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February 12, 2021

1 Introduction: It’s all connected

The Markov equation is
x2 + y2 + z2 = 3xyz.

Let’s understand the integer solutions for the Markov equation.

Definition 1.1 (Markov number)

A Markov number n ∈ N is any number such that there exists y0, z0 such that (n, y0, z0) is a solution
to the Markov equation. Let mn be the n-th positive integer Markov number.

Example 1.1 (Markov number)

(1, 2, 5) is a solution to the Markov equation. Thus, 1, 2, 5 are Markov numbers.

Theorem 1.2 (Caracterization of irrational numbers)

Let α ∈ R. Then, α is irrational ⇐⇒ there are infinitely many coprime (p, q) such that∣∣∣∣α− p

q

∣∣∣∣ < 1√
5q2

.

Theorem 1.3 (
√

5 is the best constant)

If α = φ = 1+
√

5
2 and β >

√
5, there are only finitely many coprime (p, q) such that∣∣∣∣α− p

q

∣∣∣∣ < 1

βq2
.

If we disregard φ and its derivatives, then we can change
√

5 to 2
√

2.

Theorem 1.4 (Caracterization of irrational numbers not related to φ)

Let α ∈ R. Then, α 6∈ Q[φ] ⇐⇒ there are infinitely many coprime (p, q) such that∣∣∣∣α− p

q

∣∣∣∣ < 1

2
√

2q2
.

Theorem 1.5 (2
√

2 is the best constant)

If α =
√

2 and β > 2
√

2, there are only finitely many coprime (p, q) such that∣∣∣∣α− p

q

∣∣∣∣ < 1

βq2
.

We can disregard
√

2 and its derivatives, and change 2
√

2 to
√

221
5 ; and so on.

This naturally creates a sequence of real numbers, called Lagrange numbers, which starts as
√

5, 2
√

2,√
221
5 , . . . , Ln, . . . .

Surprisingly, there is a conection between the Markov and Lagrange numbers.

Theorem 1.6 (Markov)

Ln =

√
9− 4

m2
n
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Theorem 1.7

Let ρ1, ρ2 ∈ Hom(F2, SL(2,R)). If Tr(ρ1(a)) = Tr(ρ2(a)), Tr(ρ1(b)) = Tr(ρ2(b)) and Tr(ρ1(ab−1)) =
Tr(ρ2(ab−1)), then there exists A ∈ SL(2,R) such that ρ1(w) = Aρ2A

−1 for all w ∈ F2.

The upshot of this theorem is that Hom(F2, SL(2,R))/conjugation is, in some sense, a subset inside R3.

For certain homomorphisms ρ : F2 → SL(2,R), there exists a magical machine, which we will call
hyperbolic geometry machine, that sends ρ to the following figure.

Figure 1: Result of the hyperbolic geometry machine on certain homomorphisms

The length of the blue, green and red loops are replated to Tr(ρ(a)), Tr(ρ(b)) and Tr(ρ(ab−1)).

For certain super special homomorphisms ρ : F2 → SL(2,R), this machine sends ρ to this other figure.

Figure 2: Result of the hyperbolic geometry machine on super special homomorphisms

Theorem 1.8

ρ is super special if, and only if,

Tr(ρ(a))2 + Tr(ρ(b))2 + Tr(ρ(ab−1) = Tr(ρ(a)) Tr(ρ(b)) Tr(ρ(ab−1)),

i.e.,
(

Tr(ρ(a))
3 , Tr(ρ(b))

3 , Tr(ρ(ab−1))
3

)
is a solution to the Markov equation.
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2 Introducing Algebraic Varieties February 15, 2021

2.1 Definition

Definition 2.1 (Affine hypersurface)

Let K be a field. K[x1, . . . , xn] is the ring of polynomials with coefficients in K, and

Suppose p ∈ K[x1, . . . xn] and p is not constant. Then,

V (p) := {(k1, . . . , kn) ∈ Kn | p(k1, . . . , kn) = 0}

Example 2.1

Let K = R and n = 2. Consider p(x1, x2) = x2
1 + x2

2 − 1. In this case,

V (p) = {(r1, r2) ∈ R2 | r2
1 + r2

2 − 1 = 0}.

In this case, V (p) represents a circle.

More generally, ellipses, hyperbolas, parabolas are all V (p), for the right choice of p.

