
AN EXPERIMENTAL TIME-SHARING SYSTEM

Fernando J. Corbatcf, Marjorie Merwin-Daggett, Robert C. Daley

Computer Center, Massachusetts Institute of Technology

Cambridge, Massachusetts

Summary

It is the purpose of this paper to discuss
briefly the need for time-sharing, some of the
implementation problems, an experimental time
sharing system which has been developed for the
contemporary IBM 7090, and finally a scheduling
algorithm of one of us (FJC) that illustrates
some of the techniques which may be employed to
enhance and be analyzed for the performance
limits of such a time-sharing system.

Introduction

The last dozen years of computer usage have
seen great strides. In the early 1950's, the
problems solved were largely in the construction
and maintenance of hardware; in the mid-1950's,
the usage languages were greatly improved with
the advent of compilers; now in the early 1960's,
we are in the midst of a third major modifi
cation to computer usage: the improvement of
man-machine interaction by a process called
time-sharing.

Much of the time-sharing philosophy,
expressed in this paper, has been developed in
conjunction with the work of an MIT preliminary
study committee, chaired by H. Teager, which
examined the long range computational needs of
the Institute, and a subsequent MIT computer
working committee, chaired by J. McCarthy.
However, the views and conclusions expressed
in this paper should be taken as solely those
of the present authors.

Before proceeding further, it is best to
give a more precise interpretation to time
sharing. One can mean using different parts of
the hardware at the same time for different
tasks, or one can mean several persons making
use of the computer at the same time. The first
*«**«*%-: « «. sv-P-t-*•>»-• ^n 1 1 tirl t n i i l +--1 r*rv*rrvamTnT r\ cr H e mc;c»li.i . .iig , \ yx b b i i W M J . ^ . ^ ^ 4 I I I U A ***. jt̂ ~ ~fc>* •—•»«••-•.**£> , — —

oriented towards hardware efficiency in the
sense of attempting to attain complete utili
zation of all components ' ' ' . The second
meaning of time-sharing, which is meant here,
is primarily concerned with the efficiency of
persons trying to use a computer ' ' ' .
Computer efficiency should still be considered
but only in the perspective of the total system
utility.

The motivation for time-shared computer
usage arises out of the slow man-computer inter
action rate presently possible with the bigger,
more advanced computers. This rate has changed
little (and has become worse in some cases) in
the last decade of widespread computer use.1^

In part, this effect has been due to the
fact that as elementary problems become mast
ered on the computer, more complex problems
immediately become of interest. As a result,
larger and more complicated programs are written
to take advantage of larger and faster computers.
This process inevitably leads to more programm
ing errors and a longer period of time required
for debugging. Using current batch monitor
techniques, as is done on most large computers,
each program bug usually requires several hours
to eliminate, if not a complete day. The only
alternative presently available is for the
programmer to attempt to debug directly at the
computer, a process which is grossly wasteful
of computer time and hampered seriously by the
poor console communication usually available.
Even if a typewriter is the console, there are
usually lacking the sophisticated query and
response programs which are vitally necessary
to allow effective interaction. Thus, what is
desired is to drastically increase the rate of
interaction between the programmer and the
computer without large economic loss and also
to make each interaction more meaningful by
extensive and complex system programming to
assist in the man-computer communication.

To solve these interaction problems we
would like to have a computer made simultaneously
available to many users in a manner somewhat
like a telephone exchange. Each user would be
able to use a console at his own pace and with
out concern for the activity of others using the

merely a typewriter but more ideally would
contain an incrementally modifiable self-
sustaining display. In any case, data trans
mission requirements should be such that it would
be no major obstacle to have remote installation
from the computer proper.

336 PROGRAMMING AND CODING

The basic technique for a time-sharing system
is to have many persons simultaneously using the
computer through typewriter consoles with a
time-sharing supervisor program sequentially
running each user program in a short burst or
quantum of computation. This sequence, which in
the most straightforward case is a simple round-
robin, should occur often enough so that each
user program which is kept in the high-speed
memory is run for a quantum at least once during
each approximate human reaction time (r~». 2
seconds). In this way, each user sees a computer
fully responsive to even single key strokes each
of which may require only trivial computation;
in the non-trivial cases, the user sees a
gradual reduction of the response time which is
proportional to the complexity of the response
calculation, the slowness of the computer, and
the total number of active users. It should be
clear, however, that if there are n users
actively requesting service at one time, each
user will only see on the average 1/n of the
effective computer speed. During the period of
high interaction rates while debugging programs,
this should not be a hindrance since ordinarily
the required amount of computation needed for
each debugging computer response is small
compared to the ultimate production need.

