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Abstract

Topic modeling allows us to fulfill algorithmic needs to organize, understand, and annotate

documents according to the discovered structure. Given the vast troves of data and the lack

of specialized skillsets, it is helpful to extract topics in an unsupervised manner using Latent

Dirichlet Allocation (LDA). LDA is a generative probabilistic topic model for discrete data,

but unfortunately, solving for the posterior distribution of LDA is intractable, given the

numerous latent variables that have cross dependencies. It is widely acknowledged that

inference methods such Markov Chain Monte Carlo and Variational Inference are a good

way forward to achieve suitable approximate solutions for LDA. In this report, we will

explore both these methods to solve the LDA problem on the Wikipedia corpus. We find

that better performance can be achieved via preprocessing the data to filter only certain

parts-of-speech via lemmatization, and also exclude extremely rare or common words. We

improved on the Expectations-Maximization (EM) Algorithm used for variational inference

by limiting the number of iterations in the E step even if sub-optimal. This leads to benefit

of faster runtimes and better convergences due to fewer iterations and avoidance of local

minima. Finally, we explore early stopping runtimes on under-parameterized LDA models
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to infer the true dimensionality of the Wikipedia vocabulary to solve for topics. While the

English language has around a million words, our findings are that it only takes around

fifteen thousand words to infer around twenty major topics in the dataset.

1. Introduction

As more data and information in the world becomes available, it not only provides the op-

portunity to learn, interact with, and apply that knowledge, but it makes it more difficult

to conveniently organize, understand, and extract usefulness out of this data. Thus, we

have algorithmic needs to help us with this kind of task involving data such as massive

collections of electronic text. Specifically, topic modeling provides us with methods for au-

tomatically organizing, understanding, and summarizing these large collections of text data

without actually having to read through every document of these massive text archives.

Topic modeling allows us to discover the hidden thematic structure in data, such as text

data, to annotate documents according to the discovered structure. We can then use these

annotations to organize, summarize, and search the documents. One particular topic model

is Latent Dirichlet Allocation (LDA).

The intuition behind LDA is the assumption that documents exhibit multiple topics, as

opposed to the assumption that documents exhibit a single topic. We can elaborate on

this by describing the imaginary generative probabilistic process that we assume our data

came from. LDA first assumes that each topic is a distribution over terms in a fixed size

vocabulary. LDA then assumes documents are generated as follows:

1. A distribution over topics is chosen, for each document

2. For each word in a document, a topic from the distribution over topics is chosen

3. A word is drawn from a distribution over terms associated with the topic chosen in

the previous step.
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In other words, a document might have high associations with topics x, y and z. For a

particular word, We might choose a topic x to be expressed. Based on this topic x we

choose a word from the distribution over terms associated with topic x. This is repeated

for every word in a document and is how our document is generated. We repeat this for the

next document in our collection, and thus a new distribution over topics is chosen and its

words are chosen in the same process. It is important to note that the topics across each

document remain the same, but the distribution of topics and how much each document

exhibits the topics changes. Another important observation to point out is that this model

has a bag-of-words assumption, in other words, the order of the words doesn’t matter. The

generative process isn’t meant to retain coherence, but it will generate documents with

different subject matter and topics.

Now that we have explained the generative process, we can reiterate the statistical prob-

lem that is we cannot observe the hidden structure, we only assume it exists. Thus, we

want to solve this problem by inferring all of the values of the hidden variables: the topic

proportions associated with each document, the topics associated with each word, and the

distribution over terms that forms the documents in a collection.

LDA as a graphical model (in figure 1) allows us to describe the generative process as

well as define a factorization of the joint probability of all of the hidden and observed ran-

dom variables. It can help us infer the hidden variables given the observations by writing

down the algorithms that can solve this problem. The only variable that we observe is

the words in every document, represented by Wd,n, and therefore, its circle is shaded. The

other variables are latent variables and not shaded. The boxes represent multiplicity since

there are D documents, K topics, and N words in every document, and correspondingly the

number of variables and thus multiplied.

The joint probability defines a posterior in which we want to infer from a collection of
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documents, the topic assignments for each word zd,n, the topic proportions for each docu-

ment θd, and the topic distributions for each corpus βk. We can then use those posterior

inferences to perform varying tasks. In summary, the hidden structure is uncovered by

computing the posterior, and then the uncovered structure can be used to perform tasks.

