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Summary 

It is the purpose of this paper to discuss 
briefly the need for time-sharing, some of the 
implementation problems, an experimental time
sharing system which has been developed for the 
contemporary IBM 7090, and finally a scheduling 
algorithm of one of us (FJC) that illustrates 
some of the techniques which may be employed to 
enhance and be analyzed for the performance 
limits of such a time-sharing system. 

Introduction 

The last dozen years of computer usage have 
seen great strides. In the early 1950's, the 
problems solved were largely in the construction 
and maintenance of hardware; in the mid-1950's, 
the usage languages were greatly improved with 
the advent of compilers; now in the early 1960's, 
we are in the midst of a third major modifi
cation to computer usage: the improvement of 
man-machine interaction by a process called 
time-sharing. 

Much of the time-sharing philosophy, 
expressed in this paper, has been developed in 
conjunction with the work of an MIT preliminary 
study committee, chaired by H. Teager, which 
examined the long range computational needs of 
the Institute, and a subsequent MIT computer 
working committee, chaired by J. McCarthy. 
However, the views and conclusions expressed 
in this paper should be taken as solely those 
of the present authors. 

Before proceeding further, it is best to 
give a more precise interpretation to time
sharing. One can mean using different parts of 
the hardware at the same time for different 
tasks, or one can mean several persons making 
use of the computer at the same time. The first 
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oriented towards hardware efficiency in the 
sense of attempting to attain complete utili
zation of all components ' ' ' . The second 
meaning of time-sharing, which is meant here, 
is primarily concerned with the efficiency of 
persons trying to use a computer ' ' ' . 
Computer efficiency should still be considered 
but only in the perspective of the total system 
utility. 

The motivation for time-shared computer 
usage arises out of the slow man-computer inter
action rate presently possible with the bigger, 
more advanced computers. This rate has changed 
little (and has become worse in some cases) in 
the last decade of widespread computer use.1^ 

In part, this effect has been due to the 
fact that as elementary problems become mast
ered on the computer, more complex problems 
immediately become of interest. As a result, 
larger and more complicated programs are written 
to take advantage of larger and faster computers. 
This process inevitably leads to more programm
ing errors and a longer period of time required 
for debugging. Using current batch monitor 
techniques, as is done on most large computers, 
each program bug usually requires several hours 
to eliminate, if not a complete day. The only 
alternative presently available is for the 
programmer to attempt to debug directly at the 
computer, a process which is grossly wasteful 
of computer time and hampered seriously by the 
poor console communication usually available. 
Even if a typewriter is the console, there are 
usually lacking the sophisticated query and 
response programs which are vitally necessary 
to allow effective interaction. Thus, what is 
desired is to drastically increase the rate of 
interaction between the programmer and the 
computer without large economic loss and also 
to make each interaction more meaningful by 
extensive and complex system programming to 
assist in the man-computer communication. 

To solve these interaction problems we 
would like to have a computer made simultaneously 
available to many users in a manner somewhat 
like a telephone exchange. Each user would be 
able to use a console at his own pace and with
out concern for the activity of others using the 

merely a typewriter but more ideally would 
contain an incrementally modifiable self-
sustaining display. In any case, data trans
mission requirements should be such that it would 
be no major obstacle to have remote installation 
from the computer proper. 
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The basic technique for a time-sharing system 
is to have many persons simultaneously using the 
computer through typewriter consoles with a 
time-sharing supervisor program sequentially 
running each user program in a short burst or 
quantum of computation. This sequence, which in 
the most straightforward case is a simple round-
robin, should occur often enough so that each 
user program which is kept in the high-speed 
memory is run for a quantum at least once during 
each approximate human reaction time (r~». 2 
seconds). In this way, each user sees a computer 
fully responsive to even single key strokes each 
of which may require only trivial computation; 
in the non-trivial cases, the user sees a 
gradual reduction of the response time which is 
proportional to the complexity of the response 
calculation, the slowness of the computer, and 
the total number of active users. It should be 
clear, however, that if there are n users 
actively requesting service at one time, each 
user will only see on the average 1/n of the 
effective computer speed. During the period of 
high interaction rates while debugging programs, 
this should not be a hindrance since ordinarily 
the required amount of computation needed for 
each debugging computer response is small 
compared to the ultimate production need. 

