principal ideal domain.

Proof (of Proposition 18.6). Assume that I 6= {0}. Pick f(x) ∈ I such that f(x) 6= 0 and deg(f) is
minimal. Say that f(x) = anx

n + · · ·+ a0.

Since F is a field, there is a multiplicative inverse of an in F . Thus, let f̃ = a−1
n · f ∈ I, and is monic;

also with minimal degree.

Since f̃ ∈ I, we have (f̃) ⊆ I.

Fix g ∈ I. Then, by polynomial division, there are unique p, r ∈ F [x], with deg(r) < deg(f̃) such that
g = pf̃ + r. Then, r ∈ I, which implies r = 0. Thus, g = pf̃ . This means that I ⊆ (f̃).

Therefore, I = (f̃). �

Lemma 18.10

If R is a ring, then there exists only one ring homomorphism φ : Z→ R.

Proof. Define, φ(0) = 0R for n > 0, φ(n) = 1R + 1R + · · · + 1R, where 1R appears n times, and
φ(−n) = −φ(n). This is the only ring homomorphism that exists. �

Note that Z is also a principal ideal domain.

So, let φ : Z→ R be the unique ring homomorphism. Then kerφ is an ideal in Z, so it’s principal.

Definition 18.11

The characteristic of R is the positive integer generating kerφ. If no such integer exists, then
kerφ = {0}; in this case, we’ll say that the characteristic is 0.
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19 Quotient Rings (October 21, 2020)

On Monday, we proved that the kernel of a ring homomorphism is an ideal. Today, we’ll see that every
ideal can be seen as the kernel of some ring homomorphism.

Theorem 19.1

There exists a natural way of giving R/I = {r + I | r ∈ R} a notion of + and · and making it a
ring such that the natural map π : R → R/I, defined by r 7→ r + I is a ring homomorphism with
kerφ = I.

Sketch. By the work that we’ve already done when studying groups, we can understand R/I as an
additive group. Thus, our task builds down to defining a multiplication on R/I.

Let’s define
(I + a) · (I + b) = (I + a)(I + b) = {a′ + b′ | a′ ∈ I + a, b′ ∈ I + b}.

Note that

(I + a) · (I + b) = (I + a)(I + b)

= II + aI + bI + ab

= I + ab.

It is necessary (and ommited here) checking the ring properties.

The proof that π is a ring homomorphism is also ommited. (It is similar to the group theory analog.)

Remark. If we prove π : R→ R/I is a ring homomorphism, then kerπ = I is immediate, since π(i) = I,
for all i ∈ I, and I is the additive identity in R/I.

Theorem 19.2 (Forgotten Correspondence Theorem for Groups)

If G→ G′ is an onto group homomorphism, then the map ψ : {subgroups of G containing kerφ} →
{subgroups of G′} defined by H 7→ φ(H) and H ′ ← [ φ−1(H ′) = {g ∈ G | φ(g) ∈ H ′} is a bijective
correspondence.

Also, if H and H ′ are partners and normal, then G/H ≈ G′/H ′.

Theorem 19.3 (Correspondence Theorem for Rings)

If R → R′ is an onto ring homomorphism, then the map ψ : {ideals in R containing kerφ} →
{ideals in R′} defined by I 7→ φ(I) and I ′ ← [ φ−1(I ′) = {r ∈ R | φ(r) ∈ I ′} is a bijective correspon-
dence.

Also, if I and I ′ are partners, then R/I ≈ R′/I ′.

Example 19.1

Let R = C[x] and the ideal I = 〈x2 − 1〉. Determine the ideals of C[x]/〈x2 − 1〉.

Consider the natural map π : C[x] 7→ C[x]/〈x2 − 1〉. The correspondance theorem implies that the
ideals of C[x]/〈x2 − 1〉 are in correspondance with the ideals of C[x] containing kerπ = 〈x2 − 1〉.

Given an ideal I of C[x], remember that I is principal by Proposition 18.6 (C is a field).

So, there exists a monic polynomial f(x) ∈ C[x] such that I = 〈f(x)〉. If I ⊃ kerπ = 〈x2 − 1〉, then
f(x) has to be a factor of x2 − 1.

Therefore, f(x) = 1 or f(x) = x2 − 1 or f(x) = x+ 1 or f(x) = x− 1.

By the correspondance theorem, there are only 4 ideals in C[x]/〈x2 − 1〉. They are π(〈1〉)︸ ︷︷ ︸
C[x]/〈x2−1〉

,

π(〈x2 − 1〉)︸ ︷︷ ︸
{0C[x]/〈x2−1〉}

, π(〈x+ 1〉), and π(〈x− 1〉).
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20 Quotient out by an ideal (October 23, 2020)

The point of today’s lecture is to understand that “quotienting out by an ideal” is “imposing relations
on the original ring of the form (some elements) = 0.”

Lemma 20.1

R/(a, b) ≈ (R/(a))
/
π((b))
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21 Making rings bigger (October 26, 2020)

Example 21.1

Let R = (R,+, ·). We can define a new symbol, i, defined by the equation i2 = −1. Then we get a
new ring

R[i] = {r0 + r1i+ r2i
2 + · · ·+ rni

n | ri ∈ R}.

But i2 = −1, thus,
R[i] = {a+ bi | a, b ∈ R}.

Two observations are:

� R[i] is “a lot smaller” than expected.
� R[i] ≈ R[x]

/
〈x2 + 1〉.

Proposition 21.1

Let R be a ring, let f ∈ R[x] be a monic polynomial, and let n be deg f . Then the quotient ring
R[x]/〈f〉 satisfies:

(i) If we define α, a new element, so that f(α) = 0, then R[x]/〈f〉 can be identified with R[α],
and, any element λ ∈ R[α] can be uniquely expressed as λ = r0 + r1α + · · · + rn−1α

n−1 for
some (r0, . . . , rn−1), i.e., (1R, α, α

2, . . . , αn−1) acts like a basis for R[α].
(ii) elements in R[α] are added just like vector addition.

(iii) If β1, β2 ∈ R[α], let g1, g2 ∈ R[x] such that g1(α) = β1 and g2(α) = β2. Then polynomial
division implies that there are polynomials q(x), r(x), with deg(r) < n, such that g1g2(x) =
f(x)q(x) + r(x). Then β1β2 = r(α).

How else can we make a ring bigger?

Example 21.2

Let R = (Z,+, ·). Then Q is called the “field of fractions of Z”, which is a field you get by starting
with Z and adding in the multiplicative inverses of everything except 0.

Definition 21.2 (Field of Fractions)

Let R be an integral domain (a ring with no zero-divisors, i.e., xy = 0 implies x = 0 or y = 0).
Given R× (R− {0R}), let ∼ be an equivalence relation defined by (a, b) (c, d) ⇐⇒ ad = bc.

Then the field of fractions of R is the set of equivalence classes of this relation. It has the following
notions of addition and multiplication:

(i) (a, b) + (c, d) = (ad+ bc, bd);
(ii) (a, b)(c, d) = (ac, bd).

As always, whenever an object has different representations, it is important to show that the oper-
ations are consistent (if I change (a, b) to an equivalent (a′, b′), then the result is the same).
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22 Creating fields from rings (October 28, 2020)

Given a ring R, how can we use it to create a fielf F?