This is done by using all the hidden variables that we assume existed in the collections of

data and discovered through the posterior distribution.

Figure 1: Graphical model of LDA

Building off our work from Q1, we find that solving the LDA posterior directly is in-

tractable due to the dependence between the latent parameters from the two pathways of

topics and topic assignments to the observed variable. Fortunately, we have options for ap-

proximate inference techniques such as variational inference (VI) and Monte Carlo Markov

Chains (MCMC), and we will explore both of these in this report.

1.1 Probability distributions of LDA model

This section will go into further detail about the probability distributions governing the

LDA model. From Figure 1, we can see α on the far left and η on the far right. Both of

these are hyperparameters of the Dirichlet distribution, from which we draw θd for the topic

proportions and βk for the terms in topics respectively.
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These parameters should be smaller than 1, as they are concentration parameters. When

they are larger than 1, the distribution becomes focused in the middle, which means that

the chances are that every topic will be meaningful in a document for α, or every term is

meaningful for a given topic for η. In practice, we know that only a section of topics or

words are meaningful, and so we use α = 0.1 and η = 0.01.

The name of this topic model, Latent Dirichlet Distribution, probably comes from the

fact that the Dirichlet distribution plays such an important role, and that it is latent and

not observed directly.

The Dirichlet distributions are conjugate priors to the multinomial distribution, meaning

that we draw samples from the two Dirichlet distributions to get θd for the topic proportions

and βk for the terms in topics respectively. We then first draw Zd,n for every word in the

document from the multinomial distribution parameterized by θd to get one exact topic

out of the K topics for every word. Conditioning on this topic, we draw from the relevant

multinomial distribution parameterized by the βk matching the topic Zd,n, to get the exact

word or term that is popular with the same topic.
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2. Methods

2.1 Data Collection

2.1.1 Previous work

Figure 2: Retooling existing paradigm

We explored existing work done by Sam Patterson and Yee Whye Teh, who have kindly

published their code on their webpage. Their existing code is in Python 2 and the structure

of the library is laid out in the figure above.

Data is in the form of Wikipedia Articles, which are downloaded on the fly from the web

as needed by processwiki. Since data is not saved for future runs, and due to rate-limiting

throttling from Wikipedia.com, it takes a while to run. Due to the randomness of generat-

ing data, exact experiments cannot be replicated. The original authors suggested that the

code could be modified in the future to download many articles via threads and to cache

the data, but this was not yet implemented.

2.1.2 Our implementation
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Figure 3: Current paradigm

Our implementation will be to create a standalone program, wikidownloader that would

download articles from Wikipedia in the background, and saved them as compressed pickle

files. We will be using the latest libraries in python 3 as best practice, and also updated

the code to reflect the latest URLs and HTML tags that have evolved over the years.
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Figure 4: An example of a Wikipedia article

An example of a Wikipedia article is shown in the figure above. Several decisions have

to be made in data collection. For example, do we collect text data from tables and graphs?

Do we collect data from the ”References” section?

Figure 5: An example of a Wikipedia article post-script
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Finally, the postscript of the article provides hints of the topic under description. We

believe it would be a pitfall to capture that since it tells us that topic, which in this case

might be British Army and English cricket. Therefore, we only capture the main text on

the Wikipedia page, and we above the references, external links, or footnotes.

2.2 Data Preprocessing

2.2.1 Tokenization

Our first step in preprocessing is tokenization. Tokenization is the process of taking the

article text as a string, converting to lowercase, removing punctuation and other non-

alphabets, and splitting the remaining text into a list of words. These words can then be

assigned an integer ID so that the corpus can be transformed into a sparse matrix of word

counts. An example of the tokenization process is in the figure below.

Figure 6: An example of the tokenizaton process

2.2.2 N-grams

N-grams are N consecutive tokens in the text. Tokens are basically unigrams while bi-grams

are two consecutive words. N-grams are useful when two words frequently occur together,

such as ”New York”, and we merged them into a single entity as they are only meaningful
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together. We use the Spacy library and its linguistic model to form meaningful bigrams.