Not only would such a time-sharing system 
improve the ability to program in the conventional 
manner by one or two orders of magnitude, but 
there would be opened up several new forms of 
computer usage. There would be a gradual 
reformulation of many scientific and engineering 
applications so that programs containing decision 
trees which currently must be specified in 
advance would be eliminated and instead the 
particular decision branches would be specified 
only as needed. Another important area is that 
of teaching machines which, although frequently 
trivial computationally, could naturally 
exploit the consoles of a time-sharing system 
with the additional bonus that more elaborate 
and adaptive teaching programs could be used. 
Finally, as attested by the many small business 
computers, there are numerous applications in 
business and in industry where it would be 
advantageous to have powerful computing facilities 
available at isolated locations with only the 
incremental capital investment of each console. 
But it is important to realize that even without 
the above and other new applications, the major 
advance in programming intimacy available from 
time-sharing would be of immediate value to 
computer installations in universities, research 
laboratories, and engineering firms where 
program debugging is a major problem. 

Implementation Problems 

As indicated, a straightforward plan for 
time-sharing is to execute user programs for 
small quanturns of computation without priority 
in a simple round-robin; the strategy of time
sharing can be more complex as will be shown 
later, but the above simple scheme is an 
adequate solution. There are still many 
problems, however, some best solved by hard
ware, others affecting the programming conven
tions and practices. A few of the more 
obvious problems are summarized: 

Hardware Problems: 

1. Different user programs if simultan
eously in core memory may interfere with each 
other or the supervisor program so some form of 
memory protection' mode should be available when 
operating user programs. 

2. The time-sharing supervisor may need 
at different times to run a particular program 
from several locations. (Loading relocation 
bits are no help since the supervisor does not 
know how to relocate the accumulator, etc.) 
Dynamic relocation of all memory accesses that 
pick up instructions or data words is one 
effective solution. 

3. Input-output equipment may be initiated 
by a user and read words in on another user 
program. A way to avoid this is to trap all 
input-output instructions issued by a user's 
program when operated in the memory protection 
mode. 

4. A large random-access back-up storage 
is desirable for general program storage files 
for all users. Present large capacity disc 
units appear to be adequate. 

5. The time-sharing supervisor must be 
able to interrupt a user's program after a 
quantum of computation. A program-initiated one-
shot multivibrator which generates an interrupt 
a fixed time later is adequate. 

6. Large core memories (e.g. a million 
words) would ease the system programming compli
cations immensely since the different active 
user programs as well as the frequently used 
system programs such as compilers, query programs, 
etc. could remain in core memory at all times. 

Programming Problems: 

1. The supervisor program must do auto
matic user usage charge accounting. In general, 
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the user should be charged on the basis of a 
system usage formula or algorithm which should 
include such factors as computation time, amount 
of high-speed memory required, rent of secondary 
memory storage, etc. 

2. The supervisor program should coordinate 
all user input-output since it is not desirable 
to require a user program to remain constantly 
in memory during input-output limited operations. 
In addition, the supervisor must coordinate all 
usage of the central, shared high-speed input-
output units serving all users as well as the 
clocks, disc units, etc. 

3. The system programs available must be 
potent enough so that the user can think about 
his problem and not be hampered by coding 
details or typographical mistakes. Thus, 
compilers, query programs, post-mortem programs, 
loaders, and good editing programs are 
essential. 

4. As much as possible, the users should 
be allowed the maximum programming flexibility 
both in choices of language and in the absence 
of restrictions. 

Usage Problems 

1. Too large a computation or excessive 
typewriter output may be inadvertently requested 
so that a special termination signal should be 
available to the user. 

2. Since real-time is not computer usage-
time, the supervisor must keep each user informed 
so that he can use his judgment regarding loops, 
etc. 

3. Computer processor, memory and tape 
malfunctions must be expected. Basic operational 
questions such as "Which program is running?" 
must be answerable and recovery procedures fully 
anticipated. 