Not only would such a time-sharing system
improve the ability to program in the conventional
manner by one or two orders of magnitude, but
there would be opened up several new forms of
computer usage. There would be a gradual
reformulation of many scientific and engineering
applications so that programs containing decision
trees which currently must be specified in
advance would be eliminated and instead the
particular decision branches would be specified
only as needed. Another important area is that
of teaching machines which, although frequently
trivial computationally, could naturally
exploit the consoles of a time-sharing system
with the additional bonus that more elaborate
and adaptive teaching programs could be used.
Finally, as attested by the many small business
computers, there are numerous applications in
business and in industry where it would be
advantageous to have powerful computing facilities
available at isolated locations with only the
incremental capital investment of each console.
But it is important to realize that even without
the above and other new applications, the major
advance in programming intimacy available from
time-sharing would be of immediate value to
computer installations in universities, research
laboratories, and engineering firms where
program debugging is a major problem.

Implementation Problems

As indicated, a straightforward plan for
time-sharing is to execute user programs for
small quanturns of computation without priority
in a simple round-robin; the strategy of time
sharing can be more complex as will be shown
later, but the above simple scheme is an
adequate solution. There are still many
problems, however, some best solved by hard
ware, others affecting the programming conven
tions and practices. A few of the more
obvious problems are summarized:

Hardware Problems:

1. Different user programs if simultan
eously in core memory may interfere with each
other or the supervisor program so some form of
memory protection' mode should be available when
operating user programs.

2. The time-sharing supervisor may need
at different times to run a particular program
from several locations. (Loading relocation
bits are no help since the supervisor does not
know how to relocate the accumulator, etc.)
Dynamic relocation of all memory accesses that
pick up instructions or data words is one
effective solution.

3. Input-output equipment may be initiated
by a user and read words in on another user
program. A way to avoid this is to trap all
input-output instructions issued by a user's
program when operated in the memory protection
mode.

4. A large random-access back-up storage
is desirable for general program storage files
for all users. Present large capacity disc
units appear to be adequate.

5. The time-sharing supervisor must be
able to interrupt a user's program after a
quantum of computation. A program-initiated one-
shot multivibrator which generates an interrupt
a fixed time later is adequate.

6. Large core memories (e.g. a million
words) would ease the system programming compli
cations immensely since the different active
user programs as well as the frequently used
system programs such as compilers, query programs,
etc. could remain in core memory at all times.

Programming Problems:

1. The supervisor program must do auto
matic user usage charge accounting. In general,

AN EXPERIMENTAL TIME-SHARING SYSTEM 337

the user should be charged on the basis of a
system usage formula or algorithm which should
include such factors as computation time, amount
of high-speed memory required, rent of secondary
memory storage, etc.

2. The supervisor program should coordinate
all user input-output since it is not desirable
to require a user program to remain constantly
in memory during input-output limited operations.
In addition, the supervisor must coordinate all
usage of the central, shared high-speed input-
output units serving all users as well as the
clocks, disc units, etc.

3. The system programs available must be
potent enough so that the user can think about
his problem and not be hampered by coding
details or typographical mistakes. Thus,
compilers, query programs, post-mortem programs,
loaders, and good editing programs are
essential.

4. As much as possible, the users should
be allowed the maximum programming flexibility
both in choices of language and in the absence
of restrictions.

Usage Problems

1. Too large a computation or excessive
typewriter output may be inadvertently requested
so that a special termination signal should be
available to the user.

2. Since real-time is not computer usage-
time, the supervisor must keep each user informed
so that he can use his judgment regarding loops,
etc.

3. Computer processor, memory and tape
malfunctions must be expected. Basic operational
questions such as "Which program is running?"
must be answerable and recovery procedures fully
anticipated.

An Experimental Time-Sharing System for the IBM

7090

Having briefly stated a desirable time
sharing performance, it is pertinent to ask
what level of performance can be achieved with
existant equipment. To begin to answer this
question and to explore all the programming and
operational aspects, an experimental time
sharing system has been developed. This system
was originally written for the IBM 709 but has
since been converted for use with the 7090
computer.