Definition 2.2 (Algebraic variety)

More generally, if P is a collection of polynomials in K[X], not constants. Define

V (P) = {(k1, . . . , kn) ∈ Kn | p(k1, . . . , kn) = 0,∀p ∈ P}.

2.2 Examples with K = R
Question 2.1

What sorts of geometric properties can algebraic varieties have?

Example 2.2

Consider p(x, y) = y2 − x3. Then, V (p) looks like:

Example 2.3

Consider q(x, y) = y2 − x(x2 − 1). Then, V (q) looks like:
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Example 2.4

Consider r(x, y) = y2 − x2(x+ 1). Then, V (r) looks like:

Example 2.5

Consider s(x, y) = xy. Then, V (s) looks like:

Definition 2.3

We say a variety has dimension d if a subset of it “looks like Rd” and if it is the disjoint union of
finitely many pieces that each “look like Ri” with 0 ≤ i ≤ d

Example 2.6

The dimension of V (x2 + y2 − 1) is 1.

Example 2.7

The dimension of V ({x, y}) = {(0, 0)} is 0.

In Linear Algebra, the number of linearly independent always equals the codimension of the solution set.

Question 2.2

Does this hold for varieties?

Answer. No. V (x2 + y2) = {(0, 0)}, which has dimension 0 (as opposed to the expected 2 − 1 = 1).
Another example is V (y, y − 1) = ∅, which has dimension −1 (as opposed to the expected 2− 2− 2).

So, linear algebraic dimension count fail for varieties for at least two reasons:

� non-existence of solutions to certain types of algebraic equations (e.g., x2 = −1).
� non-extistence of intersections between parallel lines. February 17, 2021

To solve the first problem, we’ll use the complex numbers instead of the real numbers. To solve the
second problem, we’ll need to develop projective spaces.
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3 Introducing Projective Spaces

Basic idea Start with a initial space and add new point to it which keep track of the different “ways”
of goign off to infinity in a straight line.

Notation Pdimension(field).

Example 3.1 (Real projective line)

Consider the projective space P1(R): this is just R plus one additional point “at infinity”.

Example 3.2 (Real projective plane)

Consider the projective space P2(R): this is R2 plus an additional point for each line in R2 through
the origin.

Any two parallel lines in R2 intersect in the P2(R).

So, any two lines in P2(R) intersect at a point in P2(R)

Example 3.3 (Complex projective line)

Consider the projective space P(C): this is just C plus one additional point “at infinity”.

Definition 3.1

In C2, a complex line through the origin is a subvector space of C2 over C with dimension 1.

February 19, 2021

Example 3.4

Consider the projective space P2(C): this is C2 plus an additional point “at infinity” for each complex
line through the origin.

“How many” new points are there? There is one for each complex line. In fact, if we look to the
“slope” of each complex line, it lives inside P(C) and uniquely identifies each complex line.
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4 Exploring some varieties February 26, 2021

Example 4.1

y2 = ...

yields a sphere on P2(C).

Example 4.2

y2 = x(x2 − 1)

yields a torus on P2(C).

Theorem 4.1 (WRONG! Dream Theorem)

Example 4.3

The polynomial p(x, y) = xy yeilds to two spheres that touch at one point in P(C2); which is not on
the list.

Theorem 4.2 (Correct Theorem)

If p ∈ C[x, y] ...
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5 Projective Spaces March 01, 2021

Let K be a field (in practice, for this class, K = R or C).

Theorem 5.1 (n-dimension Projective Space)

Given n ∈ Z≥0, the projective n-dimension space over K, denoted by Pn(K), is defined as the set

Pn(K) = {A ⊂ Kn+1 : A is a subspace of Kn+1 with dimension 1over K}

Small, informal aside: Pn(K) is more than just a set. It is a topological space — more on this soon.

Example 5.1

P1(R) is the set of lines in R2 that go through the origin.

We can try to use the blue circle to “keep track” of the lines.

the red lines are the elements of P(R2)

Figure 3: Projective real line

Example 5.2

P2(R) is the set of lines in R3 that go through the origin.

We can try to use the unit sphere to “keep track” of the lines.

Definition 5.2

If U is a (r + 1)-dimensional subspace of Kn+1, then the 1-subspaces of U yield a subset of Pn(K),
and called a r-dimension projective subspace.