An Experimental Time-Sharing System for the IBM 

7090 

Having briefly stated a desirable time
sharing performance, it is pertinent to ask 
what level of performance can be achieved with 
existant equipment. To begin to answer this 
question and to explore all the programming and 
operational aspects, an experimental time
sharing system has been developed. This system 
was originally written for the IBM 709 but has 
since been converted for use with the 7090 
computer. 

The 7090 of the MIT Computation Center has, 
in addition to three channels with 19 tape units, 
a fourth channel with the standard Direct Data 
Connection. Attached to the Direct Data Connec
tion is a real-time equipment buffer and control 
rack designed and built under the direction of 
H. Teager and his group. This rack has a variety 
of devices attached but the only ones required 
by the present systems are three flexowriter 
typewriters. Also installed on the 7090 are two 
special modifications (i.e. RPQ's): a standard 
60 cycle accounting and interrupt clock, and a 
special mode which allows memory protection, 
dynamic relocation and trapping of all user 
attempts to initiate input-output instructions. 

In the present system the time-sharing 
occurs between four users, three of whom are on
line each at a typewriter in a foreground 
system, and a fourth passive user of the back
ground Fap-Mad-Madtran-BSS Monitor System similar 
to the Fortran-Fap-BSS Monitor System (FMS) used 
by most of the Center programmers and by many 
other 7090 installations. 

Significant design features of the fore
ground system are: 

1. It allows the user to develop programs 
in languages compatible with the background 
system, 

2. Develop a private file of programs, 

3. Start debugging sessions at the state 
of the previous session, and 

4. Set his own pace with little waste of 
computer time. 

Core storage is allocated such that all users 
operate in the upper 27,000 words with the time
sharing supervisor (TSS) permanently in the 
lower 5,000 words. To avoid memory allocation 
clashes, protect users from one another, and 
simplify the initial 709 system organization, 
only one user was kept in core memory at a 
time. However, with the special memory protec
tion and relocation feature of the 7090, more 
sophisticated storage allocation procedures are 
being implemented. In any case, user swaps are 
minimized by using 2-channel overlapped magnetic 
tape reading and writing of the pertinent 
locations in the two user programs, 

The foreground system is organized around 
commands that each user can give on his type
writer and the user's private program files 
which presently (for want of a disc unit) are 
kept on a separate magnetic tape for each user. 

* This group is presently using another approach9 

in developing a time-sharing system for the 
MIT 7090. 
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For convenience the format of the private tape 
files is such that they are card images, have 
title cards with name and class designators and 
can be written or punched using the off-line 
equipment. (The latter feature also offers a 
crude form of large-scale input-output.) The 
magnetic tape requirements of the system are the 
seven tapes required for the normal functions of 
the background system, a system tape for the 
time-sharing supervisor that contains most of 
the command programs, and a private file tape 
and dump tape for each of the three foreground 
users. 

The commands are typed by the user to the 
time-sharing supervisor (not to his own program) 
and thus can be initiated at any time regardless 
of the particular user program in memory. For 
similar coordination reasons, the supervisor 
handles all input-output of the foreground 
system typewriters. Commands are composed of 
segments separated by vertical strokes; the 
first segment is the command name and the 
remaining segments are parameters pertinent to 
the command. Each segment consists of the last 
6 characters typed (starting with an implicit 
6 blanks) so that spacing is an easy way to 
correct a typing mistake. A carriage return is 
the signal which initiates action on the command. 
Whenever a command is received by the supervisor, 
"WAIT", is typed back followed by "READY." when 
the command is completed. (The computer responses 
are always in the opposite color from the user's 
typing.) While typing, an incomplete command 
line may be ignored by the "quit" sequence of a 
code delete signal followed by a carriage return. 
Similarly after a command is initiated, it may 
be abandoned if a "quit" sequence is given. In 
addition, during unwanted command typeouts, the 
command and output may be terminated by pushing 
a special "stop output" button. 

The use of the foreground system is initiated 
whenever a typewriter user completes a command 
line and is placed in a waiting command queue. 
Upon completion of each quantum, the tinie=sharing 
supervisor gives top priority to initiating any 
waiting commands. The system programs corres
ponding to most of the commands are kept on the 
special supervisor command system tape so that to 
avoid waste of computer time, the supervisor 
continues to operate the last user program until 
the desired command program on tape is positioned 
for reading. At this point, the last user is 
read out on his dump tape, the command program 
read in, placed in a working status and initiated 
as a new user program. However, before starting 
the new user for a quantum of computation, the 
supervisor again checks for any waiting command 
of another user and if necessary begins the look-
ahead positioning of the command system tape 
while operating the new user. 