For example, in this article about geology, only the terms ’family’ and ’gelechiidae’ are

merged into a bigram ’family gelechiidae’ since they are linked together and improves the

meaning of the bags of N-grams as the geological ”family” is now distinguished from the

more common use of the word ”family”.

Figure 7: An example of Bi-Gram

2.2.3 Lemmatization

Lemmatization is a process of grouping together the inflected forms of a word. The first

step is to apply a language model to tag each word into a part-of-speech (PoS). We can

then assign the base form for each word. For example, the lemma of “was” is “be”, and the

lemma of “plays” is “play”.

We use the python spacy library for Lemmatization. It supports more than 64 languages,

and so it allows us to extend our analysis to articles in other languages in the future. It

follows the Universal Part-of-Speech (UPoS) tagset (Petrov et al., 2012), and lists the fol-

lowing 17 categories: adjective(ADJ), adposition (ADP), adverb (ADV), auxiliary (AUX),

coordinating conjunction (CCONJ), determiner (DET), interjection (INTJ), noun (N), nu-

merical (NUM), particle(PART), pronoun (PRON), proper noun (PROPN), punctuation

(PUNCT), subordinating conjunction (SCONJ), symbol (SYM), verb (VERB) and other
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(X).

With the tags, we can remove the parts of speech that do not give valuable information

about the article. For example, if we believe that verbs and adjectives are not informative,

we will avoid including words that are tagged as VERB or ADJ.

In a preliminary run with a corpus of 50k articles, we obtained a log perplexity score

of -15.2 with n-gram tokens, but a better log perplexity score of -14.0 with lemmatization.

2.3 Performance Measures of LDA models

Recall that LDA is an unsupervised learning model, and there are no target labels to match.

This means that typical comparisons between actual and desired outputs cannot be done,

along with loss ratios and other measures. Instead, our measure of goodness on an output

would have to be based on likelihood measures on unseen data to test our approximate

inferred posterior distributions. This is related to the concept of entropy as explained in

the subsections below. Since the likelihood becomes exponentially small as the number of

words increases, it is customary to normalize it to a per-word likelihood in measures such

as perplexity.

2.3.1 Entropy

Information entropy measures the average level of unpredictability inherent in a random

variable. For example, a biased coin that always lands on heads (or a trick coin that only

has heads) has an entropy of 0, since it is very predictable. On the other hand, a fair coin

that has a 50-50 split between heads and tails will have an entropy of 1, and would have

the highest entropy of all coins including the biased ones.

Formally, entropy (H(X)) of random variable X is:
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H(X) = E[−log(p(X))]

and for a discrete domain:

H(X) = −
∑

p(xi)log(p(xi))

The plot of entropies of a coin with various biases is shown in the figure below.

Figure 8: Plot of entropy of a coin with different biases

2.3.2 Cross-entropy

Often, we do not actually know the target probability distribution p(X), and we approximate

it with another probability distribution q(X). When this occurs, it is helpful to define cross-

entropy as a distance measure between the two distributions.

H(p, q) = Ep(X)[−log(q(X))]

For a discrete domain:

H(p, q) = −
∑

p(xi)log[q(xi)]
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Note that the sum is maximized when p(xi) matches q(xi) for every xi. Taking into account

the negative sign, therefore, the cross-entropy H(p,q) is minimized when p=q. In that case,

H(p,q) becomes the entropy H(p).

2.3.3 Kullback -Leibler divergence

The posterior distribution is usually denoted by p(θ|x) while the variational posterior is

denoted by q(θ|x). The variational posterior q(θ|x) is the closest member within the varia-

tional approximate family Q to the target posterior p(θ|x). That is, q ∈ Q.