The 7090 of the MIT Computation Center has,
in addition to three channels with 19 tape units,
a fourth channel with the standard Direct Data
Connection. Attached to the Direct Data Connec
tion is a real-time equipment buffer and control
rack designed and built under the direction of
H. Teager and his group. This rack has a variety
of devices attached but the only ones required
by the present systems are three flexowriter
typewriters. Also installed on the 7090 are two
special modifications (i.e. RPQ's): a standard
60 cycle accounting and interrupt clock, and a
special mode which allows memory protection,
dynamic relocation and trapping of all user
attempts to initiate input-output instructions.

In the present system the time-sharing
occurs between four users, three of whom are on
line each at a typewriter in a foreground
system, and a fourth passive user of the back
ground Fap-Mad-Madtran-BSS Monitor System similar
to the Fortran-Fap-BSS Monitor System (FMS) used
by most of the Center programmers and by many
other 7090 installations.

Significant design features of the fore
ground system are:

1. It allows the user to develop programs
in languages compatible with the background
system,

2. Develop a private file of programs,

3. Start debugging sessions at the state
of the previous session, and

4. Set his own pace with little waste of
computer time.

Core storage is allocated such that all users
operate in the upper 27,000 words with the time
sharing supervisor (TSS) permanently in the
lower 5,000 words. To avoid memory allocation
clashes, protect users from one another, and
simplify the initial 709 system organization,
only one user was kept in core memory at a
time. However, with the special memory protec
tion and relocation feature of the 7090, more
sophisticated storage allocation procedures are
being implemented. In any case, user swaps are
minimized by using 2-channel overlapped magnetic
tape reading and writing of the pertinent
locations in the two user programs,

The foreground system is organized around
commands that each user can give on his type
writer and the user's private program files
which presently (for want of a disc unit) are
kept on a separate magnetic tape for each user.

* This group is presently using another approach9

in developing a time-sharing system for the
MIT 7090.

338 PROGRAMMING AND CODING

For convenience the format of the private tape
files is such that they are card images, have
title cards with name and class designators and
can be written or punched using the off-line
equipment. (The latter feature also offers a
crude form of large-scale input-output.) The
magnetic tape requirements of the system are the
seven tapes required for the normal functions of
the background system, a system tape for the
time-sharing supervisor that contains most of
the command programs, and a private file tape
and dump tape for each of the three foreground
users.

The commands are typed by the user to the
time-sharing supervisor (not to his own program)
and thus can be initiated at any time regardless
of the particular user program in memory. For
similar coordination reasons, the supervisor
handles all input-output of the foreground
system typewriters. Commands are composed of
segments separated by vertical strokes; the
first segment is the command name and the
remaining segments are parameters pertinent to
the command. Each segment consists of the last
6 characters typed (starting with an implicit
6 blanks) so that spacing is an easy way to
correct a typing mistake. A carriage return is
the signal which initiates action on the command.
Whenever a command is received by the supervisor,
"WAIT", is typed back followed by "READY." when
the command is completed. (The computer responses
are always in the opposite color from the user's
typing.) While typing, an incomplete command
line may be ignored by the "quit" sequence of a
code delete signal followed by a carriage return.
Similarly after a command is initiated, it may
be abandoned if a "quit" sequence is given. In
addition, during unwanted command typeouts, the
command and output may be terminated by pushing
a special "stop output" button.

The use of the foreground system is initiated
whenever a typewriter user completes a command
line and is placed in a waiting command queue.
Upon completion of each quantum, the tinie=sharing
supervisor gives top priority to initiating any
waiting commands. The system programs corres
ponding to most of the commands are kept on the
special supervisor command system tape so that to
avoid waste of computer time, the supervisor
continues to operate the last user program until
the desired command program on tape is positioned
for reading. At this point, the last user is
read out on his dump tape, the command program
read in, placed in a working status and initiated
as a new user program. However, before starting
the new user for a quantum of computation, the
supervisor again checks for any waiting command
of another user and if necessary begins the look-
ahead positioning of the command system tape
while operating the new user.

Whenever the waiting command queue is
empty, the supervisor proceeds to execute a
simple round-robin of those foreground user
programs in the working status queue. Finally,
if both these queues are empty, the background
user program is brought in and run a quantum at
a time until further foreground system actively
develops.