Whenever the waiting command queue is 
empty, the supervisor proceeds to execute a 
simple round-robin of those foreground user 
programs in the working status queue. Finally, 
if both these queues are empty, the background 
user program is brought in and run a quantum at 
a time until further foreground system actively 
develops. 

Foreground user programs leave the working 
status queue by two means. If the program 
proceeds to completion, it can reenter the 
supervisor in a way which eliminates itself and 
places the user in dead status; alternatively, 
by a different entry the program can be placed 
in a dormant status (or be manually placed by 
the user executing a quit sequence). The dormant 
status differs from the dead status in that the 
user may still restart or examine his program. 

User input—output is through each type
writer, and even though the supervisor has a 
few lines of buffer space available, it is 
possible to become input-output limited. 
Consequently, there is an additional input-
output wait status, similar to the dormant, 
which the user is automatically placed in by 
the supervisor program whenever input-output 
delays develop. When buffers become near 
empty on output or near full on input, the user 
program is automatically returned to the working 
status; thus waste of computer time is avoided. 

Commands 

To clarify the scope of the foreground 
system and to indicate the basic tools avail
able to the user, a list of the important 
commands follows along with brief summaries of 
their operations: 

i. | a 

a = arbitrary text treated as a comment. 

2. login | a | P 

a. - user problem number 
j3 = user programmer number 

Should be given at beginning of each 
user's session. Rewinds user's private file tape; 
clears time accounting records. 

3. logout 

Should be given at end of each user's 
session. Rewinds user's private file tape; 
punches on-line time accounting cards. 

4. input 

Sets user in input mode and initiates 
automatic generation of line numbers. The user 
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types a card image per line according to a 
format appropriate for the programming language. 
(The supervisor collects these card images at 
the end of the user's private file tape.) When 
in the automatic input mode, the manual mode may 
be entered by giving an initial carriage return 
and typing the appropriate line number followed 
by j and line for as many lines as desired. To 
reenter the automatic mode, an initial carriage 
return is given. 

The manual mode allows the user to over
write previous lines and to insert lines. (cf. 
File Command.) 

5. edit | a j (3 

a = title of file 

j3 = class of file 

The user is set in the automatic input 
mode with the designated file treated as initial 
input lines. The same conventions apply as to 
the input command. 

6. file j a | P 

a = title to be given to file 

P = class of language used during input 

The created file will consist of the 
numbered input lines (i.e. those at the end of 
the user's private file tape) in sequence; in 
the case of duplicate line numbers, the last 
version will be used. The line numbers will be 
written as sequence numbers in the corresponding 
card images of the file. 

For convenience the following editing 
conventions apply to input lines: 

a. an underline signifies the deletion of 
the previous characters of the line. 

b. a backspace signifies the deletion of 
the previous character in the field. 

The following formats apply: 

a. FAP: symbol, tab, operation, tab, 
variable field and comment. 

b. MAD, MADTRAN, FORTRAN: statement label, 
tab, statement. To place a character in the 
continuation column: statement label, tab, 
backspace, character, statement. 

c. DATA: cols. 1-72. 

7. fap | a 

Causes the file designated as a, fap to 
be translated by the FAP translator (assembler). 
Files a, symtb and a,bss are added to the user's 
private file tape giving the symbol table and 
the relocatable binary BSS form of the file. 

8. mad J a 

Causes file a,mad to be translated by 
the MADtranslator (compiler). File a,bss is 
created. 

9. madtrn | a 

Causes file a,madtrn (i.e. a pseudo-
Fortran language file) to be edited into an 
equivalent file a,mad (added to the user's file) 
and translation occurs as if the command madja 
had been given. 

10. load | a± I a2|...|an 

Causes the consecutive loading of files 
a^,bss (i=l,2,...,n). An exception occurs if a.= 

(libe), in which case file a. , ,bss is searched 
l+l 

as a library file for all subprograms still 
missing. (There can be further library files.) 