To define this ”closeness”, the Kullback–Leibler divergence (DKL) is used to measure the

distance between these two probability distributions. It is often used interchangeably as a

likelihood measure. DKL is also known as relative entropy and is defined by the following

integral:

DKL(q(θ)|p(θ|x)) =
∞∫

−∞

q(θ|x)log(q(θ|x)
p(θ|x)

) dθ (1)

In expectations notation, this is equivalent to

DKL(q(θ)|p(θ|x)) = Eq(log(q(θ))− Eq(log(p(θ|x))) (2)

Then the best candidate q(θ|x) would be:

q(θ|x) = argminθEq(log(q(θ|x))− Eq(log(p(θ|x))) (3)

To avoid having to calculate p(θ|x), using Bayes’ rule, note
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DKL(q(θ)|p(θ|x)) = Eq(log(q(θ)− log(p(x, θ)) + log(p(x)) (4)

Defining Evidence Lower Bound or ELBO(q) as:

ELBO(q) = L(q) = −Eq(log(q(θ)− log(p(x, θ))) (5)

We get the following relationship between KL and ELBO:

DKL(q(θ)|p(θ|x)) = −ELBO(q) + log(p(x)) (6)

log(p(x)) = DKL(q(θ)|p(θ|x)) + ELBO(q) (7)

Therefore, instead of minimizingDKL(q(θ)|p(θ|x)), we can equivalently maximize ELBO(q),

since they both sum to a constant.

Note that ELBO has two terms. The first term is just the entropy of q, while the sec-

ond term is related to the cross entropy between p and q.

ELBO(q) = H(q)−H(q, p) (8)

2.4 Perplexity of a LDA model

Perplexity is related tightly related to ELBO, with two main differences. (1) It flips the

sign such that the desired level is a minimum rather than maximum. (2) It calculates the

measure on a per-word level, rather than on the entire document, therefore normalizing ex-

tremely small likelihoods due to compounding imposed on longer documents versus shorter

documents.
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According to Hofmann [12], perplexity refers to the log-averaged inverse probability on

unseen data. The perplexity of our LDA model can be defined as the exponential of the

cross-entropy between p̃ and q. That is,

perplexity = eH(p̃,q) = e−
∑

p̃(x)log(q(x)) (9)

Note that since we don’t know p, we use p̃ instead, which is the empirical distribution of

samples drawn from the true distribution p.

Assuming there are N sample tokens drawn, the formula simplifies to,

perplexity = e
∑

x∈p̃(log(q(x))
−1)/N (10)

which explains why Hoffman calls it the ”log-averaged inverse probability”.

Cancelling the log with the exponential, we see that the equation is equivalent to the

geometric mean of the inverse token probabilities. This is another popular form of the

definition of perplexity but the two forms are mathematically equivalent.

perplexity = N

√∏
x∈p̃

(1/log(q(x)) (11)

Since this is a measure on token probabilities, a longer or shorter sentence in the unseen

test set will not affect the measure.
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In practice, we optimize our variational inference model using KL divergences, but we

report perplexity as an afterthought by dividing the log probabilities by the number of

words and then using it as the negative exponent:

perplexity = 2−ELBOP erword(q) (12)

Figure 9: Exponent of perplexity is -ELBO per word
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Figure 10: Code for function bound calculates the ELBO
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2.5 LDA implementation with Gibbs sampling

In Q1 we explored MCMC methods, specifically the Metropolis-Hastings algorithm, to solve

the problem of computing high-dimensional integrals. We learned that this particular class

of sampling methods was especially effective in performing probabilistic inferences which

can be applied to solve problems specifically within the field of Bayesian inference and

learning. We applied this particular MCMC method for sampling posterior distributions,

since the posterior probability distribution for parameters given our observations proved to

be intractable, hence the use of sampling algorithms for approximate inference.

LDA is similar in that its aim is to infer the hidden structure of documents through posterior

inference. Since we cannot exactly compute the conditional distribution of the hidden vari-

ables given our observations, we can use MCMC methods to approximate this intractable

posterior distribution. Specifically, we can use Gibbs sampling to implement LDA. Gibbs

sampling is another MCMC method that approximates intractable probability distributions

by consecutively sampling from the joint conditional distribution:

P (W,Z, ϕ, θ|α, β).

This models the joint distribution of topic mixtures θ, topic assignments Z, the words of a

corpus W , and the topics ϕ. In the approach we use, we leverage the collapsed Gibbs sam-

pling method in not representing ϕ or θ as parameters to be estimated, and only considering

the posterior distribution over the word topic assignments P (Z|W ). By using Dirichlet pri-

ors on ϕ and θ, this means α and β are conjugate to the distributions ϕ and θ. This allows

us to compute the joint distribution by integrating out the multinomial distributions ϕ and

θ:

P (Z|W,α, β).

