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Why do we need interpretable machine learning
methods?
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Why did you predict
42 for this data point?
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Source, Christoph Molnar, Interpretable Machine Learning



\fl I?\ i

¢ ) Universitat
) mpos o 3 uzH
<&y Lurich

Epidemiology, Biostatistics and Prevention Institute

Why do we need interpretability?

* Imagine you came up with an
algorithm that “learns™ how to
administer the exact right dose
of pain medication automatically
and continuously for every
patient

* You don’'t know why the
machine administers the dose it
does, but you know it isn’'t
random

* One day, the machine kills a
terminally ill patient by
administering her 17x the normal
dose
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A case study from my work: can we use
Interpretable machine learning to better
understand schistosomiasis and hookworm?

Swiss TPH

Swiss Tropical and Public Health Institute
Schweizerisches Tropen- und Public Health-Institut
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What are schistosomiasis and hookworm?
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Neglected tropical diseases (NTDs) cause a huge
burden of disease

ﬁ Huge burden: Parasitic worm infections such as schistosomiasis and intestinal
worm infections affect more than 1 billion people globally

® Risk factors: They affectmostly people in the poorest communities and those

ok without access to clean water and sanitation. The highest levels of infection are
in school-age children

Chronic health problems and reduced productivity: Infectioncan lead to
chronic illness. The worms can damage organs, such as the liver, bladder, and
intestines, which can cause pain, fatigue, and long-term health problems.

Preventable and treatable

® &

Seite 8
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Understanding of transmission is driven largely
through modelling
To model prevalence and transmission, scientists traditionally use periodic

school-based or community-based prevalence surveys coupled with
remotely sensed (RS) environmental predictors

Recentinnovations:
 utilizing fine resolution RS data (e.g., Landsat 8)

« employing a larger number of relevant environmental indicators derived
from the spectral bands (e.g., modified normalized difference water index
[MNDWI])

* using a variable distance radius to extract and aggregate environmental
indicator variables around point-prevalence locations
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Our research question: are these models still valid
In an era of widespread preventative
chemotherapy?

» Setting: Ghana

« Two nationally representative school-based prevalence surveys
conducted before (2008, n=118 schools) and after (2015, n=158 schools)
the launch of large-scale preventive chemotherapy

* Primary outcome: prevalence of infection by S. haematobium and
hookworm among school-age children.

« Compared model performance before and after the national level
intervention

HHHHHHHHHHHHHHH

How do disease control measures impact spatial predictions
of schistosomiasis and hookworm? The example of
predicting school-based prevalence before and after
preventive chemotherapy in Ghana

Alexandra V. Kulinkina [E], Andrea Farnham, Nana-Kwadwo Biritwum, Jirg Utzinger, Yvonne Walz



Universitat

Zirich™

Epidemiology, Biostatistics and Prevention Institute

Random forest input predictors

Source Variable name Variable type Resolution Aggregation Value range™
OLI NDVI Continuous 30m Median 0.16 to 0.80

OLI MNDWI Continuous 30m Median -0.56 to 0.05

TIRS LST (°C) Continuous 100 m Median 21.5 to 38.2

DEM Elevation (m) Continuous 30m Median 12.0 to 537

DEM Slope (°) Continuous 30m Median 2.47 to 13.2

DEM Streams Binary 30m Sum 115 to 3,656

DEM Stream order Ordinal 30m Maximum 1to8

DHS Access to improved water (%) Continuous 5km Median 29 to 99

DHS Lack of sanitation facility (%) Continuous 5km Median 0.7 to 98

* Range represents minimum and maximum values present in the dataset (within the largest buffer radius of 5 km in the unmasked dataset).

https://doi.org/10.1371/journal.pntd.0011424 .t001

Packages used: caret, randomforest
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However, random forest models showed better fit
for 2008 models as compared to 2015 for both S.
haematobium and hookworm infections
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The relative importance of different variables
shifted- why?
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Techniques and algorithms for interpretable
machine learning

* Decisiontrees

* LIME (Local Interpretable Model-Agnostic Explanations)

« SHAP (SHapley Additive exPlanations)

» ICE (Individual Conditional Expectation) and PDP (Partial Dependence

Plot)
oy
Interpretable
Machine Learning
A Guide for Makin
R Pac kage . Black Box Models Exuluginablc
iml: Interpretable Machine Learning

Christoph Molnar

Seite
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Partial Dependence Plot (PDP)

A PDP shows how a specific feature or variable influences the model's
predictions while keeping all other features constant.

» It helps you understand how changes in that variable impact the model's
predictions, making it useful for understanding the feature's importance or
effecton the model's performance.
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R Code to produce
mod <- Predictor$new(SCH_base 2000, data = X, y = sch_base_ 2000 data$sch_base)

#lIst only
eff <- FeatureEffect$new(mod, feature = "Ist", method = "pdp+ice", grid.size = 50)
pl <- eff$plot() + scale color_brewer(palette = "GnBu") + xlab("LST") + ylab(NULL)

#for multiple features at once
eff <- FeatureEffects$new(mod, method = "pdp+ice")
eff$plot()

mytitle <- expression(paste(italic("S. haematobium™), " (2008)")
plot(eff) +
# Adds a title
plot_annotation(title = mytitle)
Seite
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Interpretable machine learning is key for dealing
with complex public health data
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