Foreground user programs leave the working
status queue by two means. If the program
proceeds to completion, it can reenter the
supervisor in a way which eliminates itself and
places the user in dead status; alternatively,
by a different entry the program can be placed
in a dormant status (or be manually placed by
the user executing a quit sequence). The dormant
status differs from the dead status in that the
user may still restart or examine his program.

User input—output is through each type
writer, and even though the supervisor has a
few lines of buffer space available, it is
possible to become input-output limited.
Consequently, there is an additional input-
output wait status, similar to the dormant,
which the user is automatically placed in by
the supervisor program whenever input-output
delays develop. When buffers become near
empty on output or near full on input, the user
program is automatically returned to the working
status; thus waste of computer time is avoided.

Commands

To clarify the scope of the foreground
system and to indicate the basic tools avail
able to the user, a list of the important
commands follows along with brief summaries of
their operations:

i. | a

a = arbitrary text treated as a comment.

2. login | a | P

a. - user problem number
j3 = user programmer number

Should be given at beginning of each
user's session. Rewinds user's private file tape;
clears time accounting records.

3. logout

Should be given at end of each user's
session. Rewinds user's private file tape;
punches on-line time accounting cards.

4. input

Sets user in input mode and initiates
automatic generation of line numbers. The user

AN EXPERIMENTAL TIME-SHARING SYSTEM 339

types a card image per line according to a
format appropriate for the programming language.
(The supervisor collects these card images at
the end of the user's private file tape.) When
in the automatic input mode, the manual mode may
be entered by giving an initial carriage return
and typing the appropriate line number followed
by j and line for as many lines as desired. To
reenter the automatic mode, an initial carriage
return is given.

The manual mode allows the user to over
write previous lines and to insert lines. (cf.
File Command.)

5. edit | a j (3

a = title of file

j3 = class of file

The user is set in the automatic input
mode with the designated file treated as initial
input lines. The same conventions apply as to
the input command.

6. file j a | P

a = title to be given to file

P = class of language used during input

The created file will consist of the
numbered input lines (i.e. those at the end of
the user's private file tape) in sequence; in
the case of duplicate line numbers, the last
version will be used. The line numbers will be
written as sequence numbers in the corresponding
card images of the file.

For convenience the following editing
conventions apply to input lines:

a. an underline signifies the deletion of
the previous characters of the line.

b. a backspace signifies the deletion of
the previous character in the field.

The following formats apply:

a. FAP: symbol, tab, operation, tab,
variable field and comment.

b. MAD, MADTRAN, FORTRAN: statement label,
tab, statement. To place a character in the
continuation column: statement label, tab,
backspace, character, statement.

c. DATA: cols. 1-72.

7. fap | a

Causes the file designated as a, fap to
be translated by the FAP translator (assembler).
Files a, symtb and a,bss are added to the user's
private file tape giving the symbol table and
the relocatable binary BSS form of the file.

8. mad J a

Causes file a,mad to be translated by
the MADtranslator (compiler). File a,bss is
created.

9. madtrn | a

Causes file a,madtrn (i.e. a pseudo-
Fortran language file) to be edited into an
equivalent file a,mad (added to the user's file)
and translation occurs as if the command madja
had been given.

10. load | a± I a2|...|an

Causes the consecutive loading of files
a^,bss (i=l,2,...,n). An exception occurs if a.=

(libe), in which case file a. , ,bss is searched
l+l

as a library file for all subprograms still
missing. (There can be further library files.)

11. use la. I a„ I... I a
1 1 ' 2 ' ' n

This command is used whenever a load or
previous use command notifies the user of an
incomplete set of subprograms. Same cc. conven
tions as for load. 1

12. start | a | £

Starts the program setup by the load
and use commands (or a dormant program) after
first positioning the user private file tape in
front of the title card for file a,£. (If £ is
not given, a class of data is assumed; if both
a. and (3 are not given, no tape movement occurs
and the program is started.)

13. pm | a

a = "lights", "stomap", or the usual
format of the standard Center post-mortem (F2PM)
request: subprogram name | loc | loc | mode |
direction where mode and direction are optional.

Produces post-mortem of user's dormant
program according to request specified by a.
(E.g. matrix j 5 | 209 | flo | rev will cause to
be printed on the user's typewriter the contents
of subprogram "matrix" from relative locations
5 to 209 in floating point form and in reverse
sequence.)

14. skippm

Used if a pm command is "quit" during
output and the previous program interruption is to
be restarted.

15. listf

Types out list of all file titles on
user's private file tape.

