Predicting the departing runway of a flight based on a classification tree model

Benjamin Perucco Data Analyst Flight OPS Analytics

Outline

- Facts about Zurich airport
- Who we are and what we do
- Why predicting the departing runway is important
- Building prediction models
- Five prediction models in more detail
- What's next?
- Questions?

FLUGHAFENZURICH

Facts about Zurich airport

- 31 mio passengers
- 280'000 movements
- 760 daily flights in average
- 77 airlines
- 206 destinations
- 3 terminals
- 3 runways
 → 10/28: 2'500m
 → 16/34: 3'700m
 → 14/32: 3'300m

Figures based on year 2018

Who we are and what we do

Why predicting the departing RWY is important

Runway layout at Zurich airport lead to several crossings on ground and in air

Building prediction models

- Various databases available to build models from
- Airport operational database contains a lot of timestamps and other information, i.e. scheduled time, airline, aircraft type, destination, airborne time, etc.
- Meterological data are received from several stations around the airport in different resolution (i.e. wind information every 3s, temperature and pressure every 30min)
- Starting with simple and progressing to more complex models

1st model Assumption all aircraft take off from RWY28

- We assume all aircraft take off from the shorter RWY28
- An oversimplification of course

Global confusion matrix for all aircraft types Model: assumed all takeoffs on RWY28 based on test dataset

• Still an accuracy of 81% is achieved

only LX and WK flights

2nd model Heavy aircraft and A321 on RWY16, rest on RWY28

- Heavy aircraft (like A333, B77W, etc.) and A321 take off from the longer RWY16
- Medium and light aircraft take off from the shorter RWY28

3rd model Predicting the takeoff RWY based on historical data

- Probability for RWY16 or RWY28 departure is based on historical data
- Excerpt is provided below

```
# A tibble: 32,585 x 7
          CSG
                  FLC
   FLT
                         RWY
                               ABT
                                                    ICT
                                                          IDS
                                                          <chr>
   <chr> <chr>
                   <chr> <chr> <chr> <chr>
                                                    \langle chr \rangle
 1 LX154 SWR154 LX
                               2018-01-27 10:02:00 A333
                         16
                                                          VABB
 2 LX066 SWR66R LX
                         16
                               2015-04-11 09:59:00 A333
                                                          KMIA
 3 LX1248 SWR121X LX
                         28
                               2019-03-12 07:05:00 A320
                                                          ESSA
 4 LX1582 SWR158H LX
                         28
                               2018-01-11 17:27:00 B77W
                                                          LOWW
 5 LX1250 SWR1290 LX
                         28
                               2015-08-21 13:32:00 A320
                                                          ESSA
                         28
                               2017-03-09 09:46:00 A321
 6 LX2804 SWR51KJ LX
                                                          LSGG
 7 LX160 SWR160 LX
                         16
                               2015-03-18 13:37:00 A343
                                                          RJAA
 8 LX040 SWR40
                  LX
                         16
                               2016-06-15 14:04:00 B77W
                                                          KLAX
 9 LX038 SWR38
                               2015-12-07 13:58:00 A343
                  LX
                         16
                                                          KSFO
10 LX1200 SWR1200 LX
                               2015-08-07 17:04:00 A320 EFHK
                         16
# ... with 32,575 more rows
```

- Probability for RWY16 or RWY28 departure is estimated as a function of airline, aircraft type, destination, weekday and month
- If no estimate can be found, a stepwise reduction of complexity is introduced, i.e. function of aircraft type and destination in the simplest case

Selection of training and test data

- Split data into a training and test dataset
- 80% as training data, 20% as test data
- Avoids systematic error when training the models

ID	ICT	RWY		ID	ICT	RWY		ID	ICT	RWY		
1	A321	28		8	A321	28		8	A321	28	7	
2	A333	16		10	A333	16		10	A333	16		
3	A320	28		3	A320	28		3	A320	28		
4	A320	16		2	A333	16		2	A333	16		Training
5	A343	16	Random	6	B77W	16	Split	6	B77W	16		data
6	B77W	16	sampling	1	A321	28	data	1	A321	28		
7	BCS1	28		7	BCS1	28		7	BCS1	28		
8	A321	28		5	A343	16		5	A343	16		
9	A319	28		9	A319	28		9	A319	28		Test
10	A333	16		4	A320	16		4	A320	16		data

3rd model Predicting the takeoff RWY based on historical data

Confusion matrix

only LX and WK flights

• The gains dominate and especially the PPV improved considerably (+18.5%)

3rd model Predicting the takeoff RWY based on historical data

- Gives already a good accuracy
- Pretty modest with respect to required data
- Suitable to make good predictions weeks or even months ahead

- For day of operation prediction too static
- For example, depending on final takeoff weight an A321 takes off either on RWY28 or RWY16

4th model Random forest base model

- Let's see what a random forst model can do
- From an operational point of view, selection of RWY is influenced by airline, aircraft type and takeoff weight, temperature, pressure and wind
- Random forest base model with predictors: airline, aircraft type and takeoff weight
- Excerpt is provided below