Proposition 5.3

Any r-dimension projective subspace is naturally a copy of Pr(K) inside of Pn(k).
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Proof. Any two r-dimension subspaces of Kn+1 are related by an isomorphism of Kn+1 → Kn+1

(change of basis). Notice also that Kr+1 ⊂ Kn+1, corr. to zero-ing out the last n− r coordinates is
an (r + 1)-subspace of Kn+1. And its 1-subspaces are the elements of Pr(K), by definition.

Definition 5.4

If a vector space V has dimension n, and U ⊂ V is a subspace, the co-dimension of U , denoted
cod(U), is

cod(U) = n− dim(U).

Lemma 5.5

Let S1, S2 be any two projective subspaces of Pn(K). Then,

cod(S1 ∩ S2) ≤ cod(S1) + cod(S2).

Equivalentely,
dim(S1 ∩ S2) ≥ dim(S1) + dim(S2)− n.

March 03, 2021

Sketch. Using tools from Linear Algebra, we can conclude that given two subspaces V1, V2 ⊂ V ,

dim(V1 ∩ V2) ≥ dim(V1) + dim(V2)− dim(V ).

An (r + 1)-dimensional subspace S̃1 of Kn+1 has codimension (n + 1) − (r + 1) = n − r. And, the
associated projective subspace S1 of Pn(K) has same codimension. So, the inequality for vector
spaces implies the inequality for projective spaces.

We will use a lot the connection between vector spaces and projective spaces.

Example 5.3

Any two projective 2-spaces in P3(R) intersect in at least a (projective) line.

Definition 5.6

Let p ∈ Pn(K) — we may call p a projective point, or simply a point — and let Lp be the cor-
responding line throught the origin in Kn+1. (Technically, those are the same, but it is useful to
separate them.)

Then, if ~a ∈ Kn+1, ~a ∈ Lp, ~a 6= ~0, we call ~a a coordinate set for p — or simply coordinates for p.

An unforunate fact is that a single projective point p doesn’t have a unique coordinate set.

Proposition 5.7

Given two non-zero ~a,~b ∈ Kn+1, they are coordinate for the same point in Pn(K) if, and only if,
there exists λ ∈ K such that

~a = λ ·~b,

i.e., if 0, ~a and ~b are collinear.
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Example 5.4

Let’s think about P2(R).

For any point (x, y, z) ∈ R3 such that z 6= 0, we can divide by z and get
(
x
z ,

y
z , 1
)

— which represents
the same projective point in P2(R) as (x, y, z).

Therefore, except for the projective points (lines) in the xy-plane, we can handle the problem of
non-unique representation of projective points by referring to a projective point by the unique point
in R3 with a 1 in the last coordinate. See fig. 4.

So, the plane z = 1 (a copy of R2) can be naturally identified with the subset of P2(R) consisting of
projective points that represent lines not in the xy-plane. The remaining projective points can be
identified with a copy of P1(R) — which we usually call the line at infinity.

In general, one can always imagine Pn(K) as a copy of Kn together with a copy of Pn−1(K) “at
infinity” — the latter we call the hyperplane at infinity.

Remark. There is no preferred hyperplane at infinity. In our example, the choice of the plane z = 1 was
completely arbitrary.

(x, y, z)(
x
z ,

y
z , 1
)

plane z = 1

Figure 4: Real Projective Plane

Lemma 5.8

Any (n−1)-dimensional projective subspace W in Pn(K) can be chosen as the hyperplane at infinity.

March 05, 2021

Once we choose a hyperplane at infinty, we denote it by Pn−1
∞ (K).

Lemma 5.9

Let Pn−1
i (K) denote the projective subspace of Pn(K) whose projective points lie on the hyperplane

xi = 0. Then

Pn(K) =

n+1⋃
i=1

(
Pn(K) \ Pn−1

i (K)
)
.

In other words, the affine parts of Pn(K) associated to the choices of xi = 0 (i = 1, . . . , n + 1) as
the hyperplane at infinity, jointly cover all of Pn(K).

Proof. Pn(K) \Pn−1
i counts every line, but those entirely contained in the hyperplane xi = 0. Thus,

we only miss the points contained in all hyperplanes xi = 0, i = 1, . . . , n+ 1; which is no line.