11. use la. I a„ I... I a 
1 1 ' 2 ' ' n 

This command is used whenever a load or 
previous use command notifies the user of an 
incomplete set of subprograms. Same cc. conven
tions as for load. 1 

12. start | a | £ 

Starts the program setup by the load 
and use commands (or a dormant program) after 
first positioning the user private file tape in 
front of the title card for file a,£. (If £ is 
not given, a class of data is assumed; if both 
a. and (3 are not given, no tape movement occurs 
and the program is started.) 

13. pm | a 

a = "lights", "stomap", or the usual 
format of the standard Center post-mortem (F2PM) 
request: subprogram name | loc | loc | mode | 
direction where mode and direction are optional. 

Produces post-mortem of user's dormant 
program according to request specified by a. 
(E.g. matrix j 5 | 209 | flo | rev will cause to 
be printed on the user's typewriter the contents 
of subprogram "matrix" from relative locations 
5 to 209 in floating point form and in reverse 
sequence.) 

14. skippm 

Used if a pm command is "quit" during 
output and the previous program interruption is to 
be restarted. 

15. listf 

Types out list of all file titles on 
user's private file tape. 
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16. pr in t f | a | 3 | 7 

Types out file a,(3 starting at line 
number y. If y is omitted, the initial line is 
assumed. Whenever the user's output buffer fills, 
the command program goes into an I/O wait status 
allowing other users to time-share until the 
buffer needs refilling. 

17. xdump | a | (3 

Creates file a,(3 ( if f3 omitted, xdump 
assumed) on user's private file tape consisting 
of the complete state of the user's last dormant 
program. 

IS. xdump | a J 3 

Inverse of xdump command in that it 
resets file a,$ as the user's program, starting 
it where it last left off. 

Although experience with the system to date 
is quite limited, first indications are that 
programmers would readily use such a system if it 
were generally available It is useful to ask, 
now that there is some operating experience with 
the 7090 system, what observations can be made. 
An immediate comment is that once a user gets 
accustomed to computer response, delays of even 
a fraction of a minute are exasperatingly long, 
an effect analogous to conversing with a slow-
speaking person. Similarly, the requirement that 
a complete typewritten line rather than each 
character be the minimum unit of man-computer 
communication is an inhibiting factor in the 
sense that a press-to-talk radio-telephone con
versation is more stilted than that of an 
ordinary telephone. Since maintaining a rapid 
computer response on a character by character 
basis requires at least a vestigial response 
program in core memory at all times, the straight
forward solution within the present system is to 
have more core memory available. At the very 
least, an extra bank of memory for the time
sharing supervisor would ease compatibility prob
lems with programs already written for 32,000 
word 7090's. 

For reasons of expediency, the weakest 
portions of the present system are the conventions 
for input, editing of user files, and the degree 
of rapid interaction and intimacy possible while 
debugging. Since to a large extent these areas 
involve the taste, habits, and psychology of the 
users, it is felt that proper solutions will 
require considerable experimentation and prag
matic evaluation; it is also clear that these 
areas cannot be treated in the abstract for the 
programming languages used will influence greatly 
the appropriate techniques. A greater use of 
symbolic referencing for locations, program names 
and variables is certainly desired; symbolic post
mortem programs, trace programs, and before-and-
after differential dump programs should play 
useful roles in the debugging procedures. 

In the design of the present system, great 
care went into making each user independent of 
the other users. However, it would be a useful 
extension of the system if this were not always 
the case. In particular, when several consoles 
are used in a computer controlled group such as 
in management or war games, in group behavior 
studies, or possibly in teaching machines, it 
would be desirable to have all the consoles 
communicating with a single program. 

Another area for further improvement within 
the present system is that of file maintenance, 
since the presently used tape units are a hind
rance to the easy deletion of user program files. 
Disc units will be of help in this area as well 
as with the problem of consolidating and 
scheduling large-scale central input-output 
generated by the many console users. 