4th model Random forest base model

Confusion matrix

Random forest base model: global confusion matrix for all aircraft types based on test dataset

only LX and WK flights

5th model Extended random forest model

- Taking into account temperature, pressure and wind as well
- Required to join different datasets

# /	A TIDDI	e: 246,49	90 X /					
	FLT	CSG	FLC	RWY	ABT		ICT	TOW
	<chr></chr>	<chr></chr>	<chr></chr>	<db1></db1>	<chr></chr>		<chr></chr>	<db1></db1>
1	LX976	SWR976	LX	28	2015-01-01	09:04:00	A321	<u>63</u> 174
2	LX562	SWR50D	LX	28	2015-01-01	09:05:00	RJ1H	<u>34</u> 363
3	LX1188	SWR181X	LX	28	2015-01-01	09:08:00	RJ1H	<u>33</u> 259
4	LX750	SWR750	LX	28	2015-01-01	09:11:00	RJ1H	<u>35</u> 872
5	LX1310	SWR1310	LX	28	2015-01-01	09:22:00	A320	<u>57</u> 709
6	LX2902	SWR27TG	LX	28	2015-01-01	09:15:00	DH8D	<u>21</u> 970
7	LX2694	SWR2694	LX	16	2015-01-01	09:33:00	A343	<u>232</u> 245
8	LX1176	SWR117F	LX	28	2015-01-01	09:38:00	RJ1H	<u>33</u> 249
9	LX1616	SWR121W	LX	28	2015-01-01	09:42:00	RJ1H	<u>32</u> 102
10	LX2804	SWR84KJ	LX	28	2015-01-01	09:49:00	A320	<u>59</u> 733
# .	with	n 246,480) more	rows				

	# A tibble: 237,213 x 4		
	Datetime	тетр	QNH
+	<chr></chr>	<int></int>	<int></int>
	1 2005-12-18 01:50:00	-3	<u>1</u> 016
	2 2005-12-18 02:20:00	-5	<u>1</u> 016
	3 2005-12-18 02:50:00	-4	<u>1</u> 017
	4 2005-12-18 03:20:00	-3	<u>1</u> 017
	5 2005-12-18 03:50:00	-3	<u>1</u> 018
	6 2005-12-18 04:20:00	-4	1018
	7 2005-12-18 04:50:00	-4	1019
	8 2005-12-18 05:20:00	-3	<u>1</u> 019
	9 2005-12-18 05:50:00	-5	1019
	10 2005-12-18 06:20:00	-5	<u>1</u> 019
	# with 237.203 more	rows	

Airport operational database

Wind data \rightarrow averaged wind per minute

METAR data

# A	tibb	le: 32,	,585 x	12				
	RWY	FLC	ICT	TOW	тетр	QNH	Speed	Direction
	<chr></chr>	<fct></fct>	<chr></chr>	<db1></db1>	<db1></db1>	<db1></db1>	<db1></db1>	<fct></fct>
1	16	LX	A333	<u>221</u> 707	6	<u>1</u> 029	4	60
2	16	LX	A333	<u>231</u> 819	13	<u>1</u> 024	12	230
3	28	LX	A320	<u>56</u> 161	-3	<u>1</u> 028	3	130
4	28	LX	B77W	<u>214</u> 002	7	<u>1</u> 016	3	270
5	28	LX	A320	<u>67</u> 973	21	<u>1</u> 025	12	50
6	28	LX	A321	<u>74</u> 382	8	<u>1</u> 023	11	220
7	16	LX	A343	<u>252</u> 647	15	<u>1</u> 023	2	280
8	16	LX	B77W	<u>326</u> 850	17	<u>1</u> 004	3	10
9	16	LX	A343	<u>257</u> 017	3	<u>1</u> 034	5	290
10	16	LX	A320	<u>68</u> 420	36	<u>1</u> 016	4	140
# _	wit	th 32,5	575 mor	e rows				

15 | 14.11.2019 | Predicting the departing runway of a flight based on a classification tree model

5th model Extended random forest model

Confusion matrix •

Random forest extended model: global confusion matrix for all aircraft types

only LX and WK flights

Both random forest models lead to satisfying values in the confusion matrix, • let's see how they compare to each other in more detail

How accurate are the random forest models for the different aircraft types?

How does the predictability for a RWY16 departure compare for the different aircraft types?

How does the predictability for a RWY28 departure compare for the different aircraft types?

5th model Extended random forest model

- Provides a very high accuracy
- Suitable to make very good day of operation prediction

- Takeoff weight and meterological information themself are predictions
- Can limit the accuracy of the model

What's next?

- Testing other machine learning algorithms
- Study how the prediction of the takeoff weight and meterological information impacts the extended random forest model

- Demand on RWY in the next weeks or months?
 → Model based on historical data
- Demand on RWY in the next couple of hours?
 → Extended random forest model

 An exchange of information will become more crucial to apply the models in an operational environment

Questions?

Thank you for your attention

benjamin.perucco@zurich-airport.com

1293>

EBE