
Long Term Protection Model in R
Dr. Urszula Gasser, Senior Pricing Actuary



2

Disclaimer

The following presentation is for general information, 
education and discussion purposes only. 

Views or opinions expressed, whether oral or in 
writing do not necessarily reflect those of PartnerRe 
nor do they constitute legal or professional advice.



The need

3



4

Life insurance

Gives protection against loss resulting from death (or 
serious illness) of an insured



5

Life insurance

Gives protection against loss resulting from death (or 
serious illness) of an insured



6

Life reinsurer needs to… 

model 
underlying 

risk

need for 
specialized 

tools



The model

7



8

What about Mr Bloggs?

healthy



9

What about Mr Bloggs?

healthy

dead



10

What about Mr Bloggs?

healthy

deadlapsed



11

What about Mr Bloggs?

healthy

dead

early 
cancer

lapsed



12

What about Mr Bloggs?

healthy

dead

early 
cancer

lapsed



13

What about Mr Bloggs?

healthy

dead

early 
cancer

severe 
cancer

lapsed



14

What about Mr Bloggs?

healthy

dead

early 
cancer

severe 
cancer

lapsed



15

What about Mr Bloggs?

healthy

dead

early 
cancer

severe 
cancer

early 
and 

severe 
cancer 

lapsed



16

What about Mr Bloggs?

healthy

dead

early 
cancer

severe 
cancer

early 
and 

severe 
cancer 

lapsed



17

What about Mr Bloggs?

healthy

dead

early 
cancer

severe 
cancer

early 
and 

severe 
cancer 

lapsed

qx

i1x i2x

qx,ix ,lx – mortality rate, incidence rate, lapse rate
d – duration (months) in given state 

qlb1->dead
x(d)

ilb2->lb1
x(d)

qlb2->dead
x(d)

ilb1->lb2
x(d)

i1x* i2x

qlb1+lb2->dead
x(d)

llb1
x(d)

lhx(d)

llb2
x(d)

llb1+lb2
x(d)



18

And what about Mrs Bloggs?



19

To model Mr & Mrs Bloggs policy

we decided to build our own, Long Term Protection 
Model for pricing



The tool

20



• User friendly
• Easy to access 
• Simple to set-up 
• Fast to calculate
• Straightforward to interpret

• Flexible

• Stable

• Secure

• Auditable

21

LTPM pricing tool needs to be



22

We decided to do it in R

as opposed to most tools used in the re/insurance 
industry,

because these come often with:
• Legacy issues (too heavy)
• Calculation constraints (some things are not 

possible)
• Access issues (desktop versions, use of “workers”, 

external clouds)
• Transparency issues (black-box)
• Maintenance issues (costly upgrade, adaptation)



23

Why R?

• Becoming the standard analytics tool at university 
level and in many industries

• Free

• Open source

• Meets our needs
• Fast 
• Flexible

• Reduces the number of platforms we maintain



24

R is an excellent fit…

… but we also need an infrastructure to support all the 
tool requirements



The workflow

25



26

First, let’s look at the steps in the calculation

Input data



27

Steps in the calculation

Input data

Shiny web interface



28

Steps in the calculation

Dedicated server

Input data

Shiny web interface



29

Steps in the calculation

Code repository with version control
and issue trackerDedicated server

Input data

Shiny web interface



30

Steps in the calculation

Code repository with version control
and issue trackerDedicated server

Input data

Shiny web interface



31

Steps in the calculation

Code repository with version control
and issue trackerDedicated server

Input data

Shiny web interface



32

Steps in the calculation

Code repository with version control
and issue trackerDedicated server

Input data

Shiny web interface



33

Steps in the calculation

Code repository with version control
and issue trackerDedicated server

Input data

Output data

Shiny web interface

https://openclipart.org
https://commons.wikimedia.org/wiki/File:Gnome-laptop.svg 
https://commons.wikimedia.org/wiki/File:Nexus_5_Front_View.png 
https://commons.wikimedia.org/wiki/File:Tablet-apple-ipad.svg

