{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# (Text exercises 2.21, 2.24, 2.25) Separating and supporting hyperplanes" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## The set of separating hyperplanes\n", "(10 points) Consider two disjoint sets $\\mathcal{C},\\mathcal{D} \\subseteq \\mathbb{R}^{n}$, they need not be convex. Consider the set of $(a,b)\\in\\mathbb{R}^{n+1}$ for which $a^{\\top}x \\leq b$, $\\forall\\:x\\in\\mathcal{C}$, and $a^{\\top}x \\geq b$, $\\forall\\:x\\in\\mathcal{D}$. Show that this set is a convex cone (which is the singleton $\\{0\\}$ if there is no hyperplane that separates $\\mathcal{C}$ and $\\mathcal{D}$)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Explicitly write convex set as intersection of halfspaces\n", "\n", "(5 points) Express the closed convex set $\\{x \\in \\mathbb{R}^{2}_{+} \\:\\mid\\: x_{1}x_{2} \\geq 1\\}$ as an intersection of halfspaces." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Explicit computation of supporting hyperplanes\n", "\n", "(5 points) Let $\\mathcal{C}=\\{x\\in\\mathbb{R}^{n} \\:\\mid\\: \\parallel x \\parallel_{\\infty} \\:\\leq\\: 1\\}$, the $\\ell_{\\infty}$-norm unit ball in $\\mathbb{R}^{n}$, and let $\\widehat{x}$ be a point in the boundary of $\\mathcal{C}$. Identify the supporting hyperplanes of $\\mathcal{C}$ at $\\widehat{x}$ explicitly." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Inner and outer polyhedral approximations\n", "(5 + 5 = 10 points) Let $\\mathcal{X} \\subseteq \\mathbb{R}^{n}$ be a closed convex set, and suppose that $x_{1}, ..., x_{K}$ are on the boundary of $\\mathcal{X}$. Suppose that for each $i\\in\\{1,...,K\\}$, the equation $a_{i}^{\\top}(x-x_{i}) = 0$ defines a supporting hyperplane for $\\mathcal{X}$ at $x_{i}$, i.e., $\\mathcal{X} \\subseteq \\{x \\in \\mathbb{R}^{n} \\:\\mid\\: a_{i}^{\\top}(x-x_{i}) \\leq 0\\}$. Now consider two polyhedra\n", "\n", "$$ \\mathcal{P}_{\\text{inner}} = {\\rm{conv}}\\{x_{1}, ..., x_{K}\\}, \\quad \\mathcal{P}_{\\text{outer}} = \\{x \\in \\mathbb{R}^{n} \\:\\mid\\: a_{i}^{\\top}(x-x_{i}) \\leq 0,\\; i=1,...,K\\}. $$\n", "\n", "Prove that $\\mathcal{P}_{\\text{inner}} \\subseteq \\mathcal{X} \\subseteq \\mathcal{P}_{\\text{outer}}$. Draw a picture illustrating this." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.14" } }, "nbformat": 4, "nbformat_minor": 2 }