340 PROGRAMMING AND CODING

16. pr in t f | a | 3 | 7

Types out file a,(3 starting at line
number y. If y is omitted, the initial line is
assumed. Whenever the user's output buffer fills,
the command program goes into an I/O wait status
allowing other users to time-share until the
buffer needs refilling.

17. xdump | a | (3

Creates file a,(3 (if f3 omitted, xdump
assumed) on user's private file tape consisting
of the complete state of the user's last dormant
program.

IS. xdump | a J 3

Inverse of xdump command in that it
resets file a,$ as the user's program, starting
it where it last left off.

Although experience with the system to date
is quite limited, first indications are that
programmers would readily use such a system if it
were generally available It is useful to ask,
now that there is some operating experience with
the 7090 system, what observations can be made.
An immediate comment is that once a user gets
accustomed to computer response, delays of even
a fraction of a minute are exasperatingly long,
an effect analogous to conversing with a slow-
speaking person. Similarly, the requirement that
a complete typewritten line rather than each
character be the minimum unit of man-computer
communication is an inhibiting factor in the
sense that a press-to-talk radio-telephone con
versation is more stilted than that of an
ordinary telephone. Since maintaining a rapid
computer response on a character by character
basis requires at least a vestigial response
program in core memory at all times, the straight
forward solution within the present system is to
have more core memory available. At the very
least, an extra bank of memory for the time
sharing supervisor would ease compatibility prob
lems with programs already written for 32,000
word 7090's.

For reasons of expediency, the weakest
portions of the present system are the conventions
for input, editing of user files, and the degree
of rapid interaction and intimacy possible while
debugging. Since to a large extent these areas
involve the taste, habits, and psychology of the
users, it is felt that proper solutions will
require considerable experimentation and prag
matic evaluation; it is also clear that these
areas cannot be treated in the abstract for the
programming languages used will influence greatly
the appropriate techniques. A greater use of
symbolic referencing for locations, program names
and variables is certainly desired; symbolic post
mortem programs, trace programs, and before-and-
after differential dump programs should play
useful roles in the debugging procedures.

In the design of the present system, great
care went into making each user independent of
the other users. However, it would be a useful
extension of the system if this were not always
the case. In particular, when several consoles
are used in a computer controlled group such as
in management or war games, in group behavior
studies, or possibly in teaching machines, it
would be desirable to have all the consoles
communicating with a single program.

Another area for further improvement within
the present system is that of file maintenance,
since the presently used tape units are a hind
rance to the easy deletion of user program files.
Disc units will be of help in this area as well
as with the problem of consolidating and
scheduling large-scale central input-output
generated by the many console users.

Finally, it is felt that it would be desir
able to have the distinction between the fore
ground and background systems eliminated. The
present-day computer operator would assume the
role of a stand-in for the background users,
using an operator console much like the other
user consoles in the system, mounting and de
mounting magnetic tapes as requested by the
supervisor, receiving instructions to read card
decks into the central disc unit, etc. Similarly
the foreground user, when satisfied with his
program, would by means of his console and the
supervisor program enter his program into the
queue of production background work to be
performed. With these procedures implemented
the distinction of whether one is time-sharing
or not would vanish and the computer user would
be free to choose in an interchangable way that
mode of operation which he found more suitable
at a particular time.

A Multi-Level Scheduling Algorithm

Regardless of whether one has a million
word core memory or a 32.000 word memory as
currently exists on the 7090, one is inevitably
faced with the problem of system saturation
where the total size of active user programs
exceeds that of the high-speed memory or there
are too many active user programs to maintain
an adequate response at each user console.
These conditions can easily arise with even a
few users if some of the user programs are
excessive in size or in time requirements. The
predicament can be alleviated if it is assumed
that a good design for the system is to have a
saturation procedure which gives graceful de
gradation of the response time and effective
real-time computation speed of the large and
long-running users.

AN EXPERIMENTAL TIME-SHARING SYSTEM 341

To show the general problem, Figure 1
qualitatively gives the user service as a function
of n, the number of active users. This service
parameter might be either of the two key factors:
computer response time or n times the real-time
computation speed. In either case there is some
critical number of active users, N, representing
the effective user capacity, which causes satur
ation. If the strategy near saturation is to
execute the simple round-robin of all users, then
there is an abrupt collapse of service due to the
sudden onset of the large amount of time required
to swap programs in-and-out of the secondary
memory such as a disc or drum unit. Of course,
Figure 1 is quite qualitative since it depends
critically on the spectrum of user program sizes
as well as the spectrum of user operating times.

