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•Database that models a digital music store to keep track of 
artists and albums. 

•Things we need to store: 

•Information about artists. 

•What albums those artists released.

Database Example

 /1323



•Store database as comma-separated value (CSV) files that 
we manage in our own code 

•Use separate file per "entity" (artist, album) 

•The analysis has to parse files each time they want to 
read/update records

1960 Solution: Flat files
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Flat File Example

“Backstreet Boys”,1994,"USA" 

“Ice Cube”,1992,"USA" 

“Notorious BIG”,1989,"USA"

Artist (name, year, country)

“Millenium", "Backstreet Boys", 1999 

“DNA”, “Backstreet Boys”, 2019 

“AmeriKKKa's Most Wanted”, “Ice Cube”, 1990

Album (name,artist,year)



Flat File Example
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“Backstreet Boys”,1994,"USA" 

“Ice Cube”,1992,"USA" 

“Notorious BIG”,1989,"USA"

Artist (name, year, country)
"Get the year Ice Cube went solo"

df <- read.csv("artists.csv", header=F, 
col.names=c("name", "year", "country")) 
df[df$name=="Ice Cube", "year"]

Multiple passes through entire dataset!





•How do we ensure that the artist is the same for each album 
entry? 

•What if someone overwrites the album year with an invalid 
string? 

•How do we store that there are multiple artists on an album? 

•How do we update several tables with all-or-nothing 
semantics? 

•How do we keep derived data up-to-date?

Data Integrity
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•In-Process Database 

•External Database 

•User-Defined Functions

System Scenarios
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•MySQL, PostgreSQL, SQL Server, Oracle, Redshift 

•Hive, Impala, BigQuery 

•(Spark) 

•Transferring large-is datasets slooow 

•Need complex SQL to fetch relevant data!

External DB
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[M. Raasveldt & H. Mühleisen:  
Don't Hold My Data Hostage - A Case For Client Protocol Redesign, VLDB 2017]

Client protocols?

SELECT * FROM lineitem_sf10;



•Transactional persistent data management 

•RSQLite, DuckDB, (MonetDBLite) 

•Faster, but still conversion overhead :/ 

•ALTREP to the rescue 

•Later...

In-Process DB
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DuckDB



•PostgreSQL PL/R (Joe Conway) 

•MonetDB R UDFs  

•Oracle ~ 

•Spark ~ 

•SQL Server ~ 

•Can be also fast, but also still some translation overhead.

User-Defined Functions
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Kinds of UDFs for SELECT

• Filters 

• SELECT b FROM t WHERE fun(a) 

• UDF returns TRUE/FALSE, only rows where it returns TRUE are returned 

• Projection 

• SELECT fun(a, b) FROM t 

• UDF returns a single scalar value, becomes part of query result 

• Table-Returning 

• SELECT * FROM fun(42) 

• UDF returns a whole intermediate result table
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CREATE OR REPLACE FUNCTION get_emps() RETURNS 
SETOF emp AS ’ 
  names <- c("Joe","Jim","Jon") 
  ages <- c(41,25,35) 
  salaries <- c(250000,120000,50000) 
  df <- data.frame(name = names, age = ages, 
    salary = salaries) 
  return(df) 
’ LANGUAGE ’plr’; 

Postgres PL/R



select * from get_emps(); 
 name | age |  salary 
------+-----+----------- 
 Jim  |  41 | 250000.00 
 Joe  |  25 | 120000.00 
 Jon  |  35 |  50000.00 
(3 rows)  

Postgres PL/R
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DB Client APIs
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Client Program

DBI + Specific Driver

Database Server

Generic Commands 
SQL Query

Specific Commands 
SQL 

through Protocol

Query Results 
through Protocol

data.frame



1. Low-Level: DBI 

2. Verbs: dplyr/dbplyr 

3. Applications: dbplot, tidy predict

Database APIs for R
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Database

Driver

DBI

dbplyr

dbplotInteraction



•Basic API, adapts database-specific API/protocol into 
unified R API 

•Queries are strings, mostly SQL 

•Results are data.frame objects 

•dbConnect/dbDisconnect 

•dbListTables/dbListFields 

•dbWriteTable 

•dbGetQuery/dbExecute/dbReadTable

DBI
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•Lots of implementations: RMySQL, ROracle, RPostgreSQL, 
RRedshiftSQL, RClickhouse, RGreenplum, RMariaDB, 
RSQLite, virtuoso, sparklyr 

•Generic wrappers: RJDBC, odbc 

•Great if your DB vendor does not have R-specific driver 

•Heroic effort by Kirill Müller: DBItest 

•Result: Driver quality varies :/

DBI
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•Upside: Can talk to databases 

•Downside: Need to construct SQL strings :/ 

•Higher-level interface might be nice?