Philosophically, there are two ways to do this:

(i) add elements to R to create some field F in which R is a subring.
(ii) kill elements of R, e.g., create R/I.

For (i), we can only do that if R does not contain zero-divisors, i.e., if R is an integral domain.

Definition 22.1 (Field of Fractions)

Let R be an integral domain (a ring with no zero-divisors, i.e., xy = 0 implies x = 0 or y = 0).
Given R× (R− {0R}), let ∼ be an equivalence relation defined by (a, b) (c, d) ⇐⇒ ad = bc.

Then the field of fractions of R is the set of equivalence classes of this relation. It has the following
notions of addition and multiplication:

(i) (a, b) + (c, d) = (ad+ bc, bd);
(ii) (a, b)(c, d) = (ac, bd).

As always, whenever an object has different representations, it is important to show that the oper-
ations are consistent (if I change (a, b) to an equivalent (a′, b′), then the result is the same).

Problem 22.1

Prove that the set R× (R− {0}), equipped with the operations defined above, is a ring.

Example 22.1

For (Z,+, ·), F (Z) = {[(a, b)] : a, b ∈ Z}. In this case, we have F (Z) ≈ Q.

Note also that in F (R), the additive identity is [(0, 1)], and (0, 1) ∼ (0, a) for a ∈ R − {0}; and the
multiplicative identity is [(1, 1)].

So, to show that F (R) is a field, it suffices to show that [(a, b)], where a 6= 0, has a multiplicative inverse.
If a 6= 0, then [(b, a)] ∈ F (R) and [(a, b)]× [(b, a)] = [(ab, ba)] = [(1, 1)].

Notationally, we will often denote [(a, b)] as a
b .

Proposition 22.2

F (R) is the “smallest” field containing R.

Theorem 22.3 (Mapping principle)

If F1 is a field, R is an integral domain and R ⊂ F1, then there is a ring homomorphism φ : F (R)→
F1. Namely, φ maps a

b to ab−1.

Proposition 22.4

The map ψ : R→ F (R), defined by r 7→ [(r, 1)] is one-to-one.

Before moving to (ii), let’s introduce some terminology.

� R is a ring (not necessarily an integral domain).
� u ∈ R is a unit if it has a multiplicative inverse.
� a divides b, written as a | b, if there is q ∈ R such that b = aq.
� a is a proper divisor of b if a is not a unit and there is q ∈ R, q is not a unit and b = aq.
� a and b are associates if each divides each other.
� a is irreductible if a does not have proper divisors.
� a is prime if it holds that a | bc =⇒ a | b or a | c.
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Lemma 22.5

� u is a unit if, and only if, (u) = R.
� a | b ⇐⇒ (b) ⊂ (a).
� a is a proper divisor of b if, and only if, (b) ( (a) ( R.
� a and b are associates if, and only if, (a) = (b).
� a is irreducible if, and only if, (a) ( R and there is no c ∈ R such that (a) ( (c) ( R.
� a is prime if, and only if, bc ∈ (a) =⇒ b ∈ (a) or c ∈ (a).

Definition 22.6 (Prime ideal)

A prime ideal I is an ideal such that, if bc ∈ I, then b ∈ I or c ∈ I.

Definition 22.7

An ideal I 6= R of a ring R is called maximal if, whenever J is an ideal and J ⊃ I, then J = I or
J = R.

In the next class, we will discuss the following theorem:

Theorem 22.8

R/I is a field if, and only if, I is maximal.

Lemma 22.9

A ring R is a field if, and only if, R contains exactly two ideals, namely {0} and R.

Proof. If R is a field, then if J is an ideal, suppose J 6= {0R}. Then there is some a ∈ J . However, since
R is a field, a is a unit. Therefore, (a) = R, which implies that J = R.

Conversely, for all a 6= 0, (a) must be R, thus a is a unit. �
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23 Review lecture: Maximal Ideals (November 11, 2020)

Let’s recall some definitions.

Definition 23.1 (Ring)

A set R, equipped with two operations + and ·, is a ring if the following conditions are satisfied:

(i) (R,+) is an abelian group.
(ii) The operaion · is commutative, associative and has an identity.

(iii) For all a, b, c ∈ R, it holds that (a+ b) · c = a · c+ b · c.

Example 23.1 (Rings)

(Z,+, ·) and R[x] for any ring R are examples of rings.

Definition 23.2 (Field)

A ring R is a field if every non-zero element is a unit, i.e., if every non-zero element has a multi-
plicative inverse.

Example 23.2 (Fields)

(R,+, ·), (C,+, ·), (Q,+, ·) and (Z/pZ,+, ·) are examples of fields.

Definition 23.3 (Ideal in a Ring)

A non-empty subset I ⊂ R is an ideal in R if the following conditions are satisfied:

(i) I is closed under +.
(ii) For all r ∈ R and s ∈ I, it holds rs ∈ I.

Example 23.3 (Ideal)

The set of the multiples of 7 is an ideal in (Z,+, ·).

Definition 23.4 (Maximal Ideal)

An ideal I in R is a maximal ideal in R if:

(i) I 6= R
(ii) There is no ideal I ′ in R such that I ( I ′ ( R.

Example 23.4 (Maximal Ideals)

The maximal ideals of Z are the principal ideals generated by prime numbers, 〈p〉.

The following two propositions will help us to understand how to transform a ring R into a field by
removing some of its elements.

Proposition 23.5

Let φ : R → R′ be a surjective ring homomorphism and let I = kerφ. (Remember: the kerφ of a
ring homomorphism is always an ideal.)

R′ is a field if, and only if, I is a maximal ideal.

Proof. From Lemma 22.9, a ring is a field if, and only if, it contains precisely two ideals, itself and 0.

The correspondance theorem says that, for any onto ring homomorphism φ : R → R′, there exists a
bijective correspondence between {ideals in R containing kerφ} ↔ {ideals in R′}. This bijective corre-
spondance is given by I 7→ φ(I) and φ−1(I)← [ I.
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So, if I = kerφ is a maximal ideal, all ideals in R containing I are I and R; which, by the correspondance
theorem, implies that R′ contains precisely two ideals =⇒ R′ is a ring.

Conversely, if R′ is a field, it contains precisely two ideals. Using the correspondance theorem, we have
that there are only two ideals in R that contain I. Since I and R are ideals that contain I, they are all
of the ideals containing I. This means that there can’t be an I ′ such that I ( I ′ ( R, which implies that
I is a maximal ideal. �

Corollary 23.6

I is maximal if, and only if, R/I is a field.

Proof. Consider the natural ring homomorphism π : R→ R/I, given by r 7→ r + I. The kernel of π is I.

Therefore, by Proposition 23.5, we have that R/I is a field if, and only if, I is maximal. �

Corollary 23.7

The zero ideal {0R} of R is maximal if, and only if, R is a field.

Proof. Plug in I = {0R} in Corollary 23.6, and we’re done. �

Example 23.5 (Transforming Z into a field by killing elements)

Since 〈p〉 = pZ is a maximal ideal of Z, we conclude that Z/pZ must be a field.
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24 Polynomials (November 13, 2020)

Let’s recall some definitions.