March 8, 2021

5.1 Projective completion
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Definition 5.10 (Homogenieous subset)

A homogeneous subset S of Kn us any subset satisfying

x ∈ S =⇒ cx ∈ S,∀c ∈ K.

Another way to think about this: A homogeneous subset is a union of lines through the origin.

Definition 5.11 (Homogeneous variety)

A homogeneous variety V in Kn is an algebraic variety that is also homogeneous.

Definition 5.12 (Projective variety)

A projective variety V in Pn(K) corresponding to all 1-subspaces of Kn+1 lying in a homogeneous
variety.

Definition 5.13 (Projective completion)

Let’s embed Kn in Kn+1, by setting the last variable to 1. Then, in some sense, we are embedding
Kn in Pn(K). Let V be in Kn, and be an algebraic variety. Then, the projective completion of V ,
denoted by V is the smallest projective variety in Pn(K) containing V .

We’ll need some theorems and propositons to study the variety V (z − x3).

Theorem 5.14 (Bézout)

The projective completion of a variety, V (p) in P2(C), intersects any complex line n times, counting
multiplicity, where n = deg(p).

Proposition 5.15

Under certain circumstances, we’ll be able to conclude that all of those intersections occur within
the real part of C2 (after adding in points at infinity).

If C2 = {(x, z) = (x1 + ix2, z1 + iz2) : x1, x2, z1, z2 ∈ R}, then the real part of C2 is the x1z1-plane.

Proposition 5.16

Give any (real) line L through origin in the x1z1-plane, there exists a unique complex line in C2

containing L. Futhermore, if L,L′ are two distinct lines through the origin, then the corresponding
complex lines containing each are not equal.

Therefore, in P2(C), the real part of C2 turns into a copy of P2(R).

The circumstances alluded to in Proposition 5.15 arise when p(x, z) = z− x3 and the complex line is the
unique one intersecting the real part of C2 in the z1-axis. March 10, 2021

March 12, 2021

March 15, 2021

Definition 5.17

Let p ∈ K[x1, . . . , xn], deg(p) = d. Then, the homogenization of p is a polinomial Hxn+1
(p) ∈

K[x1, . . . , xn+1] defined by

Hxn+1
(p) = xdn+1p(X1/Xn+1, . . . , Xn/Xn+1).

If p ∈ K[x1, . . . , xi−1, xi+1, . . . , xn], then define Hxi
(p) similarly.

Lemma 5.18

If V (p1, . . . , pr) ⊂ Cn, then V = V (Hn+1(p1), · · · , Hn+1(pr)) ⊂ Cn+1

March 17, 2021
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Definition 5.19

The affine part of V is defined to be V ∩
(
Pn(K) \ Pn−1

∞ (K)
)
. Sometimes, we call this the dehomo-

nization of V .

Definition 5.20

Let q(x1, . . . , xn+1) ∈ K[x1, . . . , xn+1] be homogeneous. Then the dehomogenization of q at xi is

Di(q) = q(x1, . . . , xi−1, 1, xi+1, . . . , xn+1).

March 19, 2021

March 22, 2021
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6 Multivariable Calculus March 24, 2021

Definition 6.1 (Differentiable functions in one variable)

Let U ⊂ R be an open subset and let f : U → R. Then, f is called differentiable at a ∈ U if there
exists a line through (a, f(a)) ∈ R2, given by some equation y = f(a) + c(x− a) for some c ∈ R so
that

lim
x→a

f(x)− (f(a) + c · (x− a))

x− a
= 0.

If this occurs, then the derivative of f at a is c.

Proposition 6.2 (Basic rules of differentiation)

For any f, g differentiable, it holds:

(a) (λf)′(a) = λ · f ′(a);
(b) (f + g)′(a) = f ′(a) + g′(a);
(c) (fg)′(a) = f ′(a)g(a) + f(a)g′(a);

(d) (f/g)′(a) = g(x)f ′(x)−f(x)g′(x)
g(a)2 ;

(e) (xn)′ = nxn−1.

Definition 6.3 (Limit of a function)

Given f : Rn → R, then lim~x→~a f(~x) = c means that given any ε > 0, there exists δ > 0 so that, for
any ~y satisfying dRn(~a, ~y) < δ, it holds |f(~y)− c| < ε.