Then because W is observed we only need to sample each zm,n, that is, the topic assign-

ment for the n’th word in the m’th document, given all other topic assignments and the
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observations, not including the current topic assignment.

P (zm,n|Z¬m,n,W, α, β)

This conditional distribution is required to construct a Markov chain by sampling the next

state based on the current state, this MCMC approach is known to converge to the target

distribution, or in our case the posterior. Each state is an assignment of values to the

variables being sampled, in our case the topic assignment z, and the next state is achieved

by sampling all variables from their distribution conditioned on the current values of all

other variables and the observations. Thus, we obtain a conditional distribution where for

a single word w in document d that is assigned topic k, the conditional distribution becomes

the sum of two ratios.

P (zm,n = k|Z¬m,nW,α, β) ∝
σ¬m,n
m,k + αk∑K

i=1 σ
¬m,n
m,i + αi

∗
δ¬m,n
k,wm,n

+ βwm,n∑V
r=1 δ

¬m,n
k,r + βr

The first term being the ratio of word w in topic k, multiplied by the second term which

equals the ratio of topic k in document d. The product is a vector which assigns a weight

to each topic k, and it’s normalization is the probability of the topic assignment of the next

state based on the current state. For our context, the next state is the assignment of the

current word to a topic k. For example, a word w with a high ratio in topic k and a topic

k with a high ratio in document d is indicative that the topic assignment k for that word

w is more likely for that word w in document d.In order to compute this full conditional

distribution we keep tack of these statistics as we sweep through all the documents in a

collection. And our estimated of ϕ and θ can be implemented and calculated with the

following:

θj,k ≈
σj,k + αk∑K
i=1 σj,i + αi

ϕk,v ≈
δk,v + βv∑V
r=1 δk,r + βr
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Where σj,k is the number of times we see topic k in document j, and δk,v is the number of

times topic k has been chosen for word type v. This is how we derive the final estimates for

θ and ϕ, and we set implement this algorithmically to compare MCMC sampling methods

against other inference methods.

2.6 LDA implementation with Mean-Field Variational Inference

We ran some baseline tests using the Gensim python library initially but later reverted

to the original onlineldavb.py package of functions for fitting LDA with online variational

Bayes by Matthew D. Hoffman [13] so as to better understand and control the algorithm.

To fit LDA, the variational family chosen is a Mean-field Variational family that other-

wise mirrors the distributions of the posterior. Recall that the posterior is intractable due

to the dependence between variables arising from the two pathways of topic proportions and

term proportions to get to the actual word, as shown in figure 1. Mean-field Variational

Inference assumes that all the variables are independent so that the variational posterior

can be fully factored. Namely, the variational family from which we fit q assumes that β,

θ, z are independent and can be fully factored, such that:

q(βk, θ, z) =
∏
k

q(βk)
∏
d

q(θd)
∏
n

q(zdn) (13)

To find the best q within this family to fit the posterior p, we introduce variational parame-

ters that we tweak as we attempt to maximize the likelihood of the model to the Wikipedia

corpus.

The variational parameter for topic assignments is ϕ.

q(zdi = k) = Multinomial(ϕdwk) (14)
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The variational parameter for topic proportions is γ.

q(θd) = Dirichlet(θd; γd) (15)

The variational parameter for topics is λ.

q(βk) = Dirichlet(βk;λk) (16)

Note that probability distributions of two Dirichlet and one Multinomial have not changed

from the original posterior p. Note that the posterior p also has

zdi ∼ Multinomial(θ)

θd ∼ Dirichlet(α)

βk ∼ Dirichlet(η)

and these distributions are mirrored in q, but the big difference is the dependence of the

terms in p (such as between θ and β) has been broken.
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Figure 11: Graphical model of MFVI for LDA

The figure above shows the template for MFVI, where the arrows between variables are

now broken and do not show the dependence. Instead, the arrows we see are between the

variational parameters and the parameters. (The figure only illustrates for θ and z, and but

the same is true for β that is outside of this figure.)