Definition 24.1 (Irreductible and Prime Elements)

If R is a ring, a non-unit element r ∈ R is called irreductible if there are no x, y ∈ R, neither of
which are units (i.e., neither x nor y have multiplicative inverses) such that r = xy.

Also, a non-unit element s ∈ R is called prime if, whenever s | xy, it holds that s | x or s | y.

Problem 24.1

Let f ∈ Z[x]. Suppose that f is reducible in Q[x]. Is f reducible in Z[x]?

Lemma 24.2

If r(x) = b1x+ b0 ∈ Z[x] divides f(x) = anx
n + · · ·+ a0 ∈ Z[x], then b1 | an and b0 | a0.

Proof. Since r(x) | f(x), there exists q(x) = qmx
m + · · ·+ q0 ∈ Z[x] such that

anx
n + · · ·+ a0 = (b1x+ b0)(qmx

m + · · ·+ q0).

By comparing the leading and constant coefficients, we conclude that an = qmb1 and a0 = q0b0, thus
b1 | an and b0 | a0. �

Lemma 24.3

Assume b1 6= 0 and gcd(b0, b1) = 1. Then r(x) = b1x + b0 ∈ Z[x] divides f ∈ Z[x] if, and only if,
− b0b1 is a root of f.

Lemma 24.4

A rational root of a monic polynomial in Z[x] is an integer.

Proof. Suppose p
q is a root of monic f ∈ Z[x]. By Lemma 24.3, qx − p divides f . By Lemma 24.2, q

divides 1 (the leading coefficient of f). Thus, pq is an integer. �

Definition 24.5 (Primitive Polynomials)

A polynomial f(x) = anx
n + · · ·+ a0 is primitive if an > 0 and gcd(an, · · · , a0) = 1.

Lemma 24.6

Let f ∈ Z[x], deg(f) > 0, and an > 0. Then, the following are equivalent:

(i) f is primitive.
(ii) For all prime numbers p ∈ Z, p does not divide f as elements of Z[x].

(iii) If ψp : Z[x]→ Z/pZ[x] given by mod p on each coefficient, then f 6∈ kerψp for all primes p.

Proof.

(i) =⇒ (ii): Assume f is primitive =⇒ gcd(an, · · · , a0).
If a prime p would divide f , that would mean that there was a q(x) = qmx

m + · · · + q0 such that
f(x) = p · q(x). Thus,

f(x) = pqmx
m + · · · pq0.

Therefore, p divides each coefficients of f , which means gcd(an, · · · , a0) > 1, a contradiction.
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(ii) =⇒ (iii) Suppose f is not divisible by any prime p. Then, for any p, there is at least one coefficient of f
that is not multiple of p. Therefore, f cannot be mapped by ψp to the zero polynomial in Z/pZ,
i.e., f 6∈ kerψp.

(iii) =⇒ (i) Left as exercise.

�

Proposition 24.7

Z[x] is an integral domain.

Proof. Z[x] is an integral domain, because, for all non-zero f(x) = a0+· · ·+anxn, g(x) = b0+· · ·+bmxm ∈
Z[x], with an, bm 6= 0, the coefficient of xm+n in (fg)(x) is anbm 6= 0; thus fg 6= 0. �

Proposition 24.8

Let R be an integal domain. If f ∈ R is prime, then it is irreducible.

Proof. Suppose that f ∈ R is prime and reducible, i.e., f = ab, for some non-units a, b ∈ R.

Since f is prime, f divides a or f divides b. Without loss of generality, assume that f divides a. Thus,
we can write a = fc, for some c ∈ R. Therefore, it holds that

f = fcb.

Since R is an integral domain, we can cancel f . Thus,

1R = cb.

This implies that b is a unit in R, a contradiction. �

Corollary 24.9

If f(x) ∈ Z[x] is prime, then it is irreducible.
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25 Gauss’ Lemma (November 16, 2020)

We’ll continue what we were doing in the last class.

Proposition 25.1

n ∈ Z is a prime as a polynomial in Z[x], i.e., if n is a factor of p(x)q(x), then n divides p(x) or n
divides q(x), if, and only if, n is a prime in Z.

Proof. Suppose n ∈ Z is prime in Z[x]. By Corollary 24.9, n is irreductible in Z[x]: there are no
a, b ∈ Z[x] such that n = ab and neither a nor b is ±1. In particular, there are no a, b ∈ Z such that
n = ab (a, b 6= ±1), which is the usual definition of a prime in Z.

Conversely, suppose taht n is prime in Z. Suppose that n | fg, for some f, g ∈ Z[x]. To show that n is
prime in Z[x], we need to show that n | f or n | g.

Let φn : Z → Z/nZ be the natural ring homomorphism between Z and Z/nZ and let ψn : Z[x] →
(Z/nZ)[x] be the ring homomorphism defined by taking φn on each coefficient. Note that, since n is
prime =⇒ Z/nZ is a field =⇒ (Z/nZ)[x] is an integral domain.

n | fg ⇐⇒ ψn(fg) = 0

⇐⇒ ψn(f)ψn(g) = 0 (ψn is a ring homomorphism.)

⇐⇒ ψn(f) = 0 or ψn(g) = 0 (Z/nZ[x] is an integral domain.)

⇐⇒ n | f or n | g.

�

Theorem 25.2 (Gauss’ Lemma)

The product of primitive polynomails is primitive.

Proof. Let f, g ∈ Z[x] be primitive. Then the leading coefficient of fg is the product of the leading
coefficients of f and g. Since f, g are primitive, their leading coefficients are positive, which implies that
the leading coefficient of fg is also positive.

By Lemma 24.6, for all prime numbers p ∈ Z, it holds that p - f and p - g. By the contrapositive of
Proposition 25.1, this implies that p - fg, for all prime numbers p ∈ Z. Again, by Lemma 24.6, we have
that fg is primitive. �

Lemma 25.3

Given f(x) = a0 + · · ·+ anx
n ∈ Q[x], there exists a unique way to express f(x) = c · f0(x), in which

c ∈ Q and f0(x) is primitive.

Proof (Existence). Choose d ∈ Z such that d · f ∈ Z[x], (e.g., choose d to be the lowest common multiple
of the denominators of the coefficients of f). Factor out ± gcd(da0, · · · , dan) from df (choose + if the
leading coefficient of d · f is positive, − otherwise). Thus,

f = ±gcd(da0, · · · , dan)

d
f0(x).

In the equation above f0(x) is primitive because there is no prime p such that p divides f0 (if there was,
then it would have been factored out “inside the gcd”). �

Proof (Uniqueness). Suppose f = cf0 = c′f ′0, for c, c′ ∈ Q. We can multiply the equation for an
apropriate integer (the lowest common multiple of the denominators of c and c′) and conclude that, for
some relatively prime d, d′ ∈ Z, it holds df0 = d′f ′0.