To illustrate the strategy that can be em
ployed to improve the saturation performance
of a time-sharing system, a multi-level schedu
ling algorithm is presented. This algorithm also
can be analyzed to give broad bounds on the
system performance.

The basis of the multi-level scheduling
algorithm is to assign each user program as it
enters the system to be run (or completes a
response to a user) to an ith level priority
queue. Programs are initially entered into a
level Z » corresponding to their size such that

*o = lo«2 m-y (i)

where w is the number of words in the program,
w is the number of words which can be trans-
q

mitted in and out of the high-speed memory from
the secondary memory in the time of one quantum,
q, and the bracket indicates "the integral part
of". Ordinarily the time of a quantum, being
the basic time unit, should be as small as
possible without excessive overhead losses when
the supervisor switches from one program in high
speed memory to another. The process starts with
the time-sharing supervisor operating the program
at the head of the lowest level occupied queue,
Z, for up to 1 quanta of time and then if the
program is not completed (i.e. has not made a
response to the user) placing it at the end of
the Z+l level queue. If there are no programs
entering the system at levels lower than Z, this
process proceeds until the queue at level Z is
exhausted; the process is then iteratively begun
again at level Z+l, where now each program is
run for 2^+* quanta of time. If during the
execution of the 2& quanta of a program at level
Z, a lower level, Z', becomes occupied, the
current user is replaced at the head of the ith
queue and the process is reinitiated at level
Z' .

Similarly, if a program of size w at level
Z, during operation requests a change in memory
size from the time-sharing supervisor, then the
enlarged (or reduced) version of the program
should be placed at the end of the Z" queue where

= Z + [̂ (P-l
+ 1 (2)

Again the process is re-initiated with the head-
of-the-queue user at the lowest occupied level
of i'.

Several important conclusions can be drawn
from the above algorithm which allow the perfor
mance of the system to be bounded.

Computational Efficiency

1. Because a program is always operated for
a time greater than or equal to the swap time
(i.e. the time required to move the program in
and out of secondary memory), it follows that
the computational efficiency never falls below
one-half. (Clearly, this fraction is adjustable
in the formula for the initial level, ZQ.) An
alternative way of viewing this bound is to say
that the real-time computing speed available to
one out of n active users is no worse than if
there were 2n active users all of whose programs
were in the high-speed memory.

Response Time

2. If the maximum number of active users
is N, then an individual user of a given program
size can be guaranteed a response time,

w,.
+ l) (3) * r ^ 2Nq

q J

since the worst case occurs when all competing
user programs are at the same level. Conversely,
if tr is a guaranteed response of arbitrary
value and the largest size of program is assumed,
then the maximum permissible number of active
users is bounded.

Long Runs

3. The relative swap time on long runs can
be made vanishingly small. This conclusion
follows since the longer a program is run, the
higher the level number it cascades to with a
correspondingly smaller relative swap time. It
is an important feature of the algorithm that long
runs must in effect prove they are long so that
programs which have an unexpected demise are
detected quickly. In order that there be a
finite number of levels, a maximum level number,
L, can be established such that the asymptotic
swap overhead is some arbitrarily small
percentage, p:

342 PROGRAMMING AND CODING

L = ([^ +1)]
where w

pmax

l o g 2 H _ ^ Z 2 | + 1 | I (4)

i s t h e s i z e of t h e l a r g e s t p o s s i b l e

program.

Multi-level vs. Single-level Response Times

4. The response time for programs of equal
size, entering the system at the same time, and
being run for multiple quanta, is no worse than
approximately twice the response-time occurring
in a single quanta round-robin procedure. If
there are n equal sized programs started in a
queue at level Z, then the worst case is that of
the end-of-the-queue program which is ready to
respond at the very first quantum run at the
Z+j level. Using the multi-level algorithm, the
total delay for the end-of-the-queue program is
by virtue of the geometric series of quanta:

q2 -[n^-l) + (n-1) 2J.J' (5)

Since the end-of-the-queue user has computed for
a time of 2 (2J-l) quanta, the equivalent single-
level round-robin delay before a response is:

q2^ (n(2J-l)}

Hence

~ 1 + (=?) 2J-1

(6)

