{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Friends of convex\n", "\n", "For each of the following statements, determine TRUE or FALSE. If your answer is TRUE, then prove that statement. If your answer is FALSE, then give a counterexample." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "(a) (10 points) Hyperbolic function $f(x_{1},x_{2}) = x_{1}x_{2}$ is quasiconcave on ${\\rm{dom}}(f) = \\mathbb{R}^{2}_{>0}$." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Solution:\n", "TRUE. Here $\\mathbf{dom}(f)$ is the positive orthant - a convex set (in fact, a convex cone). Since all superlevel sets of the function $f$, i.e., sets of the form $\\{(x_{1},x_{2})\\in\\mathbb{R}^{2} \\:\\mid\\: f(x_{1},x_{2}) \\geq \\alpha\\}$, $\\alpha \\in \\mathbb{R}$, are convex, hence by Lecture 7, p. 16, the function $f$ is quasiconcave." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "(b) (10 points) Logistic function $f(x) = \\displaystyle\\frac{\\exp(x)}{1 + \\exp(x)}$ is log-concave on ${\\rm{dom}}(f) = \\mathbb{R}$." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Solution:\n", "TRUE. We have \n", "$$\\log\\left(\\displaystyle\\frac{\\exp(x)}{1 + \\exp(x)}\\right) = x - \\log\\left(1 + \\exp(x)\\right).$$\n", "The first term above is linear, hence concave. By second order condition, the function $\\log(1+\\exp(x))$ is convex, so the second term being its negative, is concave. Since the sum of concaves is concave, therefore $\\log(f(x))$ is concave." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "(c) (10 points) $f(x) = \\begin{cases}x &\\text{for}\\; x<0,\\\\ x+1 &\\text{for}\\; x>0,\\end{cases}$ is pseudo-convex but not quasiconvex on ${\\rm{dom}}(f) = \\mathbb{R}\\setminus\\{0\\}$." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Solution:\n", "TRUE. Since the domain is non-convex, hence $f(x)$ is NOT quasiconvex. However, the convexity of the domain is not needed in the definition of pseudo-convex function given in Section 1 of the paper sent to the class: O.L. Mangasarian, \"Psedo-convex functions\", J. SIAM Control, 1965. Section 3 of this paper discusses this example." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "(d) (15 points) $f(X) = \\log X$ is operator monotone and operator concave on ${\\rm{dom}}(X) = \\mathbb{S}_{++}^{n}$." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Solution:\n", "TRUE. Recall the limiting definition of $\\log(x)$ over $x>0$, given by $\\log(x) = \\lim_{p\\rightarrow 0}\\displaystyle\\frac{1}{p}(x^{p}-1)$. Likewise, for $X\\in\\mathbb{S}^{n}_{++}$, we have\n", "$$\\log(X) = \\displaystyle\\lim_{p\\rightarrow 0}\\frac{1}{p}\\left(X^{p}-I\\right).$$\n", "Since $X^{p}$ is operator monotone and operator concave for all $0 \\leq p \\leq 1$ [(see p. 10-11 of these notes sent to class)](http://www.ueltschi.org/AZschool/notes/EricCarlen.pdf), hence the same holds in the small $p$ case appearing in the limit above." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "(e) (15 points) $f(X) = X^{-1}$ is operator monotone and operator convex on ${\\rm{dom}}(X) = \\mathbb{S}_{++}^{n}$." ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "#### Solution:\n", "TRUE. To prove monotonicity, we will show that if $X \\succeq Y$, then $X^{-1} \\preceq Y^{-1}$ for all $X,Y\\in\\mathbb{S}^{n}_{++}$ (this is like decreasing function). Let $Z:= X^{-1/2}YX^{-1/2} \\in \\mathbb{S}^{n}_{++}$ (congruence transform preserves sign-definiteness). Then\n", "$$X \\succeq Y \\quad \\Leftrightarrow \\quad X - Y = X^{1/2}\\left(I - X^{-1/2}YX^{-1/2}\\right)X^{1/2} \\succeq 0 \\quad \\Leftrightarrow \\quad I - X^{-1/2}YX^{-1/2} \\succeq 0 \\quad \\Leftrightarrow \\quad Z - I \\preceq 0.$$\n", "On the other hand, \n", "$$X^{-1} -Y^{-1} = X^{-1/2}\\left(I - Z^{-1}\\right)X^{-1/2} = X^{-1/2}Z^{-1/2}\\left(Z-I\\right)Z^{-1/2}X^{-1/2} \\preceq 0,$$\n", "which follows from the fact that the LHS of the last inequality is congruence transform by the non-singular matrix $X^{-1/2}Z^{-1/2}$, and that $Z - I \\preceq 0$. \n", "\n", "\n", "To prove operator convexity of $f(X)$, we need to show\n", "$$f(\\theta X + (1-\\theta)Y) \\preceq \\theta f(X) \\: + \\: (1-\\theta)f(Y), \\quad\\text{for all}\\;X,Y\\in\\mathbb{S}^{n}_{++}, \\quad 0\\leq\\theta\\leq 1.$$\n", "\n", "Since $f$ is continuous, it suffices to prove mid-point convexity, i.e., to prove the above inequality for $\\theta = 1/2$. Thus, we want to prove\n", "$$\\begin{aligned}\n", "\\left(\\displaystyle\\frac{X+Y}{2}\\right)^{-1} \\preceq \\displaystyle\\frac{1}{2}\\left(X^{-1} + Y^{-1}\\right) \\quad \\Leftrightarrow \\quad \\displaystyle\\frac{1}{2}\\left(X^{-1} + Y^{-1}\\right) - \\left(\\displaystyle\\frac{X+Y}{2}\\right)^{-1} = X^{-1/2}\\left[\\frac{1}{2}I + \\frac{1}{2}Z^{-1} - \\left(\\displaystyle\\frac{I+Z}{2}\\right)^{-1}\\right]X^{-1/2} \\succeq 0,\n", "\\end{aligned}$$\n", "where $Z:= X^{-1/2}YX^{-1/2} \\in \\mathbb{S}^{n}_{++}$ (congruence transform preserves sign-definiteness). Therefore, it is enough to prove that the matrix within the square bracket appearing in the last inequality is positive semidefinite, i.e., $\\frac{1}{2}(I + Z^{-1}) \\succeq \\left(\\frac{I+Z}{2}\\right)^{-1}$. By arithmetic mean-harmonic mean inequality, we know that $(a+b)/2 \\geq ((a^{-1}+b^{-1})/2)^{-1}$ for all $a,b>0$, specializing which for $a=1$ and $b=$ any eigenvalue of $Z^{-1}\\in\\mathbb{S}^{n}_{++}$, followed by the application of Spectral Theorem, gives us\n", "$$\\frac{1}{2}(I + Z^{-1}) \\succeq \\left(\\frac{I+Z}{2}\\right)^{-1} \\quad \\Leftrightarrow \\quad \\frac{1}{2}I + \\frac{1}{2}Z^{-1} - \\left(\\displaystyle\\frac{I+Z}{2}\\right)^{-1} \\succeq 0,$$\n", "as desired." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.14" } }, "nbformat": 4, "nbformat_minor": 2 }