If d = d′ = 1, then f0 = f ′0 and c = c′, so we’re done!
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Otherwise, without loss of generality, d > 0. Then there exists a prime p such that p | d. Then,
p | df0 = d′f0. Since p is a prime number, by Proposition 25.1, p is a prime as a polynomial in Z[x].
Therefore, p | d′ or p | f ′0. The former implies that p | gcd(d, d′) = 1, a contradiction; and the former
implies that f ′0 is not primitive, also a contradiction. �

Corollary 25.4

Given f ∈ Q[x], write uniquely f = c · f0, with c ∈ Q and primitive f0 ∈ Z[x] Then, f ∈ Z[x] ⇐⇒
c ∈ Z and c = ± gcd(a0, a1, · · · , an).
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26 Irreducibility over Z[x] and Q[x] (November 18, 2020)

Theorem 26.1

Let f0 ∈ Z[x] be primitive and g ∈ Z[x]. Then, if f0 | g in Q[x], then f0 | g in Z[x]. In other words,
if f0h = g, for some h ∈ Q[x], then h ∈ Z[x].

Proof. By Lemma 25.3, h = c · h0(x), in which c ∈ Q and h0 ∈ Z[x] is primitive. Therefore,

g = f0 · (c · h0) = c · (f0h0).

Since f0h0 is a product of two primitive polynomials, by Gauss’ Lemma, f0h0 is primitive. Therefore,
we have written g as a product of a rational number and a primitive polynomial. Using Corollary 25.4,
g ∈ Z[x] =⇒ c ∈ Z =⇒ h ∈ Z[x]. �

Theorem 26.2

If f, g ∈ Z[x] share a common non-constant factor in Q[x], then f, g also share a common non-
constant factor in Z[x].

Proof. Suppose h ∈ Q[x] divides is a factor of f and g. Use Lemma 25.3 to uniquely express h = c · h0,
in which c ∈ Q and h0 ∈ Z[x] primitive. Since h | f and h | g in Q[x], it also holds that h0 | f and h0 | g
in Q[x]. By 26.1, h0 | f and h0 | g in Z[x]. �

Theorem 26.3

Let f(x) = a0 + · · ·+ anx
n ∈ Z, with an > 0. Then:

(i) If deg(f) > 0, f is irreducible in Z[x] if, and only if, f is primitive and irreducible in Q[x].
(ii) If deg(f) = 0, f is irreducible if, and only if, f is a prime number (in Z).

Proof (of i). If f is irreducible in Q[x], then it is irreducible in Z[x].

Assume f ∈ Z[x] is irreducible in Z[x].

If f is not primitive, then gcd(a0, · · · , an) > 1. This means that we can write f as a product of two
non-units as follows

f = gcd(a0, . . . , an) · f0,

which implies that f is reducible. a contradiction. So, f is primitive.

Assume that there are g, h ∈ Q[x] such that f = gh. Write g = c · g0 and h = c′ · h0, with c, c′ ∈ Q and
g0, h0 ∈ Z[x] primitive. Therefore,

f = (c · g0)(c′ · h0) = (cc′) · (g0h0).

By Gauss’ Lemma, g0h0 is primitive. By Corollary 25.4, cc′ = 1. Thus,

f = g0h0,

which means f is reducible in Z[x], a contradiction. Therefore, f is irreducible in Q[x]. �

Proof (of ii). If f is a constant n, then

f is irreducible ⇐⇒ there are no a, b ∈ Z, a, b 6= ±1 such that n = ab

⇐⇒ n is prime.

�

40



Proposition 26.4

Let f(x) = a0 + · · ·+ anx
n and p be a prime number. Suppose p | an. Then, if ψp(f) is irreducible

in (Z/pZ)[x], then f is also irreducible in Z[x].

Proposition 26.5 (Rational root test)

If bx− a is a factor of f = c0 + · · ·+ cnx
n ∈ Z[x], then a | c0 and b | cn.

Proposition 26.6 (Degree 2 or 3 test)

If deg f = 2 or 3, then f is reducible in Q[x] =⇒ f has a root in Q.

Proposition 26.7 (Eisenstein’s criterion)

Let f(x) = c0 + · · · cnxn ∈ Z[x]. Suppose there exists a prime p such that p - cn, p | cn−1, . . . , c0,
and p2 - c0. Then, f is irreducible in Q[x].
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27 Field Extensions (November 20, 2020)

Proof (of Eisenstein’s Criterion). Suppose f(x) = c0 + · · · + cnx
n ∈ Z[x] such that p - an and p |

a0, a1, . . . , an−1. We shall prove that f is reductible in Q[x]implies p2 | a0.

Suppose f = gh, with g, h ∈ Z[x] and deg g,deg h > 0. Consider the ring homomorphism ψp : Z→ Z/pZ
given by taking each coefficient modulo p. Then,

ψp(g) · ψp(h) = ψp(f) = anx
n.

We claim that ψp(g) = crx
r and ψp(h) = csx

s.

Suppose ψp(g) = krx
r + · · ·+kr′x

r′ and ψp(h) = csx
s+ · · ·+ cs′x

s′ , with kr, kr′ , cs, cs′ 6= 0 and r+s = n.
If r′ + s′ < n, then the (r′ + s′)th coefficient of ψp(f) is cs′kr′ , but it is also 0, which is an absurd.
Therefore, r′ + s′ = n =⇒ r = r′ and s = s′.

Back to Z[x], g and h have constant coefficients multiples of p, therefore, the constant term of f is multiple
of p2. �

From now on, our focus will be constructing fields and studying their properties and knowing how to tell
when a polynomial is irreductible will be extremely helpful.

Definition 27.1 (Field Extension)

If K is a field and F ⊂ K is a subfield, we say that K is a field extension of F and we write K/F .

Example 27.1

A number field is any subfield of C, so C is a field extension of F .

If F is a number field, then Q ∈ F , because 1 ∈ F =⇒ Z ∈ F =⇒ Q ∈ F .

Definition 27.2 (Algebraic Numbers)

Suppose α ∈ K and K/F . Then, α is algebraic over F if there exists a monic polynomial f ∈ F [x]
such taht f(α) = 0K . If α is not algebraic over F , then α is called transcendental over F .

Example 27.2

2πi ∈ C is algebraic over R, since it is a root of f(x) = x2 + 4π2 ∈ Z[x]. However, 2πi ∈ C is
transcendental over Q.

Example 27.3

If α ∈ F , α is algebraic over F .

Lemma 27.3

Given α ∈ K, K/F . Then α is algebraic over F if, and only if, φa : F [x] → K is not one-to-one,
where φα(p(x)) = p(α).

Proof. φα is not one-to-one ⇐⇒ kerφα 6= {0} ⇐⇒ there exists F [x], f 6= 0 and φα = f(α) = 0 ⇐⇒
there exists a monic polynomial f̃ such that f̃ = 0. �

So, suppose α ∈ K is algebraic over F . Then, kerφα ⊂ F [x] is not 0. Recall that the kernel of a ring
homomorphism is an ideal, so kerφα is a non-zero ideal in F [x]. Since F [x] is a principal ideal domain,
kerφα = 〈f(x)〉, for some f ∈ F [x].
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Proposition 27.4

Assume α ∈ K is algebraic over F . Then, for a given f ∈ F [x], the following are equivalent:

(i) f is the monic polynomial of smallest degree in F [x] such that f(α) = 0.
(ii) f is irreducible in F [x] and f(α) = 0.