Definition 6.4 (Differentable functions from multiple variables to one variable)

Let U ⊂ Rn open, and f : U → R. Then, f is differentiable at ~a ∈ U if there exists a hyperplane
through (a1, . . . , anf(~a)) ∈ Rn+1, given by some equation of the form

xn+1 = f(a) + c1(x1 − a1) + · · ·+ cn(xn − an)

so that

lim
~x→~a

f(x)− (f(a) + c1(x1 − a1) + · · ·+ cn(xn − an))

|x1 − a1|+ · · ·+ |xn − an|
= 0.

If this occurs, then the derivative of f at ~a is (c1, . . . , cn).

Just as before, ci measures the “instantaneous” rate of change of f , as we move a little bit in the xi
direction. These ci’s are called partial derivatives of f at ~a and denoted by

ci =
∂f

∂xi
(~a) = fxi

(~a).

Definition 6.5 (Limit of a function with multivariable output)

Given f : Rn → Rm, then lim~x→~a f(~x) = ~c means that given any ε > 0, there exists δ > 0 so that,
for any ~y ∈ Bδ(~a), it holds f(~y) ∈ Bε.

Definition 6.6 (Differentable functions from multiple variables to one variable)

Let U ⊂ Rn open, and f : U → Rm. We can consider the coordinate functions f1, . . . , fm : U → R
so that

f(~x) = (f1(~x), . . . , fm(~x)).

Then, f is differentiable at ~a if all f1, . . . , fm are differentiable at ~a.

March 26, 2021
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So, f is differentiable at ~a means that, near ~a, f is well approximated by a linear transformation defined

by the matrix with partial derivatives ∂fi

∂xj
, i.e.

f(~a+ ~h) = f(~a) +


∂f1

∂x1
· · · ∂f1

∂xn

...
. . .

...
∂fm

∂x1
· · · ∂fm

∂xn


︸ ︷︷ ︸

Jac f(~a), the jacobian matrix

·~h+ ‖~h‖ ρ(~h),

with ρ(~h)→ ~0 as ~h→ ~0.

Given a function f : Rn → Rm, we can identity the notion of derivative of f at ~a with Jac f(~a). March 31, 2021

Definition 6.7 (Differentiable complex functions in one variable)

Let f : C → C. Then, f is called differentiable or C-differentiable or holomorphic if there exists a
complex line through (a, f(a)) ∈ C2, given by some equation y = f(a) + c(x− a) for some c ∈ C so
that

lim
x→a

f(x)− (f(a) + c · (x− a))

x− a
= 0,

with x ∈ C. If this occurs, then the derivative of f at a is c.

Theorem 6.8 (Cauchy-Riemann equations)

Given f : C→ C, rewrite f as

f(x+ iy) = u(x, y) + i · v(x, y),

for all x, y ∈ R and some u, v : R2 → R.

Then, f is holomorphic at z0 = x0 + iy0 ∈ C if, and only if, all of the following happen:

(i) u, v : R2 → R are differentiable at (x0, y0).
(ii)

∂u

∂x
(x0, y0) =

∂v

∂y
(x0, y0) and

∂u

∂y
(x0, y0) = −∂v

∂x
(x0, y0).

April 02, 2021

f , holomorphic

Figure 5: Angles are preserved in holomorphic functions.
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Proposition 6.9

Suppose f : C→ C is holomorphic. Rewrite f as

f(x+ iy) = u(x, y) + i · v(x, y).

Then, if we view f as a function from R2 → R2, via

f(x, y) = (u(x, y), v(x, y)),

its Jacobian matrix Jac f has orthogonal columns. So, Jac f is an orthogonal matrix. In especial, if
~a,~b ∈ R2, then ∠(~a,~b) = ∠(Jac f · ~a, Jac f ·~b).

Therefore, holomorphic functions are approximated (to better and better accuracy) by orthogonal linear
transformations. So long as f ′ 6= 0, this means that angles between curves are preserved, as seen in fig. 5.

April 05, 2021

Lemma 6.10 (Chain rule)

If f, g : K → K are differentiable, then f ◦ g is differentiable and

(f ◦ g)′(z) = f ′(g(z)) · g′(z).

The linear map that best approximates f ◦ g nearby z is to multiply the number g′(z) and then follow
up by multiplying f ′(g(z)).

Lemma 6.11 (Chain rule)

Given g : Kn → Km, f : Km → Kp and f, g are both K-differentiable. Then f ◦ g : Kn → Kp is
differentiable, and

Jac(f ◦ g)(~z) = Jac f(g(~z)) · Jac g(~z).