DBI?
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dplyr

• Data reorganisation thing in “xyzverse” 

• dbplyr: extension to work with SQL DBs, Spark, ...  

• Mostly relational operators 

• Lazy evaluation, call chaining 

• Nicer than hand-rolling SQL (mostly)

 24



dplyr "verbs" & pipes %>%
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n %>%  
select(first_name, last_name, race_desc, sex, 
birth_age) %>%  
filter(as.integer(birth_age) > 66, sex=="MALE", 
race_desc == "WHITE") %>%  
group_by(first_name) %>%  
summarise(count=n()) %>%  
arrange(desc(count)) %>% head(10) -> old_white_men 

print(old_white_men) 
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show_query(old_white_men) 

SQL translation

Whats the advantage of this approach?

SELECT * 
FROM (SELECT `first_name`, `last_name`, `race_desc`, 
`sex`, `birth_age` 
FROM `ncvoter`) 
WHERE ((CAST(`birth_age` AS INTEGER) > 66.0) AND 
(`sex` = 'MALE') AND (`race_desc` = 'WHITE'))



dplyr?

• Easy to use, hides huge query complexity 

• If things go wrong, debugging is challenging 

• Cost/Benefit of additional layers, weigh carefully!
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ALTREP
• Luke Tierney, Gabe Becker & Tomas Kalibera

• Abstract vectors, ELT()/GET_REGION() methods

• Lazy conversion! 
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static void monetdb_altrep_init_int(DllInfo *dll) { 
 R_altrep_class_t cls = R_make_altinteger_class(/* .. */); 

R_set_altinteger_Elt_method(cls, monetdb_altrep_elt_integer); 
/* .. */ 

} 
 
static int monetdb_altrep_elt_integer(SEXP x, R_xlen_t i) { 

int raw = ((int*) bataddr(x)->theap.base)[i]; 
return raw == int_nil ? NA_INTEGER : raw; 

} 

https://svn.r-project.org/R/branches/ALTREP/ALTREP.html#introduction 

https://svn.r-project.org/R/branches/ALTREP/ALTREP.html#introduction


ALTREP, MonetDBLite & zero-copy
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library(“DBI”) 
con <- dbConnect(MonetDBLite::MonetDBLite(), "/tmp/dscdemo") 

dbGetQuery(con, "SELECT COUNT(*) FROM onebillion”) 
# 1 1e+09 

system.time(a <- dbGetQuery(con, "SELECT i FROM onebillion”)) 
#    user  system elapsed  
#  0.001   0.000   0.001  

.Internal(inspect(a$i)) 
# @7fe2e66f5710 13 INTSXP g0c0 [NAM(2)] BAT #1352 int -> 
integer 

ALTREP-wrapped  
MonetDB Column



•Open-Source RDBMS created by the  
CWI Database Architectures research group 

•Purpose-built  
embedded analytical database 

•No external server management or configuration 

•Fast data transfer between R and DuckDB 

•Source Code: https://github.com/cwida/duckdb
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RIP MonetDBLite

• First in-process embedded analytical DBMS 

• on CRAN 2016-2019 

• Showed use case for embedded analytics 

• Also showed that re-using existing DBMS is rather 
difficult
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•DuckDB is optimized for analytical use cases 

•Read-mostly workloads 

•Complex queries, read large parts of the data 

•Bulk appends/updates 

•Traditional RDBMS (e.g. PostgreSQL, MySQL, SQLite): 

•Many small writes and updates 

•Simple queries, read only individual rows 

•Tight Integration with Analytics in R/Python/...

Why DuckDB
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•Vectorized Processing (DuckDB) 

•Optimized for CPU Cache locality 

•SIMD instructions, Pipelining 

•Small intermediates (fit in L3 cache)

Why DuckDB
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Tuple-at-a-Time
ResultTable

Vectorized Processing
Table Result

Column-at-a-Time
Table Result



•Vectorized Processing 

•Intermediates fit in L3 cache 

•Column-at-a-Time 

•Intermediates go to memory

Why DuckDB
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CPU CORE

MAIN MEMORY (16GB-2TB) 
LATENCY: 100NS

L3 CACHE (20MB) 
LATENCY: 20NS

L2 CACHE (256KB) 
LATENCY: 5NS

L1 CACHE (32KB) 
LATENCY: 1NS



•TPC-H Benchmark 

•Analytics benchmark based on shipping company 

•Process 20-40X faster than traditional systems because 
of processing model

Why DuckDB
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DUCKDB
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MYSQL
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For the adventurous
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remotes::install_github("cwida/duckdb/tools/rpkg",  
build = FALSE) 

con <- dbConnect(duckdb::duckdb(), ":memory:") 
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