From this template, Hoffman developed an Expectations Maximization (EM) algorithm,

which consists of E steps and a M steps. At each stage or sub-stage, due to our assumption

of independence, we solve for the best q(zdi), q(θd), or q(βk) while holding the other vari-

ables constant and assuming that they are correctly specified. The E step solves this for

topic proportion (left pathway in figure 1) by assuming that topics is correctly specified. It

does this by varying ϕ and γ to optimize q(zdi) and q(θd). The algorithm loops until no

further improvement is shown. Then, the M step solves for the topics (right pathway in

figure 1) by assuming that topic proportions are correctly specified. It does this by varying

λ to optimize q(βk). The full algorithm is shown in the pseudo-code below.
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Figure 12: MFVI EM Algorithm for LDA

2.6.1 Our improvements to the MFVI algorithm

We make two tweaks to the MFVI algorithm as described above.

Firstly, we find it wasteful to repeat the E step indefinitely to find the perfect variational

parameters ϕ and γ under the assumption that q(βk) is correctly specified because we know

that that assumption is certainly false at the start of the algorithm when λ is assigned

randomly. The focus should be to process as many documents as possible for an online

algorithm and not be caught up with ”perfect as the enemy of good”. As the algorithm

converges upon many passes, we will expect that the E step will not require many iterations

anyway, as it will just be incremental changes at that point. Therefore, we changed the

code to take the maximum number of E step iterations as a parameter, so that we can vary

it from say 5 to 80. The results are shown in the results section of this write-up.

Secondly, we are motivated by Shen, Gao, and Ma [11] to find means to under-parameterize

the MFVI model so that we can run experiments on early stopping, and in doing so, get

hints about the true dimensionality of the underlying processes. This would answer the

key question as to how many critical words are really needed to distinguish topics from the

corpus, and bear light as to whether a human looking at the top 20 or 100 words can do

this effectively. We do this under-parameterization by keeping the structure of the algo-

rithm but no longer changing some of the λ variational parameters effectively fixing them
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at baseline probabilities. We remove variational parameters from the most popular words

first, as they are assumed to have the most commonality and hence less useful to distin-

guish topics. This parameterization removal does not change the size of the dataset nor the

likelihood calculations so we can do an apples-to-apples comparison across under and over

parameterized models. More details and results are available in the results section of this

write-up.

3. Results

3.1 Preprocessing Experiments

3.1.1 Minimal Preprocessing - Tokenization and N-grams

With minimal preprocessing, we remove punctuation and tokenize every article into uni-

grams and bigrams. There are 504 thousand words in the dictionary for which we count

unigrams and bigrams frequencies. The large sparse matrix takes considerable time to run.

In the figure below, we show the evolution of the likelihood and perplexity scores over the

first 40 minutes of runtime on a machine with 4 CPU cores.
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Figure 13: Optimal K value for Wikipedia dataset

As evidenced above, the performance in terms of time (40 minutes) or convergence

(with perplexity stuck at around 420 units) is not very good due to a large number of latent

parameters and tokens.
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3.1.2 Extensive Preprocessing - Lemmatization and Dictionary Compression

We also ran the same experiment with extensive preprocessing. In addition to the above,

We applied the lemmatization process with the spaCy library to infer the part-of-speech

using the Universal Part-of-Speech (UPoS) tagset as per Petrov et al., 2012. It lists the fol-

lowing 17 categories: adjective (ADJ), adposition (ADP), adverb (ADV), auxiliary (AUX),

coordinating conjunction (CCONJ), determiner (DET), interjection (INTJ), noun (N), nu-

merical (NUM), particle(PART), pronoun (PRON), proper noun (PROPN), punctuation

(PUNCT), subordinating conjunction (SCONJ), symbol (SYM), verb (VERB) and other

(X). Of these categories, we choose to only retain nouns, verbs, adverbs, and adjectives as

meaningful tokens for the purpose of inferring topics.

In addition, we dealt with a large number of rare yet uninformative tokens. We removed

tokens that only appear in less than 0.1% of all documents. This reduced the number of

tokens in the dictionary to 31 thousand.