(7)

and the assertion is shown. It should be noted
that the above conditions, where program swap
times are omitted, which are pertinent when all
programs remain in high-speed memory, are the
least favorable for the multi-level algorithm; if
swap times are included in the above analysis, the
ratio of T / T can only become smaller and may
become much less than unity. By a similar analysis
it is easy to show that even in the unfavorable
case where there are no program swaps, head-of-the-
queue programs that terminate just as the 2*+J
quanta are completed receive under the multi
level algorithm a response which is twice as
fast as that under the single-level round-robin

^ ' T m / T s = 1/2)-

Highest Serviced Level

5. In the multi-level algorithm the level
classification procedure for programs is entirely
automatic, depending on performance and program
size rather than on the declarations (or hopes)
of each user. As a user taxes the system, the
degradation of service occurs progressively
starting with the higher level users of either
large or long-running programs; however, at some
level no user programs may be run because of too
many active users at lower levels. To determine

a bound on this cut-off point we consider N
active users at level Z each running 2 quanta,
terminating, and reentering the system again at
level Z at a user response time, t , later. If
there is to be no service at level Z+l, then the
computing time, Nq2^, must be greater than or
equal to tu. Thus the guaranteed active levels,
Z , are given by the relation:

i £ lOgr
(N?) J

(8)

In the limit, tu could be as small as a minimum
user reaction time (/~.2 sec), but the expected
value would be several orders of magnitude
greater as a result of the statistics of a
large number of users,

The multi-level algorithm as formulated
above makes no explicit consideration of the seek
or latency time required before transmission of
programs to and from disc or drum units when
they are used as the secondary memory, (although
formally the factor w could contain an average
figure for these times). One simple modification
to the algorithm which usually avoids wasting
the seek or latency time is to continue to
operate the last user program for as many quanta
as are required to ready the swap of the new user
with the least priority user; since ordinarily
only the higher level number programs would be
forced out into the secondary memory, the
extended quanta of operation of the old user
while seeking the new user should be but a minor
distortion of the basic algorithm.

Further complexities are possible when the
hardware is appropriate. In computers with input-
output channels and low transmission rates to and
from secondary memory, it is possible to overlap
the reading and writing of the new and old users
in and out of high-speed memory while operating
the current user. The effect is equivalent to
using a drum giving 100 % multiplexor usage but
there are two liabilities, namely, no individual
user can utilize all the available user memory
space and the look-ahead procedure breaks down
whenever an unanticipated scheduling change
occurs (e.g. a program terminates or a higher-
priority user program is initiated).

Complexity is also possible in storage
allocation but certainly an elementary procedure
and a desirable one with a low-transmission rate
secondary memory is to consolidate in a single
block all high-priority user programs whenever
sufficient fragmentary unused memory space is
available to read in a new user program. Such a
procedure is indicated in the flow diagram of the
multi-level scheduling algorithm which is given
as Figure 2.

AN EXPERIMENTAL TIME-SHARING SYSTEM 343

It should also be noted that Figure 2 only
accounts for the scheduling of programs in a
working status and still does not take into
account the storage allocation of programs which
are in a dormant (or input-output wait status).
One systematic method of handling this case is
to modify the scheduling algorithm so that
programs which become dormant at level £ are
entered into the queue at level £+1. The
scheduling algorithm proceeds as before with the
dormant programs continuing to cascade but not
operating when they reached the head of a queue.
Whenever a program must be removed from high
speed memory, a program is selected from the end-
of-the-queue of the highest occupied level
number.

Finally, it is illuminating to apply the
multi-level scheduling algorithm bounds to the
contemporary IBM 7090. The following approximate
values are obtained:

q = 16 m.s. (based on 1% switching overhead)

w- = 120 words (based on one IBM 1301 model
2 disc unit without seek or latency
times included)

t ^ 8Nf (based on programs of (32k)f
r sec.

words)

£a <: log2 (1000/N) (based on tu = 16 sec.)

i X 8 (based on a maximum program size of
32K words)

Using the arbitrary criteria that programs
up to the maximum size of 32,000 words should
always get some service, which is to say that
max I - max £ , we deduce as a conservative

a
estimate that N can be 4 and that at worst the
response time for a trivial reply will be 32
seconds.