(iii) 〈f(x)〉 = kerα and 〈f(x)〉 is maximal.
(iv) f(α) = 0 and if g ∈ F [x] such that g(α), then f | g.

Definition 27.5

The polynomial that satisfies Proposition 27.4 is called the irreducible polynomial for α over F . The
degree of this polynomial is called the degree of α over F .
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28 More field extensions (November 30, 2020)

General scenarios in which field extensions arise:

(i) “Less abstract”: You have a field K in mind, and an F inside of K. The monic polynomial
f(x) ∈ F [x] is reducible over F and there is a α ∈ K such that f(α) = 0. Then F (α) is the smallest
subfield of K containing F and α.
For example, K = C, F = Q, f(x) = x2 + 1, i ∈ Q is a root of f ; then Q(i) is a field extension of
Q.

(ii) “More abstract”: You have a field F . The monic polynomial f(x) ∈ F [x] is reducible over F .
Then you can invent an abstract element α 6∈ K and declare it to satisfy f(α) = 0. We still can
talk about F (α) is the smallest field containing α and F .

I MISSED A SLIDE! ADD IT LATER.

Recall φα : F [x]→ K, defined by p(x) 7→ p(α). The image of this map is F [α]. In general, this is a ring.
Even more, it is an integral domain.

The field of fractions of F [α] is F (α).

Proposition 28.1

Let α ∈ K, K/F , α algebraic over F , f the monic irreducible polynomial of α over F . Consider
ψα : F [x]/〈f〉 → F [α], defined by p(x) + 〈f〉 7→ p(α).

Then, ψα is an isomorphism.

Proof. Let’s recall the ring homomorphism φα : F [x] → K. We can restict the domain to =φα = F [α],
so that φα : F [x] → F [α] ⊂ K. This ought to be onto! Thus, by the first isomorphism theorem,
F [x]/ kerφα ≈ F [α].

However, kerφα = {p ∈ F [x] | p(α) = 0} = 〈f〉. Thus F [x]/〈f〉 ≈ F [α].

Recall that the first isomorphism theorem says more than what we’ve said. It says that there exists
an isomorphism ψ : F [x]/〈f〉 → F [α] such that ψ(π(p)) = φα(p), where π is the natural map between
F [x]→ F [x]/〈f〉. This is exact the same ψα that we defined in the proposition! �

Corollary 28.2

So, F [α] is a field. (Because 〈f〉 is maximal.) Therefore, F [α] = F (α).

Proposition 28.3 (11.5.5 from Artin)

F [α] is a vector space over F with basis (1, α, . . . , αdeg(α)−1).

Problem 28.1

Given α, β ∈ K , how to tell if F (α) = F (β)?

44



29 Quadractic Extensions (December 02, 2020)

Proposition 29.1

Given K/F , K is a vector space over F .

Definition 29.2 (Degree of K/F )

The degree of K/F , denoted by [K : F ], is the dimension of K as a vector space over F .

Definition 29.3

Some nomenclature:

– K/F is called a finite extensions if [K : F ] <∞.
– If [K : F ] = 2, we call K/F a quadractic extension.
– If [K : F ] = 3, we call K/F a cubic extension.

Proposition 29.4

K/F satisfies [K : F ] = 1 if, and only if, K = F . Similarly, α ∈ K has degree 1 over F if, and only
if, α ∈ F .

Proposition 29.5

Suppose F is a field with characteristic different than 2, i.e., 1+1 6= 0. Suppose K/F and [K : F ] = 2,
i.e., suppose K is a quadratic extension of F . Then, there exists δ ∈ K, δ ∈ F and δ2 ∈ F . In that
case, F (δ) = K, and δ “is a square root” of an element of F .

Proof. Since [K : F ] = 2, there exists some α ∈ K,α 6∈ F . Therefore, (1, α) are linear independent over
F (if one is multiple of the other, than α would be in F ). Since the dimension is 2, (1, α) is a basis of K
over F .

Consider α2 ∈ K. It can be written as
α2 = xα+ y,

for some x, y ∈ F . This implies that(
α− x

1 + 1

)2

= y −
(

x

1 + 1

)2

∈ F.

Thus, δ = α− x
1+1 is not in F (if it was in F , then α would be in F .), but δ2 ∈ F . Again, for the same

reasons, (1, δ) is a basis of K, which implies F (δ) = K. �
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30 Continuing Quadractic Extensions (December 04, 2020)

One question arose: What the heck are we doing?

(i) mou learn a lot about a group by understanding its subgroups (especially, the normal subgroups;
to use the first isomorphism theorem).

(ii) You learn a lot about a group by undestanding its ideals (it’s all about the first isomorphism
theorem).

(iii) You learn a lot about a field by undestanding its subfields (field extensions are useful here).

Continuing:

Theorem 30.1

Let F ⊂ K ⊂ L be fields. Then,
[L : F ] = [L : K][K : F ].

Proof. Let B = (β1, . . . , βn) be a basis for L as a K-vector space; and let A = (α1, . . . , αm) be a basis for
K as a F -vector space. We’ll show that C = (αiβj) is a basis for L as a F -vector space.

(i) (αiβj) is a spanning set for L over F .
Let ` ∈ L. Write ` as a linear combination of βj with coefficients in K.
For each coefficient in K, write it as a linear combination of αi with coefficients in F .
Then, we have expressed ` as a linear combination of αiβj with coefficients in F .

(ii) (αiβj) are linearly independent over F .
Assume there is a linear combination of αiβj with coefficients in F that sums to 0.
Thus, we can see this as a linar combination of βj with coefficients in K that sums to 0.
Since B is linearly independent, each coefficient (which are in K) must be 0.
Note that those coefficients in K are themselves linear combinations of αi with coefficients in F .
Since A is linearly independent, those coefficients in F must all be 0.
Therefore, C is linearly independent over F .

�
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31 Corollaries of the Multiplicative Degree Theorem (December
07, 2020)

Let’s study some corollaries of the “multiplicative degree theorem” from last class.

Corollary 31.1

Let F ⊂ K be fields and K/F a finite field extension, in which [K : F ] = n. Then, for all α ∈ K, α
is algebraic over F and degF (α) divides n.

Proof (Algebraic). If α was trancendental, then F (α) is a ∞-dimension vector space over F .

However, since F (α) is a subspace of K, it must have a finite dimension, thus α is algebraic. �

Proof (Division). Using the multiplicative degree formula, we have that

[K : F ] = [K : F (α)][F (α) : F ].

Therefore, degF (α) = [F (α) : F ] divides [K : F ] = n. �

Corollary 31.2

Let F ⊂ K ⊂ L be fields, and α ∈ L is algebraic over F . Then, α is algebraic over K and
degK(α) ≤ degF (α),

Proof (Algebraic). α is algebraic over F =⇒ there exists a polynomial f ∈ F [x] with α as a root =⇒
there exists a polynomial f ∈ K[x] (namely, the same polynomial) with α as a root =⇒ α is algebraic
over K. �

Corollary 31.3

Let α1, . . . , αn be algebraic over a field F . Then, [F (α1, . . . , αn) : F ] <∞.

