
Analytical Data Management
with R

Hannes Mühleisen

 /1321

1. Motivations to use a Database

2. System Scenarios

3. R and Databases State of the Art

4. Future Directions

Overview

 /1322

•Database that models a digital music store to keep track of
artists and albums.

•Things we need to store:

•Information about artists.

•What albums those artists released.

Database Example

 /1323

•Store database as comma-separated value (CSV) files that
we manage in our own code

•Use separate file per "entity" (artist, album)

•The analysis has to parse files each time they want to
read/update records

1960 Solution: Flat files

 /1324

Flat File Example

“Backstreet Boys”,1994,"USA"

“Ice Cube”,1992,"USA"

“Notorious BIG”,1989,"USA"

Artist (name, year, country)

“Millenium", "Backstreet Boys", 1999

“DNA”, “Backstreet Boys”, 2019

“AmeriKKKa's Most Wanted”, “Ice Cube”, 1990

Album (name,artist,year)

Flat File Example

 /1326

“Backstreet Boys”,1994,"USA"

“Ice Cube”,1992,"USA"

“Notorious BIG”,1989,"USA"

Artist (name, year, country)
"Get the year Ice Cube went solo"

df <- read.csv("artists.csv", header=F,
col.names=c("name", "year", "country"))
df[df$name=="Ice Cube", "year"]

Multiple passes through entire dataset!

•How do we ensure that the artist is the same for each album
entry?

•What if someone overwrites the album year with an invalid
string?

•How do we store that there are multiple artists on an album?

•How do we update several tables with all-or-nothing
semantics?

•How do we keep derived data up-to-date?

Data Integrity

 /JUST KIDDING8

1. Motivations to use a Database

2. System Scenarios

3. R and Databases State of the Art

4. Future Directions

Overview

 /379

•In-Process Database

•External Database

•User-Defined Functions

System Scenarios

 10

•MySQL, PostgreSQL, SQL Server, Oracle, Redshift

•Hive, Impala, BigQuery

•(Spark)

•Transferring large-is datasets slooow

•Need complex SQL to fetch relevant data!

External DB

 11

 12

[M. Raasveldt & H. Mühleisen:
Don't Hold My Data Hostage - A Case For Client Protocol Redesign, VLDB 2017]

Client protocols?

SELECT * FROM lineitem_sf10;

•Transactional persistent data management

•RSQLite, DuckDB, (MonetDBLite)

•Faster, but still conversion overhead :/

•ALTREP to the rescue

•Later...

In-Process DB

 13

DuckDB

•PostgreSQL PL/R (Joe Conway)

•MonetDB R UDFs

•Oracle ~

•Spark ~

•SQL Server ~

•Can be also fast, but also still some translation overhead.

User-Defined Functions

 14

Kinds of UDFs for SELECT

• Filters

• SELECT b FROM t WHERE fun(a)

• UDF returns TRUE/FALSE, only rows where it returns TRUE are returned

• Projection

• SELECT fun(a, b) FROM t

• UDF returns a single scalar value, becomes part of query result

• Table-Returning

• SELECT * FROM fun(42)

• UDF returns a whole intermediate result table

 15

CREATE OR REPLACE FUNCTION get_emps() RETURNS
SETOF emp AS ’
 names <- c("Joe","Jim","Jon")
 ages <- c(41,25,35)
 salaries <- c(250000,120000,50000)
 df <- data.frame(name = names, age = ages,
 salary = salaries)
 return(df)
’ LANGUAGE ’plr’;

Postgres PL/R

select * from get_emps();
 name | age | salary
------+-----+-----------
 Jim | 41 | 250000.00
 Joe | 25 | 120000.00
 Jon | 35 | 50000.00
(3 rows)

Postgres PL/R

1. Motivations to use a Database

2. System Scenarios

3. R and Databases State of the Art

4. Future Directions

Overview

 18

DB Client APIs

 19

Client Program

DBI + Specific Driver

Database Server

Generic Commands
SQL Query

Specific Commands
SQL

through Protocol

Query Results
through Protocol

data.frame

1. Low-Level: DBI

2. Verbs: dplyr/dbplyr

3. Applications: dbplot, tidy predict

Database APIs for R

 20

Database

Driver

DBI

dbplyr

dbplotInteraction

•Basic API, adapts database-specific API/protocol into
unified R API

•Queries are strings, mostly SQL

•Results are data.frame objects

•dbConnect/dbDisconnect

•dbListTables/dbListFields

•dbWriteTable

•dbGetQuery/dbExecute/dbReadTable

DBI

 21

•Lots of implementations: RMySQL, ROracle, RPostgreSQL,
RRedshiftSQL, RClickhouse, RGreenplum, RMariaDB,
RSQLite, virtuoso, sparklyr

•Generic wrappers: RJDBC, odbc

•Great if your DB vendor does not have R-specific driver

•Heroic effort by Kirill Müller: DBItest

•Result: Driver quality varies :/

DBI

 22

•Upside: Can talk to databases

•Downside: Need to construct SQL strings :/

•Higher-level interface might be nice?

DBI?