Finally, it is felt that it would be desir
able to have the distinction between the fore
ground and background systems eliminated. The 
present-day computer operator would assume the 
role of a stand-in for the background users, 
using an operator console much like the other 
user consoles in the system, mounting and de
mounting magnetic tapes as requested by the 
supervisor, receiving instructions to read card 
decks into the central disc unit, etc. Similarly 
the foreground user, when satisfied with his 
program, would by means of his console and the 
supervisor program enter his program into the 
queue of production background work to be 
performed. With these procedures implemented 
the distinction of whether one is time-sharing 
or not would vanish and the computer user would 
be free to choose in an interchangable way that 
mode of operation which he found more suitable 
at a particular time. 

A Multi-Level Scheduling Algorithm 

Regardless of whether one has a million 
word core memory or a 32.000 word memory as 
currently exists on the 7090, one is inevitably 
faced with the problem of system saturation 
where the total size of active user programs 
exceeds that of the high-speed memory or there 
are too many active user programs to maintain 
an adequate response at each user console. 
These conditions can easily arise with even a 
few users if some of the user programs are 
excessive in size or in time requirements. The 
predicament can be alleviated if it is assumed 
that a good design for the system is to have a 
saturation procedure which gives graceful de
gradation of the response time and effective 
real-time computation speed of the large and 
long-running users. 
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To show the general problem, Figure 1 
qualitatively gives the user service as a function 
of n, the number of active users. This service 
parameter might be either of the two key factors: 
computer response time or n times the real-time 
computation speed. In either case there is some 
critical number of active users, N, representing 
the effective user capacity, which causes satur
ation. If the strategy near saturation is to 
execute the simple round-robin of all users, then 
there is an abrupt collapse of service due to the 
sudden onset of the large amount of time required 
to swap programs in-and-out of the secondary 
memory such as a disc or drum unit. Of course, 
Figure 1 is quite qualitative since it depends 
critically on the spectrum of user program sizes 
as well as the spectrum of user operating times. 

To illustrate the strategy that can be em
ployed to improve the saturation performance 
of a time-sharing system, a multi-level schedu
ling algorithm is presented. This algorithm also 
can be analyzed to give broad bounds on the 
system performance. 

The basis of the multi-level scheduling 
algorithm is to assign each user program as it 
enters the system to be run (or completes a 
response to a user) to an ith level priority 
queue. Programs are initially entered into a 
level Z » corresponding to their size such that 

*o = lo«2 m-y ( i ) 

where w is the number of words in the program, 
w is the number of words which can be trans-
q 

mitted in and out of the high-speed memory from 
the secondary memory in the time of one quantum, 
q, and the bracket indicates "the integral part 
of". Ordinarily the time of a quantum, being 
the basic time unit, should be as small as 
possible without excessive overhead losses when 
the supervisor switches from one program in high
speed memory to another. The process starts with 
the time-sharing supervisor operating the program 
at the head of the lowest level occupied queue, 
Z, for up to 1 quanta of time and then if the 
program is not completed (i.e. has not made a 
response to the user) placing it at the end of 
the Z+l level queue. If there are no programs 
entering the system at levels lower than Z, this 
process proceeds until the queue at level Z is 
exhausted; the process is then iteratively begun 
again at level Z+l, where now each program is 
run for 2^+* quanta of time. If during the 
execution of the 2& quanta of a program at level 
Z, a lower level, Z', becomes occupied, the 
current user is replaced at the head of the ith 
queue and the process is reinitiated at level 
Z' . 

Similarly, if a program of size w at level 
Z, during operation requests a change in memory 
size from the time-sharing supervisor, then the 
enlarged (or reduced) version of the program 
should be placed at the end of the Z" queue where 

= Z + [ ̂  ( P-l 
+ 1 (2) 

Again the process is re-initiated with the head-
of-the-queue user at the lowest occupied level 
of i'. 

Several important conclusions can be drawn 
from the above algorithm which allow the perfor
mance of the system to be bounded. 

Computational Efficiency 

1. Because a program is always operated for 
a time greater than or equal to the swap time 
(i.e. the time required to move the program in 
and out of secondary memory), it follows that 
the computational efficiency never falls below 
one-half. (Clearly, this fraction is adjustable 
in the formula for the initial level, ZQ.) An 
alternative way of viewing this bound is to say 
that the real-time computing speed available to 
one out of n active users is no worse than if 
there were 2n active users all of whose programs 
were in the high-speed memory. 