Sketch. Induction over n.

Corollary 31.4

If K/F is a finite extension, then there are α1, . . . , αn such that K = F (α1, . . . , αn).

Sketch. Let L0 = F .

If Li 6= K, then define Li+1 = Li(αi+1), for some αi+1 ∈ K but not in Li.

This process increases the dimension of L•, but the dimension of L• may not be greater than the dimension
of K. Thus, the process has to terminate, i.e., F (α1, . . . , αi) = Li = K.

Corollary 31.5

If K/F , then the subset of algebraic elements over F is a subfield of K.

Proof. Denote this subset by F . 1, 0 ∈ F , since x, x − 1 ∈ F [x]. So F is a field if, and only if, given
α, β ∈ F , the elements α+ β, αβ, α−1 are in F .

Note that α+ β, αβ, α−1 ∈ F (α, β). Since F (α, β)/F is a finite field extension, any element of F (α, β) is
algebraic over F , which implies that they are on F . �

Corollary 31.6 (Cor. 15.3.8 on Artin)

Let K/F and K ′/F be field extensions. Let L be the field generated by K,K ′. If [K : F ] and
[K ′ : F ] are coprime, then

[L : F ] = [K : F ][K ′ : F ].
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Sketch. By the multiplicative degree theorem, we have that [K : F ] and [K ′ : F ] divide [L : F ]. Since
[K : F ] and [K ′ : F ] are coprime, this implies that [K : F ][K ′ : F ] divides [L : F ].

It suffices to show that [L : F ] ≤ [K : F ][K ′ : F ], i.e., [L : K] ≤ [K ′ : F ].
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32 (December 9, 2020)

Lecture notes are to do.
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33 Finite Fields (December 11, 2020)

A key idea is to note that the natural map F [x] → F [x]/〈f〉 is one-to-one on the constant polynomials,
namely F . Thus, in some sense, F ⊂ F [x]/〈f〉.

Lemma 33.1

Let F be a field, and f(x) ∈ F [x] irreducible over F . Then, in the field K = F [x]/〈f〉, the element
π(x) is a root of f . (We understand f as being over F [x]/〈f〉, since F ⊂ F [x]/〈f〉.)

Definition 33.2

Let F be a field, and a polynomial f ∈ F [x] splits completely over some field extension K if f factors
into linear pieces with coefficients in K.

Lemma 33.3

Given a field F and a monic polynomial f over F , degF > 0, then there exists a field extension K
in which f splits completely.

Sketch. Induction on deg f .

33.1 Finite fields

Theorem 33.4

There exists a field of order pr, for any prime p and non-negative integer r. Any two fields of order
pr are isomorphic.

Theorem 33.5

If F is a finite field, then |F | = q, for some prime p and non-negative integer r.

Theorem 33.6

If |F | = pr, then every element of F is a root of xp
r − x.

Theorem 33.7

The irreducible factors of xp
r − x in Z/pZ are exactly the irreducible polynomials of F [x], |F | = pr,

satisfying the property that their degree divider r.

Theorem 33.8

Let F× be the multiplicative group of units in F . It is a cyclic group of order pr − 1.

Theorem 33.9

If |F | = pr, then F has a subfield of order pk, if k | r
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34 Supplementary Lecture I (December 20, 2020)

The goal today is to prove the following theorem: If K/F is a finite field extension, then there is α ∈ K
such that K = F (α).

First, some background work on polynomials:

Proposition 34.1

Let f(x), g(x) ∈ F [x], f(x) 6= 0 and K/F a field extension.

(a) F [x] is a subring of K[x], so any computation in F [x] is valid in F [x].
(b) Euclidean division of g(x) by f(x) gives the same answer in F [x] or in K[x].
(c) f(x) divides g(x) in K[x] ⇐⇒ f(x) divides g(x) in F [x].
(d) The monic greatest common denominator, d(x), of f(x) and g(x) is the same, whether com-

puted in F [x] or in K[x].
(e) If f(x) and g(x) have a common root in K, then they are not relatively prime in F [x].

Conversely, if f(x) and g(x) are not relatively prime in F [x], there exists an extension of F in
which they have a common root.

(f) If f(x) is irreducible over F , and f(x), g(x) have a common root in K, then f(x) divides g(x)
in F [x].

Definition 34.2 (Derivative)

If f(x) = anx
n + an−1x

n−1 + · · ·+ a0 in F [x], its derivative is the polynomial

f ′(x) = nanx
n−1 + (n− 1)ann− 1xn−2 + · · ·+ a1,

in which you interpret the integer k as 1F + 1F + · · ·+ 1F︸ ︷︷ ︸
k times

.

Lemma 34.3

The usual rules of differentiation apply, e.g. product rule.

Lemma 34.4

Let f(x) ∈ F [x]. An element α in an extension K of F is a multiple root, meaning (x− α)2 divides
f(x) ⇐⇒ α is a root of f ′(x).

Proposition 34.5

Let f(x) ∈ F [x]. Then there exists a field extension K of F in which f(x) has a multiple root if,
and only if, f(x) and f ′(x) are not relatively prime.

Lemma 34.6

Let f(x) be a irreducible polynomial over F .

(a) Then, f has no multiple roots in any field extension unless f ′ = 0.
(b) In characteristic 0, f has no multiple root over any field extension.

Definition 34.7 (Primitive Element)

Let K/F be a field extension. An element α ∈ K is called primitive if K = F (α).

Theorem 34.8 (Primitive Element Theorem)

Let F be a field of characteristic 0, and let K/F be a finite field extension. Then, there exists a
primitive element in K.
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35 Supplementary Lecture II (December 25, 2020)

Lemma 35.1

Let F be a field of characteristic 0, and let K = F (α, β). Then, for all but finitely many c ∈ F ,
γ := α+ cβ is primitive, i.e., K = F (γ).

Proof (of Lemma 35.1). Let f(x) and g(x) be the irreducible polynomials for α, β over F , respectively.
There exists a field extension L in which f and g split completely. Let α1 = α, α2, . . . , αm ∈ K be the
roots of f and β1 = β, β2, . . . , βn ∈ K be the roots of g.

Since the characteristic is zero, all αi’s and βj ’s are distinct. Let c ∈ F , and let γij = αi + cβj . There
are mn of such γ. Suppose (i, j) 6= (k, `). Note that

γij = γk` ⇐⇒ αi + cβj = αk + cβ`

⇐⇒ (βj − β`)c = αk − αi,

which holds for at most one choice of c in F .

Thus, pick some c ∈ F which is not any of the finitely many elements found above. Then, we have
γij 6= γk` for all (i, j) 6= (k, `). We shall prove that γ := γ11 = α1 + cβ1 = α + cβ is primitive. Let
J = F (γ). Since γ ∈ K, we have J ⊂ K. Define a new polynomial, h(x), by

h(x) = f(γ − cx),

which is a polynomial over F (γ).

We have shown previously that gcd(f(x), h(x)) is the same when computed in J [x] or in K[x]. In K[x],
f(x) = (x− β)(x− β2) · · · (x− βm). Since β is a root of h(x), but no βi, i > 1, is a root of h(x), we have

gcd(f(x), h(x)) = (x− β).