The run time and convergence are both greatly improved. In the figure below, we show

the evolution of the likelihood and perplexity scores over the first 3 minutes of runtime on

a machine with 4 CPU cores. It is likely that convergence already occurred in around 2

minutes, as compared to 40 minutes in the prior example. In addition, we achieved a better

perplexity score of around 375 as opposed to around 420 in the previous experiment.
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Figure 14: Likelihood and Perplexity evolution by iterations
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3.2 Optimal value of K for Wikipedia dataset

We ran the gensim algorithm on the lemmatized Wikipedia dataset using different values

of K to find the best number of topics as measured by the coherence score. Our finding is

that a value of around 25 topics is optimal.

Figure 15: Optimal K value for Wikipedia dataset

3.3 Improving on EM Algorithm via limiting E step iterations

As explained in the methodology section above, we modified the code to impose a maximum

number of iterations in the E-step so that the online algorithm can more quickly process

more documents in the Wikipedia corpus while not trying to overly achieve the perfect topic

proportions estimate when the topics matrix is itself a very crude estimate of reality.

We vary the maximum number of iterations between 5 and 80 as we find that, in prac-

tice, the number of iterations does not generally exceed 80 under the original conditions of
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breaking the loop upon no incremental changes to γ. As expected, as can be seen in figure

16 below, the running time until early stopping (as defined in the next section) is faster as

the maximum number of iterations is dropped to 5.

We are positively surprised that the computational performance is also proved for our

training set of 24 thousand documents, as measured by perplexity on the holdout set of 1

thousand documents at early stopping. The figure shows a higher ELBO when the number

of iterations is smaller, along with the error bars from multiple runs. We believe that this

is a positive change to the original algorithm as it balances the computation of the E step

with the M step more parsimoniously, and it prevents ELBO from getting stuck at a local

maxima while the topics matrix is still in infancy.

Figure 16: Optimal MaxE value for Wikipedia dataset

3.4 Optimal Early Stopping on Under and Over-Parametrization

Along the lines of Shen, Gao, and Ma [11], we explore optimal early stopping on under and

over-parametrization of our LDA model. According to Shen, Gao, and Ma, early stopping

is a simple and widely used method to prevent over-training neural networks, and they
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developed theoretical results to show that (1) optimal early stopping time increases with

sample sizes and (2) optimal early stopping time increases with model dimension when the

model is under-parameterized, and then decreases with model dimension when it is over-

parameterized.

While they focused on neural networks, we extend their findings with empirical results

from our MFVI algorithm for LDA. Similar to them, we define early stopping when moving

average performance on a validation set shows no improvement, with the caveat that we are

measuring performance using perplexity scores for our unsupervised learning model without

labeled data.

We find this research particularly exciting because it answers the question of the dimensions

of the underlying data. The LDA model has been largely specified by a black box, with

parameters governed by conjugate priors or hyperparameters, but it doesn’t answer the

human question of how many words are needed to master a unique topic. When viewing

the results of an LDA model, human behavior would be to look at the relative frequencies

of the top 20 words of each topic, but there is no requirement that the separation of topics

lies in the next 20, 200 or even 2000 words. The experiment on early stopping times will

enable us to answer the question as to how many words are needed to uniquely define and

master a topic, just like the widely held view that it takes a human 10,000 hours to master

a new skill (even if we feel good after 20 hours!)

We tried unsuccessfully to under-parameterize the model via trimming the Dirichlet distri-

bution or increasing its concentration to fewer topics per document. The general result was

an increase in early stopping time as parametrization increased until the original full model

is reached. We believe that this is because handicapping the model unnaturally just forces

early stopping as it finds a local minimum.
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We find success by the more natural imposition on the number of parameters that are

fit to discover the terms in topics, namely by reducing the number of variational parame-

ters λ in our mean-field variational inference model. Note that we are not actually changing

the dataset, which is now fixed after the preprocessing steps, as doing so would make the

comparison over different datasets rather than different model parameterization. Instead,

we under-parameterized our model by removing the variational parameters of the more

common words (that are probably common across topics) to a baseline assumption.