6.1 Power series

Definition 6.12 (Power series)

A power series is a function f : U → C, with U being an open set, given by an expression of the
form

f(z) =

∞∑
n=0

anz
n,

i.e., given any z0 ∈ U , limm→∞
∑m
n=0 anz

n
0 exists, and we define f(z0) to be this value.

Definition 6.13 (Absolute convergence)

An expression of the form
∑∞
n=0 anz

n
0 is said to converge absolutely if

∑∞
n=0 ||anzn0 || <∞.

Proposition 6.14

For z0 ∈ C, if
∑∞
n=0 anz

n
0 converges absolutely, then

∑∞
n=0 anz

n
0 .

Definition 6.15 (Radius of Convergenge)

Given f(z) =
∑∞
n=0 anz

n, f is said to have radius of convergence ρ ∈ [0,∞] if ρ is is the supremum
of {σ : ∀z ∈ C, ||z|| < σ =⇒

∑∞
n=0 anz

n converges absolutely}.

Proposition 6.16

The radius of convergence ρ is sup{t ≥ 0 | {|an|tn}∞n=0 is a bounded sequence}.
April 07, 2021
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Lemma 6.17

A power series and its term-by-term differentiation (i.e., given
∑
n=0 anz

n, its term-by-term differ-
entiation is

∑∞
n=1 nanz

n−1) have the same radius of convergence.

Theorem 6.18

Let ρ be the radius of convergence of
∑∞
n=0 anz

n0. Then the function f(z) =
∑∞
n=0 anz

n is holo-
morphic in Bρ(0). And, the derivative of f is gotten by doing ter-by-term differentiation.

Theorem 6.19

Any holomorphic function on C can be expressed as a power series. (Key idea: Taylor series.)

April 09, 2021

Theorem 6.20

Any holomorphic function on C can be differentiated any finite number of times.

6.2 Integration

Definition 6.21 (Real-to-Complex Integral)

Given f : [a, b]→ C continous. Define∫ b

a

f(t) dt =

∫ b

a

Re[f(t)] dt+ i

∫ b

a

Im[f(t)] dt

Definition 6.22 (Curve)

A curve in C is a continous function γ : [a, b]→ C. A curve is called closed if γ(a) = γ(b). A curve
is simple if γ

∣∣
(a,b)

is one-to-one and γ(c) 6= γ(a) or γ(b) for any c ∈ (a, b). A Jordan curve is an

simple and closed curve.

We denote γ∗ = g([a, b]), together with an orientation.

Definition 6.23 (Countour Integration)

Let γ : [a, b]→ C be a curve so that γ′(t) exists and is continous. Then, if f : C→ C, the countour
integral or path integral of f along γ by∫

γ

f :=

∫ b

a

f(γ(t))γ′(t) dt.

Some comments:

(i)
∫
γ
f often depends only on γ∗.

(ii) If −γ denotes performing γ byt in the opposite direction, then∫
−γ

f = −
∫
γ

f.

Theorem 6.24 (Cauchy’s integral theorem)

Suppose f : U → C, U ⊂ C open, and f is holomorphic. Let γ : [a, b] → U be simple and closed.
Then, ∫

γ

f = 0.
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Theorem 6.25 (Cauchy’s integral formula)

Let f : U → C holomorphic, with U open. Let γ be any circle lying in U1 bounding some disk in D
(counterclockwise). Given w ∈ D.

f(w) =
1

2πi

∫
γ

f(z)

z − w
dz

Theorem 6.26 (Cauchy’s Argument Principle)

In the context of above. Assume f(z) 6= 0,∀z ∈ γ∗ and assume there are N zeros in D (counting
multiplicity). Then,

1

2πi

∫
γ

f ′(z)

f(z)
dz = N.

17



7 Topology April 12, 2021

Proposition 7.1

If M ⊂ Rn is an m-manifold, and x ∈ M , then there exists a way to partition the n variables
{x1, . . . , xn} into two subsets, {xi1 , . . . , xim} and {xj1 , . . . , xjn−m

}, and a continous function f from
an open subset V of Rm to Rn−m, so that there exists an open set U around x ∈M and with

U = {(x1, . . . , xn) : f(xi1 , . . . , xim) = (xj1 , . . . , xjn−m
)}.