Response Time 

2. If the maximum number of active users 
is N, then an individual user of a given program 
size can be guaranteed a response time, 

w,. 
+ l) (3) * r ^ 2Nq 

q J 

since the worst case occurs when all competing 
user programs are at the same level. Conversely, 
if tr is a guaranteed response of arbitrary 
value and the largest size of program is assumed, 
then the maximum permissible number of active 
users is bounded. 

Long Runs 

3. The relative swap time on long runs can 
be made vanishingly small. This conclusion 
follows since the longer a program is run, the 
higher the level number it cascades to with a 
correspondingly smaller relative swap time. It 
is an important feature of the algorithm that long 
runs must in effect prove they are long so that 
programs which have an unexpected demise are 
detected quickly. In order that there be a 
finite number of levels, a maximum level number, 
L, can be established such that the asymptotic 
swap overhead is some arbitrarily small 
percentage, p: 
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L = ( [ ^ +1) ] 
where w 

pmax 

l o g 2 H _ ^ Z 2 | + 1 | I (4) 

i s t h e s i z e of t h e l a r g e s t p o s s i b l e 

program. 

Multi-level vs. Single-level Response Times 

4. The response time for programs of equal 
size, entering the system at the same time, and 
being run for multiple quanta, is no worse than 
approximately twice the response-time occurring 
in a single quanta round-robin procedure. If 
there are n equal sized programs started in a 
queue at level Z, then the worst case is that of 
the end-of-the-queue program which is ready to 
respond at the very first quantum run at the 
Z+j level. Using the multi-level algorithm, the 
total delay for the end-of-the-queue program is 
by virtue of the geometric series of quanta: 

q2 -[n^-l) + (n-1) 2J.J' (5) 

Since the end-of-the-queue user has computed for 
a time of 2 (2J-l) quanta, the equivalent single-
level round-robin delay before a response is: 

q2^ (n(2J-l)} 

Hence 

~ 1 + (=?) 2J-1 

(6) 

(7) 

and the assertion is shown. It should be noted 
that the above conditions, where program swap 
times are omitted, which are pertinent when all 
programs remain in high-speed memory, are the 
least favorable for the multi-level algorithm; if 
swap times are included in the above analysis, the 
ratio of T / T can only become smaller and may 
become much less than unity. By a similar analysis 
it is easy to show that even in the unfavorable 
case where there are no program swaps, head-of-the-
queue programs that terminate just as the 2*+J 
quanta are completed receive under the multi
level algorithm a response which is twice as 
fast as that under the single-level round-robin 

^ ' T m / T s = 1/2)-

Highest Serviced Level 

5. In the multi-level algorithm the level 
classification procedure for programs is entirely 
automatic, depending on performance and program 
size rather than on the declarations (or hopes) 
of each user. As a user taxes the system, the 
degradation of service occurs progressively 
starting with the higher level users of either 
large or long-running programs; however, at some 
level no user programs may be run because of too 
many active users at lower levels. To determine 

a bound on this cut-off point we consider N 
active users at level Z each running 2 quanta, 
terminating, and reentering the system again at 
level Z at a user response time, t , later. If 
there is to be no service at level Z+l, then the 
computing time, Nq2^, must be greater than or 
equal to tu. Thus the guaranteed active levels, 
Z , are given by the relation: 

i £ lOgr 
(N?) J 

(8) 

In the limit, tu could be as small as a minimum 
user reaction time (/~.2 sec), but the expected 
value would be several orders of magnitude 
greater as a result of the statistics of a 
large number of users, 

The multi-level algorithm as formulated 
above makes no explicit consideration of the seek 
or latency time required before transmission of 
programs to and from disc or drum units when 
they are used as the secondary memory, (although 
formally the factor w could contain an average 
figure for these times). One simple modification 
to the algorithm which usually avoids wasting 
the seek or latency time is to continue to 
operate the last user program for as many quanta 
as are required to ready the swap of the new user 
with the least priority user; since ordinarily 
only the higher level number programs would be 
forced out into the secondary memory, the 
extended quanta of operation of the old user 
while seeking the new user should be but a minor 
distortion of the basic algorithm. 