The small value of N arrived at is a direct
consequence of the small value of w that results
from the slow disc word transmission rate. This
rate is only 3.3% of the maximum core memory
multiplexor rate. It is of interest that using
high-capacity high-speed drums of current design
such as in the Sage System of in the IBM Sabre
System it would be possible to attain nearly
100% multiplexor utilization and thus multiply
w by a factor of 30. It immediately follows
that user response times equivalent to those
~-; ,.~— nv^%..n ..̂ *.%, *.v,„ -̂s „ ~ . ,,„-: j- ..„,,-i,i K _ „-•-.__

to 30 times as many persons or to 120 users; the
total computational capacity, however, would not
change.

In any case, considerable caution should be
used with capacity and computer response time
estimates since they are critically dependent
upon the distribution functions for the user
response time, t , and the user program size,
wp, and the computational capacity requested by
each user. Past experience using conventional
programming systems is of little assistance be
cause these distribution functions will depend
very strongly upon the programming systems made
available to the time-sharing users as well as
upon the user habit patterns which will gradually
evolve.

Conclusions

In conclusion, it is clear that contemporary
computers and hardware are sufficient to allow
moderate performance time-sharing for a limited
number of users. There are several problems
which can be solved by careful hardware design,
but there are also a large number of intricate
system programs which must De written before one
has an adequate time-sharing system. An import
ant aspect of any future time-shared computer is
that until the system programming is completed,
especially the critical time-sharing supervisor,
the computer is completely worthless. Thus, it
is essential for future system design and imple
mentation that all aspects of time-sharing system
problems be explored and understood in prototype
form on present computers so that major advances
in computer organization and usage can be made.

Acknowledgements

The authors wish to thank Bernard Galler,
Robert Graham and Bruce Arden, of the University
of Michigan, for making the MAD compiler available
and for their advice with regard to its adaption
into the present time-sharing system. The
version of the Madtran Fortran-to-Mad editor
program was generously supplied by Robert Rosin
of the University of Michigan. Of the MIT
Computation Center staff, Robert Creasy was of
assistance in the evaluation of time-sharing
performance, Lynda Korn is to be credited for her
contributions to the pm and madtran commands, and
Evelyn Dow for her work on the fap command.

References

1. Strachey, C , "Time Sharing in Large
Fast Computers," Proceedings of the International
Conference on Information Processing, UNESCO
(June, 1959), Paper B.2.19.

344 PROGRAMMING AND CODING

2. Licklider, J. c. R., "Man-Computer
Symbiosis," IRE Transactions on Human Factors in
Electronics, HFE-1, No. 1 (March, 1960), 4-11.

6. Codd, E. F., "Multiprogram Scheduling,"
Communications of the ACM, 3, 6 (June, 1960),
347-350.

3. Brown, G., Licklider, J. C. R.,
McCarthy, J., and Periis, A., lectures given
spring, 1961, Management and the Computer of the
Future, (to be published by the M.I.T. Press,
March, 1962).

4. Corbato, F. J., "An Experimental Time-
Sharing System," Proceedings of the IBM University
Director's Conference, July, 1961 (to be pub
lished).

5. Schmitt, W. F., Tonik, A. B., "Sympa
thetically Programmed Computers," Proceedings
of the International Conference on information
Processing, UNESCO, (June, 1959) Paper B.2.18.

7. Heller, J., "Sequencing Aspects of
Multiprogramming," Journal of the ACM, 8, 3
(July, 1961), 426-439.

8. Leeds, H. D., Weinberg, G. M., "Multi
programming," Computer Programming Fundamentals,
356-359, McGraw-Hill (1961).

9. Teager, H. M., "Real-Time Time-Shared
Computer Project," Communications of the ACM, 5,
1 (January, 1962) Research Summaries, 62.

10. Teager, H. M., McCarthy, J., "Time-
Shared Program Testing," paper delivered at the
14th National Meeting of the ACM (not published)

Quantum
finished

Service

Figure 1 . Serv ice v s . Number of
Act ive Users

Any users
i n i t i a t e d
in level

£'<£>

Place current
user a t head
of queue ji.

l~-l'

Fut user
at end of
JL+ 1 queue

Find head of
queue program
at lowest
occupied level
J/.

\

Is user at
head of queue
in primary

memory?

v
no

Is there room
for head of
queue program
in primary
memory?

*
no

is there
enough slack
in primary
memory for
urogram?

r° read out
lowest

prograt i

yes

yes

yes
consolidate
slack.

Read in
program t - q-2*

* V

(Start \
i quantum, j

Figure 2 . Flow Chart of Mult i -Level Scheduling Algorithm