Definition 7.2

Also, if on the above definition, if for each x ∈ M , we can choose f to be a smooth function, M is
called a smooth manifold. (Small lie: there shouls also be something said about how the f ’s change
from point to point in order to say that M itself is “smooth” but we’ll ignore this for now.)

Let’s apply this perspective to V (p), p ∈ C[x, y]. We expect a variety to look like a manifold whenever
the derivative of the defining polynomial doesn’t vanish.

Definition 7.3

Suppose f : C→ C is holomorphic at a. Then, a is a zero of order n if there exists some h : C→ C
holomorphic at a, so that

(i) f(x) = (x− a)nh(x)
(ii) h(a) 6= 0

Theorem 7.4

Suppose p(x, y) ∈ C[x, y] such that

(a) p(0, 0) = 0;
(b) ∂p

∂y (0, 0) 6= 0.

Then, there exists an open ball B centered at (0, 0) such that B ∩ V (p) is the graph of a function
φ : Cx → Cy, which is holomorphic at 0 ∈ Cx.

April 14, 2021

Sketch of the proof of Theorem 7.4. This proof will be devided into two steps. First, we’ll find the
desired φ : Cx → Cy. Secondly, we’ll prove it is holomorphic at 0 ∈ Cx.

The polynomial p(0, y) has a zero at y = 0 of order 1. Thus, if B̃ is a suficiently small open ball
about 0 ∈ Cy, there are no other zeros in B̃, so the argument principle implies that

1

2πi

∫
∂B̃

∂p
∂y (0, y)

p(0, y)
dy = 1.

Also, if c ∈ Cx very close to 0 ∈ Cx,

1

2πi

∫
∂B̃

∂p
∂y (c, y)

p(c, y)
dy

has to be very close to 1, by continuity of the output of this contour integral as a function of the
inputs involved.

Trick: Choose c so small so that the argument principle still applies, i.e., for c sufficiently tiny, p(0, y)
having no zeros on ∂B̃ =⇒ p(c, y) has no zeros on ∂B̃ either. (Key point: Any continous function
achieces a minimum on a compact set, and ∂B̃ is a compact set.)

So,

1

2πi

∫
∂B̃

∂p
∂y (0, y)

p(0, y)
dy ∈ N,
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and it is close to 1. Thus, p(c, y) has exactly 1 zero inside B̃. Define, for such c, φ(c) := this zero.

Note that, for x ∈ Cx close to 0, (x, φ(x)) ∈ V (p), since by plugging Y 7→ φ(x) into p(x, Y ), we get
zero.

From the first part of our argument, we know that there are open balls U ⊂ Cx, centered at 0 ∈ Cx,
and ∆ ⊂ Cy so that

∀c ∈ U, p(c, y) has a unique root in ∆,

and it’s of order 1.

Consider the function
∂p
∂y (c, y)

p(c, y)
.

At least within ∆, we can express this as a rational Taylor series of the form

∂p
∂y (c, y)

p(c, y)
=
a0 + a1(y − φ(c)) + a2(y − φ(c))2 + · · ·

y − φ(c)
.

Note that a0 6= 0, because a0 = 0 =⇒ ∂p
∂y (c, φ(c)) = 0, which is a contradiction.

Then,

1

2πi

∫
∂∆

y ∂p∂y (c, y)

y − φ(c)
dy =

1

2πi

∫
∂∆

ya0 + a1y(y − φ(c)) + a2y(y − φ(c))2 + · · ·
y − φ(c)

dy

= a0φ(c),

by Cauchy’s integral formula.

By using the same continuity arguments we used in the first part of our argument, we can conclude
that when x is sufficiently close to 0, p(x, y) 6= 0 for any y ∈ ∂∆.

So, close by to ∂∆, we can express
∂p
∂y (x,y)

p(x,y) as a power series of the form
∑∞
n=0 gn(y)xn.

Each of these coefficients, gn(y), are themselved holomorphic functions of y in the boundary of this
ball. And because of the well-behavedness of holomorphic functions, we can integrate term by term.
Thus,

φ(c) =
1

2a0πi

∫
∂∆

y ∂p∂y (c, y)

p(c, y)
dy

=

∞∑
n=0

(∫
∂∆

gn(y)dy

)
cn

=

∞∑
n=0

bnc
n.
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