http://www.freeiconspng.com/images/server-icon



The interface

34



35



36

 web interface



37

 web interface

 collaboration



38

 web interface

 collaboration

 choice of model version



39

 web interface

 collaboration

 choice of model version

 intuitive names



40

 web interface

 collaboration

 choice of model version

 intuitive names

 upload of the input data



41



42



43



44



45



46



47



48



Model code + 
Gitlab reference Run log file

Run ZIP

Input Output

49

Content of a run



The anatomy

50



51

GitLab repository

R packages as 
git submodules

Shiny apps 

LTPM

LTPMcreate LTPMrun

LTPMcalc LTPMlogging LTPMinput

GitLab
project



There are two Shiny applications in the LTPM:

1. LTPMcreate: the main application where pricing 
exercises can be defined and runs can be created.

2. LTPMrun: an interface to each individual run which 
displays run details (e.g. input files and settings), 
status messages, and provides access to results.

52

Shiny applications



53

GitLab repository

R packages as 
git submodules

Shiny apps 

LTPM

LTPMcreate LTPMrun

LTPMcalc LTPMlogging LTPMinput

GitLab
project



54

GitLab repository

R packages as 
git submodules

Shiny apps 

LTPM

LTPMcreate LTPMrun

LTPMcalc LTPMlogging LTPMinput



To support the calculations we have created three R 
extension packages:

1. LTPMcalc: includes all functionality for the actual 
calculations for the multi-state model.

2. LTPMinput: functionality to convert user input (i.e. 
spreadsheets) to an intermediate format (i.e. CSV).

3. LTPMlogging: functionality to allow all scripts and 
applications to log time-stamped information to the 
console or to a file on disk.

55

R packages



56

GitLab repository

R packages as 
git submodules

Shiny apps 

LTPM

LTPMcreate LTPMrun

LTPMcalc LTPMlogging LTPMinput



57

GitLab repository

R packages as 
git submodules

Shiny apps 

LTPM

LTPMcreate LTPMrun

LTPMcalc LTPMlogging LTPMinput

GitLab
group

GitLab
project



58

Packages as git submodules – GitLab view



59

Anatomy of LTPMrun

execute.R
LTPMlogging

LTPMinput

LTPMcalc

install.R

input.R

calc.R

Shiny 
application



The LTPMrun application has one R script to execute a 
full calculation run called execute.R.

This script defines three execution steps, each 
implemented in a separate R script:

1. install.R: installation of R extension packages 
required by the run,

2. input.R: reading and conversion of input file(s) 
provided by the user,

3. calc.R: perform the calculations.

60

Executable R scripts



61

LTPMcalc

The R package which 
implements the actual 
model functionality 
including the multi-state 
model.

The multi-state model is a 
Markov chain, which is a 
discrete-time Markov 
process.

Implementation details 
can be found in the 
package ‘vignette’.



Flexibility and adaptability

62



63

Choice of actuarial model version

User can choose between:

- the latest released version

- past released versions 

- customized version created by themselves

- customized version created by other user 

V1.0 V2.0 V3.0 V4.0 V5.0
Master 
branch

Branch 1

Branch 2

Tags



64

Choice of actuarial model version

list of git tags list of git branches



Quality assurance

65



We can never guarantee that the model is completely 
free of errors and bugs. To minimize errors, we apply 
standard practices for quality assurance in software 
development:

1. Many small unit tests for individual functions.

2. Integration (i.e. end-to-end) tests using pre-
calculated results.

3. User testing.

66

How do we ensure that the model is correct?



67

GitLab

• Source code version control using Git.

• Issue tracker to track bugs and our progress in 
fixing these.

• Continuous Integration (CI) ‘pipelines’ to 
automatically test –on the target system– all 
changes committed to the source code repository.
- performed in target environment
- immediate upon push 
- notifications can be send to Slack



68

GitLab - Continuous Integration 



Questions?

69