Since f(x), h(x) ∈ J [x], we have that x− β ∈ J [x] =⇒ β ∈ J =⇒ αinJ =⇒ K ⊂ J =⇒ K = J . �

Remark. Since F has characteristic 0, it cannot be a finite field. Thus, there is some c such that

F (α+ cβ) = F (α, β).

Proof (of Theorem 34.8, the Primitive Element Theorem). Since K/F is finite, K is genereated by a fi-
nite set, i.e., there exists a finite basis (α1, . . . , αn) for K over F .

Given γ ∈ K, there are a1, a2, . . . , an such that γ = a1α1 + · · ·+ anαn.

Thus,
K = F (α1, . . . , αn).

Let’s induct on n.

� If n = 1, then K = F (α1), so we’re done!
� If n = 2, then K = F (α1, α2). By Lemma 35.1, there exists some γ such that F (α1, α2) = F (γ), so

we’re done.
� If n ≥ 3, then we can use the induction hypothesis on the field K ′ = F (α1, . . . , αn−1) and say that
K ′ is generated by a single element. Thus, K ′ = F (β), for some β ∈ F . Thus, K = F (β, αn),
which is generated by a single element using the base case n = 2.

�
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35.1 Splitting fields

Definition 35.2 (Splitting field)

Let F be a field and f(x) ∈ F [x], not necessarily irreducible over F . There exists some field extension
of F such that f(x) splits completely over K, i.e.,

f(x) = (x− α1) · · · (x− αn).

The splitting field of f(x) over F is the field K = F (α1, . . . , αn).

More vaguely, the splitting field of f(x) over F is the smallest (up to isomorphism) field extension
of F such that f(x) splits completely.

Proposition 35.3

For every β ∈ K, there exists a polynomial p ∈ F [x1, . . . , xn] such that p(α1, . . . , αn) = β.
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36 Supplementary Lecture III (December 29, 2020)

36.1 Preparation for Galois Theory

Galois theory presents a way to understand the structure of all subfields of a given field, F , in terms of
their “symmetries”.

Definition 36.1 (Automorphism and Group of Automorphisms)

An automorphism is an isomorphism of a group/ring/field to itself.

Aut(•) denotes the group of automorphisms of a group/ring/field to itself, under the operation of
composition.

Let R be a ring, and R[u1, . . . , un] be the polynomial ring in n variables.

Given f ∈ R[u1, . . . , un], σ ∈ Sn, define

σ(f) = f(uσ(1), . . . , uσ(n)).

This new map, from R[u1, . . . , un] to itself, which we will also denote by σ, is an automorphism of
R[u1, . . . , un].

Definition 36.2 (Symmetric Polynomial)

A symmetric polynomial f ∈ R[x] is one satisfying σ(f) = f , for all σ ∈ Sn.

Proposition 36.3

A polynomial f is symmetric if, and only if, two monomials in the same Sn-orbit, i.e. two monomials
such that one can be sent to the other by applying a permutation in Sn, e.g. u1u

2
2 and u2u

2
3, have

the same coefficient in g.

Definition 36.4 (Orbit Sum)

An orbit sum is the sum of monomials in a given Sn orbit.

Example 36.1 (Orbit Sum)

One orbit of R[u1, u2, u3] is {u1, u2, u3}; its orbit sum is u1 + u2 + u3.

Another orbit is {u1u2u3}; its orbit sum is u1u2u3.

Proposition 36.5

The symmetric polynomials form a “subspace”a of R[u1, . . . , un] over R. The orbit sums for a basis
for this subspace.

aThis is not a vector space, because R is not a field; but is some sort of analogous when R is a ring.

Definition 36.6 (Elementary Symmetric Polynomials)

The elementary symmetric polynomials for n variables are:

s1 =

n∑
i=1

ui;

s2 =
∑
i<j

uiuj ;

...

sn = u1u2 · · ·un.
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Let P (x) ∈ (R[u1, . . . , un]) [x] be defined by

P (x) = (x− u1)(x− u2) · · · (x− un).

The coefficients of P (x) are the elementary symmetric polynomials. Explicitely,

P (x) = xn − s1x
n−1 + s2x

n−2 + · · ·+ (−1)nsn.

Lemma 36.7 (Girard’s Relations)

Suppose f is a monic polynomial in F [x]; write it as

f(x) = xn − a1x
n−1 + a2x

n−2 + · · ·+ (−1)nan.

Suppose f can be factored (perhaps in a splitting field over F ) as f(x) = (x−α1)(x−α2) · · · (x−αn).
Then,

ai = si(α1, α2, . . . , αn).

Theorem 36.8 (Symmetric Polynomials Theorem)

Every symmetric polynomial g(u1, . . . , un) ∈ R[u1, . . . , un] can be written in a unique quay as
a polynomial in the elementary symmetric polynomials, i.e., there exists a unique polynomial
G(z1, . . . , zn) ∈ R[z1, . . . , zn] such that g(u1, . . . , un) is obtained by substituting zi 7→ si in G,

g(u1, . . . , un) = G(s1, . . . , sn).

Sketch. Induction on the largest monomial, by lexicographic order on the exponents.

Corollary 36.9

Suppose f(x) ∈ F [x], and f(x) splits completely over K, with roots α1, α2, . . . , αn.

Let g(u1, . . . , un) ∈ F [u1, . . . , un] be a symmetric polynomial. Then, g(α1, . . . , αn) ∈ F .

Corollary 36.10

Let p1(u1, . . . , un) ∈ R[u1, . . . , un], and {p1, . . . , pk} the Sn-orbit of p1.a

If h(w1, . . . , wk) ∈ R[w1, . . . , wk] is symmetric, then h(p1, . . . , pk) ∈ R[u1, . . . , un] is symmetric.

aNote that k | n!.

Definition 36.11 (Splitting Fields, again)

Let f ∈ F [x], not necessarily irreducible. A splitting field for f is an extension K/F such that

(i) f splits completely in K, i.e., f(x) = (x− α1) · · · (x− αn), αi ∈ K.
(ii) K = F (α1, . . . , αn).

Lemma 36.12

Let F ⊂ L ⊂ K be fields, and K is a splitting field of f ∈ F [x]. Then, K is a splitting field of f
over L.

Lemma 36.13

Every polynomial over F has a splitting field.

Lemma 36.14

A splitting field is a finite extension of F , and every finite extension is contained in a splitting field.
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Theorem 36.15 (Splitting Theorem)

Let K/F be a field extension, with K being the splitting field of f(x) over F . Then, if g(x) ∈ F [x]
is irreducible over F and g(x) has at least one root in K, then g splits completely in K.

Proof. Let f, g be as above. We are assuming that there exists β1 ∈ K such that g(β1) = 0. Without
loss of generality, g is monic. Since g is irreducible, g is irreducible, g is the minimal polynomial for β1

over F .

K = F (α1, . . . , αn), with αi’s the roots of f , implies that every element of K can be written as a
polynomial in αi’s, with coefficients in F , i.e., there exists p1 ∈ F [u1, . . . , un] such that p1(α1, . . . , αn) =
β1.