 23

dplyr

• Data reorganisation thing in “xyzverse”

• dbplyr: extension to work with SQL DBs, Spark, ...

• Mostly relational operators

• Lazy evaluation, call chaining

• Nicer than hand-rolling SQL (mostly)

 24

dplyr "verbs" & pipes %>%

 25

n %>%
select(first_name, last_name, race_desc, sex,
birth_age) %>%
filter(as.integer(birth_age) > 66, sex=="MALE",
race_desc == "WHITE") %>%
group_by(first_name) %>%
summarise(count=n()) %>%
arrange(desc(count)) %>% head(10) -> old_white_men

print(old_white_men)

 26

show_query(old_white_men)

SQL translation

Whats the advantage of this approach?

SELECT *
FROM (SELECT `first_name`, `last_name`, `race_desc`,
`sex`, `birth_age`
FROM `ncvoter`)
WHERE ((CAST(`birth_age` AS INTEGER) > 66.0) AND
(`sex` = 'MALE') AND (`race_desc` = 'WHITE'))

dplyr?

• Easy to use, hides huge query complexity

• If things go wrong, debugging is challenging

• Cost/Benefit of additional layers, weigh carefully!

 27

1. Motivations to use a Database

2. System Scenarios

3. R and Databases State of the Art

4. Future Directions

Overview

 28

ALTREP
• Luke Tierney, Gabe Becker & Tomas Kalibera

• Abstract vectors, ELT()/GET_REGION() methods

• Lazy conversion!

 29

static void monetdb_altrep_init_int(DllInfo *dll) {
 R_altrep_class_t cls = R_make_altinteger_class(/* .. */);

R_set_altinteger_Elt_method(cls, monetdb_altrep_elt_integer);
/* .. */

}
 
static int monetdb_altrep_elt_integer(SEXP x, R_xlen_t i) {

int raw = ((int*) bataddr(x)->theap.base)[i];
return raw == int_nil ? NA_INTEGER : raw;

}

https://svn.r-project.org/R/branches/ALTREP/ALTREP.html#introduction

https://svn.r-project.org/R/branches/ALTREP/ALTREP.html#introduction

ALTREP, MonetDBLite & zero-copy

 30

library(“DBI”)
con <- dbConnect(MonetDBLite::MonetDBLite(), "/tmp/dscdemo")

dbGetQuery(con, "SELECT COUNT(*) FROM onebillion”)
1 1e+09

system.time(a <- dbGetQuery(con, "SELECT i FROM onebillion”))
user system elapsed
0.001 0.000 0.001

.Internal(inspect(a$i))
@7fe2e66f5710 13 INTSXP g0c0 [NAM(2)] BAT #1352 int ->
integer

ALTREP-wrapped  
MonetDB Column

•Open-Source RDBMS created by the  
CWI Database Architectures research group

•Purpose-built  
embedded analytical database

•No external server management or configuration

•Fast data transfer between R and DuckDB

•Source Code: https://github.com/cwida/duckdb

 31

RIP MonetDBLite

• First in-process embedded analytical DBMS

• on CRAN 2016-2019

• Showed use case for embedded analytics

• Also showed that re-using existing DBMS is rather
difficult

•Open-Source RDBMS created by the  
CWI Database Architectures research group

•Purpose-built  
embedded analytical database

•No external server management or configuration

•Fast data transfer between R and DuckDB

•Source Code: https://github.com/cwida/duckdb

 32

DuckDB

•DuckDB is optimized for analytical use cases

•Read-mostly workloads

•Complex queries, read large parts of the data

•Bulk appends/updates

•Traditional RDBMS (e.g. PostgreSQL, MySQL, SQLite):

•Many small writes and updates

•Simple queries, read only individual rows

•Tight Integration with Analytics in R/Python/...

Why DuckDB

 33

•Vectorized Processing (DuckDB)

•Optimized for CPU Cache locality

•SIMD instructions, Pipelining

•Small intermediates (fit in L3 cache)

Why DuckDB

 34

Tuple-at-a-Time
ResultTable

Vectorized Processing
Table Result

Column-at-a-Time
Table Result

•Vectorized Processing

•Intermediates fit in L3 cache

•Column-at-a-Time

•Intermediates go to memory

Why DuckDB

 35

CPU CORE

MAIN MEMORY (16GB-2TB) 
LATENCY: 100NS

L3 CACHE (20MB)
LATENCY: 20NS

L2 CACHE (256KB)
LATENCY: 5NS

L1 CACHE (32KB)
LATENCY: 1NS

•TPC-H Benchmark

•Analytics benchmark based on shipping company

•Process 20-40X faster than traditional systems because
of processing model

Why DuckDB

 36

DUCKDB

SQLITE

POSTGRESQL

MYSQL

Time (s)

0 50 100 150 200

For the adventurous

 37

remotes::install_github("cwida/duckdb/tools/rpkg",
build = FALSE)

con <- dbConnect(duckdb::duckdb(), ":memory:")

1. Motivations to use a Database

2. System Scenarios

3. R and Databases State of the Art

4. The future is DuckDB

Overview

 38

