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Disclaimer

The following presentation is for general information, 
education and discussion purposes only. 

Views or opinions expressed, whether oral or in 
writing do not necessarily reflect those of PartnerRe 
nor do they constitute legal or professional advice.
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Life insurance

Gives protection against loss resulting from death (or 
serious illness) of an insured
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Life reinsurer needs to… 

model 
underlying 

risk

need for 
specialized 

tools
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What about Mr Bloggs?
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What about Mr Bloggs?
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qx,ix ,lx – mortality rate, incidence rate, lapse rate
d – duration (months) in given state 
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And what about Mrs Bloggs?
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To model Mr & Mrs Bloggs policy

we decided to build our own, Long Term Protection 
Model for pricing



The tool
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• User friendly
• Easy to access 
• Simple to set-up 
• Fast to calculate
• Straightforward to interpret

• Flexible

• Stable

• Secure

• Auditable
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LTPM pricing tool needs to be
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We decided to do it in R

as opposed to most tools used in the re/insurance 
industry,

because these come often with:
• Legacy issues (too heavy)
• Calculation constraints (some things are not 

possible)
• Access issues (desktop versions, use of “workers”, 

external clouds)
• Transparency issues (black-box)
• Maintenance issues (costly upgrade, adaptation)
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Why R?

• Becoming the standard analytics tool at university 
level and in many industries

• Free

• Open source

• Meets our needs
• Fast 
• Flexible

• Reduces the number of platforms we maintain
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R is an excellent fit…

… but we also need an infrastructure to support all the 
tool requirements



The workflow
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First, let’s look at the steps in the calculation

Input data
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Steps in the calculation

Input data

Shiny web interface
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Steps in the calculation

Code repository with version control
and issue trackerDedicated server

Input data

Output data

Shiny web interface

https://openclipart.org
https://commons.wikimedia.org/wiki/File:Gnome-laptop.svg 
https://commons.wikimedia.org/wiki/File:Nexus_5_Front_View.png 
https://commons.wikimedia.org/wiki/File:Tablet-apple-ipad.svg

http://www.freeiconspng.com/images/server-icon
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 web interface
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 web interface

 collaboration
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 web interface

 collaboration

 choice of model version
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 web interface
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 web interface

 collaboration

 choice of model version

 intuitive names

 upload of the input data
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Model code + 
Gitlab reference Run log file

Run ZIP

Input Output
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Content of a run



The anatomy
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GitLab repository

R packages as 
git submodules

Shiny apps 

LTPM

LTPMcreate LTPMrun

LTPMcalc LTPMlogging LTPMinput

GitLab
project



There are two Shiny applications in the LTPM:

1. LTPMcreate: the main application where pricing 
exercises can be defined and runs can be created.

2. LTPMrun: an interface to each individual run which 
displays run details (e.g. input files and settings), 
status messages, and provides access to results.
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Shiny applications
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To support the calculations we have created three R 
extension packages:

1. LTPMcalc: includes all functionality for the actual 
calculations for the multi-state model.

2. LTPMinput: functionality to convert user input (i.e. 
spreadsheets) to an intermediate format (i.e. CSV).

3. LTPMlogging: functionality to allow all scripts and 
applications to log time-stamped information to the 
console or to a file on disk.
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R packages
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GitLab repository

R packages as 
git submodules

Shiny apps 

LTPM

LTPMcreate LTPMrun

LTPMcalc LTPMlogging LTPMinput

GitLab
group

GitLab
project
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Packages as git submodules – GitLab view
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Anatomy of LTPMrun

execute.R
LTPMlogging

LTPMinput

LTPMcalc

install.R

input.R

calc.R

Shiny 
application



The LTPMrun application has one R script to execute a 
full calculation run called execute.R.

This script defines three execution steps, each 
implemented in a separate R script:

1. install.R: installation of R extension packages 
required by the run,

2. input.R: reading and conversion of input file(s) 
provided by the user,

3. calc.R: perform the calculations.
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Executable R scripts
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LTPMcalc

The R package which 
implements the actual 
model functionality 
including the multi-state 
model.

The multi-state model is a 
Markov chain, which is a 
discrete-time Markov 
process.

Implementation details 
can be found in the 
package ‘vignette’.



Flexibility and adaptability
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Choice of actuarial model version

User can choose between:

- the latest released version

- past released versions 

- customized version created by themselves

- customized version created by other user 

V1.0 V2.0 V3.0 V4.0 V5.0
Master 
branch

Branch 1

Branch 2

Tags
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Choice of actuarial model version

list of git tags list of git branches



Quality assurance
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We can never guarantee that the model is completely 
free of errors and bugs. To minimize errors, we apply 
standard practices for quality assurance in software 
development:

1. Many small unit tests for individual functions.

2. Integration (i.e. end-to-end) tests using pre-
calculated results.

3. User testing.
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How do we ensure that the model is correct?
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GitLab

• Source code version control using Git.

• Issue tracker to track bugs and our progress in 
fixing these.

• Continuous Integration (CI) ‘pipelines’ to 
automatically test –on the target system– all 
changes committed to the source code repository.
- performed in target environment
- immediate upon push 
- notifications can be send to Slack
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GitLab - Continuous Integration 



Questions?
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