Let {p1, . . . , pk} be the Sn-orbit of p1.

Let βj = pj(α1, . . . , αn). So β1, . . . , βk ∈ K.

Let h(x) ∈ K[x] be defined by
h(x) = (x− β1) · · · (x− βk).

By Corollary 36.10, si(p1, . . . , pk) ∈ F [u1, . . . , un] is a symmetric polynomial. Then, by Corollary 36.9,
si(β1, . . . , βn) ∈ F . Lastly, by Lemma 36.7, the coefficients of h(x) are

si(β1, . . . , βk) ∈ F,

which means that h(x) ∈ F [x].

Therefore, since β1 is a root of h(x) ∈ F [x], the irreducible polynomial of β1, which is g, divides (over F )
h, which splits completely over K. This implies that g splits completely K. �
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37 Supplementary Lecture IV (December 29, 2020)

37.1 Galois Theory

Definition 37.1 (Isomorphism and Automorphism of Field Extensions over a Field)

Let K,K ′ be field extensions of F and let ρ : K → K ′ is be an isomorphism. We call ρ an
isomorphism over F , if ρ(f) = f , for all f ∈ F . Alternatively, we may call it a F -isomorphism.

If such isomorphism over F exists, we say that K and K ′ are isomorphic over F . Alternatively, we
may say that K and K ′ are F -isomorphic.

If K = K ′, we say that ρ is an automorphism over F . Alternatively, we may call it a F -
automorphism.

Definition 37.2 (Galois Group)

GivenK/F a field extension, let AutF (K) be the group of F -automorphisms ofK, with the operation
of composition. We call it the Galois group of K over F , denoted by G(K/F ).

Proposition 37.3

The order of G(K/F ) divides [K : F ].

Definition 37.4 (Galois Extension)

A finite extension K/F is called a Galois extension if, and only if,

|G(K/F )| = [K : F ].

Example 37.1

C/R is a Galois extension.

From now on, in this lecture, all fields have characteristic 0.

Lemma 37.5

Let K,K ′ be extensions of F . Let f ∈ F [x], and let σ be an F -isomorphism from K to K ′. If α is
a root of f in K ′, then σ(α) will be a root of f in K ′.

Lemma 37.6

Let K,K ′ be extensions of F . Suppose K = F (α1, . . . , αn). Let σ, σ′ be F -isomorphisms from K to
K ′. If σ(αi) = σ′(αi) for all i, then σ = σ′.

Corollary 37.7 (K = K ′)

Let K/F be a field extension. If a F -automorphism σ fixes all αi’s, then σ is the identity automor-
phism.

Lemma 37.8

Let f be a irreducible polynomial over F , and let α, α′ be roots of f in K,K ′, respectively. There
exists a unique F -isomorphism σ : F (α) → F (α′) sending α → α′. If F (α) = F (α′), then σ ∈
G(F (α)/F ).

Proposition 37.9

Let f ∈ F [x]. Then, L/F contains at most one splitting field for f over F .
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Proof. If L contains a splitting field of f , then f splits completely in L, so f = (x−α1) . . . (x−αn) in L.

Thus, the only splitting field for f in L is F (α1, . . . , αn). �

Proposition 37.10

Let f ∈ F [x], then any two splitting fields of f over F are F -isomorphic.

Proof. Let K1,K2 be two splitting fields over F . K1 is a extension of F generated by finitely many
algebraic elements, thus [K1 : F ] <∞.

By the Primitive Element Theorem, finite extensions of characteristic 0 are generated by a single element,
i.e., there exists γ ∈ K such that K1 = F (γ). Since K1 = F (γ) = F [γ], the elements of K1 are of the
form a0 + a1γ + · · ·+ a(deg γ−1)γ

(deg γ−1).

Let g(x) be the minimal polynomial for γ over F . Since g(x) ∈ F [x] and K2/F , there exists a field
extension of K2 so that g has a root γ′ in L.

Consider the map φ : K1 → F (γ′), defined by

a0 + a1γ + · · ·+ a(deg γ−1)γ
(deg γ−1) 7→ a0 + a1(γ′) + · · ·+ a(deg γ−1)(γ

′)(deg γ−1).

This map is a F -isomorphism that sends γ to γ′. Therefore, F (γ′) is isomorphic to K1 =⇒ F (γ′) is a
splitting field for f .

Finally, F (γ′) and K2 are splitting fields for f in L, thus Proposition 37.9 implies that F (γ′) = K2, which
finishes the proof. �

Definition 37.11 (Fixed Fields)

Let K be a field and H ≤ Aut(K). The fixed field of H is

KH = {α ∈ K : σ(α) = α, ∀σ ∈ H}.

Proposition 37.12

KH is a subfield of K.

Theorem 37.13 (Important Theorem about Fixed Fields)

Let H be a finite subgroup of Aut(K). Suppose H is a finite group. Let β1 ∈ K and let {β1, . . . , βr}
be the H-orbit of β1. Then

(a) the minimal polynomial for β1 over KH is g(x) = (x− β1) · · · (x− βn).
(b) β1 is algebraic over KH , and degKH β1 = r = size of H-orbit of β1. So, degKH β1 divides |H|.

Remark. σ ∈ H if, and only if, σ ∈ G(K/KH). Thus, H = G(K/KH).

Proof. Let g(x) := (x − β1) · · · (x − βn) ∈ K[x]. The coefficents of g(x) are si(β1, . . . , βn). Since the
elements of H permute the orbit {β1, . . . , βn}, they fix the coefficients of g; thus, the coefficents of g(x)
are in KH , i.e., g(x) ∈ KH [H].

Let h(x) ∈ KH [x] such that h(β1) = 0. Pick σ ∈ H such that σ(β1) = βi. Then, 0 = σ(0) = σ(h(β1)) =
h(σ(β1)) = h(βi); thus all β1, . . . , βn are roots of h(x), which implies that g(x) | h(x). Therefore, g(x) is
the minimal polynomial for β1 over KH .

This implies that β1 is algebraic and degKH
β1 = deg g = r. �

Lemma 37.14

Let K be an algebraic extension of F such that K is not a finite extension. Then, there are elements
in K whose degrees over F are arbitrarily large.
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Theorem 37.15 (Fixed Field Theorem)

Let H be a finite subgroup of Aut(K). Then, [K : KH ] <∞ and [K : KH ] = |H|.

Proof. By Theorem 37.13, degKH β is limited, for β ∈ K. Thus, by Lemma 37.14, K has to be a finite
extension of KH , i.e., [K : KH ] <∞. By the Primitive Element Theorem, there exists γ ∈ K such that
K = KH(γ). By Corollary 37.7, if σ(γ) = γ, then σ is the identity. Therefore, the only element in H
that fixes γ is the identity; which implies that the H-orbit of γ has size |H|.

With not great effort, we can imply that [KH(γ) : KH ] = |H|. �

Theorem 37.16 (Main Theorem of Galois Theory)

Let K be a Galois extension of F . Then, the correspondance between the subgroups of G(K/F )
and the intermediate fields of K over F defined by H 7→ KH and G(K/L)← [ L is a bijection.
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