Further complexities are possible when the 
hardware is appropriate. In computers with input-
output channels and low transmission rates to and 
from secondary memory, it is possible to overlap 
the reading and writing of the new and old users 
in and out of high-speed memory while operating 
the current user. The effect is equivalent to 
using a drum giving 100 % multiplexor usage but 
there are two liabilities, namely, no individual 
user can utilize all the available user memory 
space and the look-ahead procedure breaks down 
whenever an unanticipated scheduling change 
occurs (e.g. a program terminates or a higher-
priority user program is initiated). 

Complexity is also possible in storage 
allocation but certainly an elementary procedure 
and a desirable one with a low-transmission rate 
secondary memory is to consolidate in a single 
block all high-priority user programs whenever 
sufficient fragmentary unused memory space is 
available to read in a new user program. Such a 
procedure is indicated in the flow diagram of the 
multi-level scheduling algorithm which is given 
as Figure 2. 
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It should also be noted that Figure 2 only 
accounts for the scheduling of programs in a 
working status and still does not take into 
account the storage allocation of programs which 
are in a dormant (or input-output wait status). 
One systematic method of handling this case is 
to modify the scheduling algorithm so that 
programs which become dormant at level £ are 
entered into the queue at level £+1. The 
scheduling algorithm proceeds as before with the 
dormant programs continuing to cascade but not 
operating when they reached the head of a queue. 
Whenever a program must be removed from high
speed memory, a program is selected from the end-
of-the-queue of the highest occupied level 
number. 

Finally, it is illuminating to apply the 
multi-level scheduling algorithm bounds to the 
contemporary IBM 7090. The following approximate 
values are obtained: 

q = 16 m.s. (based on 1% switching overhead) 

w- = 120 words (based on one IBM 1301 model 
2 disc unit without seek or latency 
times included) 

t ^ 8Nf (based on programs of (32k)f 
r sec. 

words) 

£a <: log2 (1000/N) (based on tu = 16 sec.) 

i X 8 (based on a maximum program size of 
32K words) 

Using the arbitrary criteria that programs 
up to the maximum size of 32,000 words should 
always get some service, which is to say that 
max I - max £ , we deduce as a conservative 

a 
estimate that N can be 4 and that at worst the 
response time for a trivial reply will be 32 
seconds. 

The small value of N arrived at is a direct 
consequence of the small value of w that results 
from the slow disc word transmission rate. This 
rate is only 3.3% of the maximum core memory 
multiplexor rate. It is of interest that using 
high-capacity high-speed drums of current design 
such as in the Sage System of in the IBM Sabre 
System it would be possible to attain nearly 
100% multiplexor utilization and thus multiply 
w by a factor of 30. It immediately follows 
that user response times equivalent to those 
~-; ,.~— nv^%..n ..̂  *.%, *.v,„ -̂s „ ~ . ,,„-: j- ..„,,-i,i K _ „-•-.__ 

to 30 times as many persons or to 120 users; the 
total computational capacity, however, would not 
change. 

In any case, considerable caution should be 
used with capacity and computer response time 
estimates since they are critically dependent 
upon the distribution functions for the user 
response time, t , and the user program size, 
wp, and the computational capacity requested by 
each user. Past experience using conventional 
programming systems is of little assistance be
cause these distribution functions will depend 
very strongly upon the programming systems made 
available to the time-sharing users as well as 
upon the user habit patterns which will gradually 
evolve. 

Conclusions 

In conclusion, it is clear that contemporary 
computers and hardware are sufficient to allow 
moderate performance time-sharing for a limited 
number of users. There are several problems 
which can be solved by careful hardware design, 
but there are also a large number of intricate 
system programs which must De written before one 
has an adequate time-sharing system. An import
ant aspect of any future time-shared computer is 
that until the system programming is completed, 
especially the critical time-sharing supervisor, 
the computer is completely worthless. Thus, it 
is essential for future system design and imple
mentation that all aspects of time-sharing system 
problems be explored and understood in prototype 
form on present computers so that major advances 
in computer organization and usage can be made. 
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