Recall that we have already removed common or non-meaningful words (as defined by

lemmatization tags) from our corpus. We have also removed extremely rare words so that

topics are not learned from outliers. Along those lines, we found experimentally that the

crux of separation of topics lies in the less frequently used (and yet above a rarity thresh-

old) specialized words for each topic. These words should be included as parameters in

our model, but it is less useful to consider common words that are shared by several or all

topics. By sorting word frequencies on the corpus, we can vary the number of variational

parameters of terms in topics that we are inferring by setting the more common words to

baseline probabilities. This has the effect of setting our model to the desired dimension d

as measured over parameters for topic vocabulary. We then run experiments on various

model dimensions d and expect that the longest early stopping times will correspond to

p=d where p is the natural dimension or number of unique words required to separate the

K topics.

Our findings largely mirror the direction of Shen, Gao, and Ma in their neutral network

experiment. The results are presented in the figure below. Similar to Shen, Gao, and Ma,

we find better model outcomes (in our case measured by perplexity scores) for large model

sizes. In addition, we find that small model sizes that are under-informative parameteri-

zations and of low model capacity reach early stopping quickly. As we increase the model

size, the stopping time increases until a peak and thereafter decreases, where the longest
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times are measured to be at 10 thousand words for the 25 thousand document dataset,

and 17.5 thousand words for the 50 thousand document dataset. If we can infer similarly

from the prior work, where the peak is the underlying data dimension p equals the model

dimension d, it would mean that while the English Language has around 1 million words,

only around 15 thousand words are needed to distinguish the various topics on Wikipedia.

Indeed, most of the convergence in perplexity has already occurred at such model sizes, but

like prior work, a larger model beyond p is still helpful in incremental convergence as well

as in running times.
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Figure 17: Early Stopping Times and Perplexity for Underinformed Models

3.5 Results from Gibbs sampling

We also developed code from scratch to perform Gibbs sampling to estimate the posterior.

We obtain perplexity scores that are roughly similar to the scores from MFVI, showing

that both methods achieve comparable and relatively good performance. However, it took

38 minutes to run the code, as opposed to just 3-4 minutes for MFVI. It is expected that
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MFVI will have faster performance, and perhaps it is the better method in the world of

exponentially rising data sizes.

Figure 18: Results from Gibbs Sampling

4. Discussion and Conclusions

4.1 Human interpretation of topics

The following word clouds generated below summarizes how a human can perceive the topic

based on the relative word probabilities that are higher for certain terms in the topic. For
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example, topic 0 below appears to be about music, topic 5 below is about education and

topic 6 below is about sports.

Figure 19: Music topic

Figure 20: Academia
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Figure 21: Sports

4.2 Machine interpretation of topics

While a human might see the topics and their corresponding terms above obvious ex-post,

it is not so obvious ex-ante. Our experiments on the optimum number of topics show that

the best number as measured by coherence scores to is about 25. It is not clear if a human

would choose this same number, and different people might choose to create more or fewer

topics based on their discretions.

In addition, our experiment with under and over parameterizations and early stopping

shows that around 15 thousand words are used to distinguish topics. This is far higher than

a human can process in a typical word cloud which usually has less than 50 words.

In fact, according to a recent psychology research paper [14], Divergent Association Tasks

was given to thousands of participants to name 10 nouns that are completely unrelated to

one another. Humans have varying degrees of creativity, and this serves as a creativity score

when the words are maximally semantically distant on average. However, most of us find it
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very hard to list the perfect 10 words. Based on this, it might not be easy for a human to

create the perfect 25 topics that an LDA model can. After the first few topics of say sports,

education, and music, how easy is it to list 22 more topics? Would ”biology” be a subtopic

of education or is it a new topic? Would ”poems” be similar to ”music”, or should we have

”literature” as another topic? If psychological experiments show a difficulty at 10 nouns,

we believe that it is better for a machine to learn the topics as it ensures maximum topic

separation and lowest perplexity scores.

4.3 Final thoughts

Based on our findings above, we believe that LDA is an attractive model for unsupervised

learning of topics from the Wikipedia corpus, and it is best for computers rather than

humans to perform this cognitively difficult task. Preprocessing is key for performance, and

lemmatization works better than raw tokens as the meaning behind the tokens is inferred

and cataloged. In addition, we would prefer a MFVI model as compared to a MCMC model

– both have similar outputs but the former has a much faster run time. As for the MFVI

model, we propose limiting the E steps of the algorithm as a means for optimizing the run

time performance, while not sacrificing or possibly even leading to better perplexity scores.
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