{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "name": "Untitled0.ipynb", "version": "0.3.2", "views": {}, "default_view": {}, "provenance": [], "collapsed_sections": [] }, "kernelspec": { "name": "python3", "display_name": "Python 3" } }, "cells": [ { "metadata": { "id": "quosgQlOUFhN", "colab_type": "code", "colab": { "autoexec": { "startup": false, "wait_interval": 0 }, "base_uri": "https://localhost:8080/", "height": 85 }, "outputId": "58d3eb72-83d0-4aac-90a4-86064819d3af", "executionInfo": { "status": "ok", "timestamp": 1523223980564, "user_tz": 420, "elapsed": 2379, "user": { "displayName": "Arun Rajendran", "photoUrl": "https://lh3.googleusercontent.com/a/default-user=s128", "userId": "100710189298922321078" } } }, "cell_type": "code", "source": [ "%matplotlib inline\n", "\n", "import numpy as np\n", "import tensorflow as tf\n", "import matplotlib.pyplot as plt\n", "from tensorflow.examples.tutorials.mnist import input_data\n", "mnist = input_data.read_data_sets('MNIST_data', validation_size=0)" ], "execution_count": 1, "outputs": [ { "output_type": "stream", "text": [ "Extracting MNIST_data/train-images-idx3-ubyte.gz\n", "Extracting MNIST_data/train-labels-idx1-ubyte.gz\n", "Extracting MNIST_data/t10k-images-idx3-ubyte.gz\n", "Extracting MNIST_data/t10k-labels-idx1-ubyte.gz\n" ], "name": "stdout" } ] }, { "metadata": { "id": "S6K17-TCUFmf", "colab_type": "code", "colab": { "autoexec": { "startup": false, "wait_interval": 0 }, "base_uri": "https://localhost:8080/", "height": 282 }, "outputId": "0e5b7de1-0cc8-432f-d8c1-5b23f461c0f3", "executionInfo": { "status": "ok", "timestamp": 1523223981173, "user_tz": 420, "elapsed": 456, "user": { "displayName": "Arun Rajendran", "photoUrl": "https://lh3.googleusercontent.com/a/default-user=s128", "userId": "100710189298922321078" } } }, "cell_type": "code", "source": [ "img = mnist.train.images[2]\n", "plt.imshow(img.reshape((28, 28)), cmap='Greys_r')" ], "execution_count": 2, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "" ] }, "metadata": { "tags": [] }, "execution_count": 2 }, { "output_type": "display_data", "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPoAAAD4CAYAAADFJPs2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAADnRJREFUeJzt3X+IXeWdx/H3TUQNcVtbf6W6gtot\nX11mFJr9w8TNZmq1qaKbP2IsQULQiGWpRZAi1v6jIttFDdmsuoVSV0tASURpoi1Jq7sYMMiGsNGZ\nUh5/UPwjsaZRa3Wr2SSe/WNuwtzJ3DMzZ879MXneLxi453nuOefL0U/Oc8659z6NoiiQdGKb0+sC\nJHWeQZcyYNClDBh0KQMGXcpBURQd/wOKsX/Dw8PF+LZ++bM2a5utdZVlsFH18VpErAcub+7kjpTS\nrnbvbTQaLTspioJGo1Fpv51mbdVY2/TVXVdRFG03VmnoHhFLga+llBYBa4F/q1ibpC6oeo3+TeAX\nACml3wFfiogv1FaVpFqdVHG9BcDuMct/bLb9eaI3Dw8PMzAw0NLWz5/Is7ZqrG36ulVX1aCPV3qh\nMTg42LLcr9dMYG1VWdv0deAavW1f1aH7PkbP4EedC7xbcVuSOqxq0H8N3AAQEV8H9qWUPq6tKkm1\nqhT0lNJOYHdE7GT0jvv3aq1KUq0qP0ef1k58jl4La6umX2vr++fokmYXgy5lwKBLGTDoUgYMupQB\ngy5lwKBLGTDoUgYMupQBgy5lwKBLGTDoUgYMupQBgy5lwKBLGTDoUgYMupQBgy5lwKBLGTDoUgYM\nupQBgy5lwKBLGTDoUgYMupQBgy5lwKBLGTDoUgYMupSBk3pdgFS3lStXtm174oknSte94oorSvtf\ne+216oX1UKWgR8QQ8Azw22bTcErp+3UVJaleMzmjv5xSuqG2SiR1jNfoUgYaRVFMe6Xm0P3fgbeA\nLwP3pZR+0+79IyMjxcDAQNUaJU1No21HxaCfB/w9sBm4CPgv4G9SSv834U4ajZadFEVBo9G2pp6y\ntmr6qbbxN+M2b97MjTfeCPTXzbi6j1lRFG03VukaPaW0F9jUXHw7Iv4AnAf8vsr2JHVWpWv0iLgp\nIn7QfL0AOAfYW2dhkupT9a77VuCpiFgOnAz8U7the68tX768tP/MM888rm3t2rXHXj/++OO116TO\nuvzyy9u2vfnmm90upy9UHbp/DFxfcy2SOsTHa1IGDLqUAYMuZcCgSxkw6FIGTvivqV599dWl/RN9\nNHf16tXHXvt4rf/MmVN+frr44ovbtp1zzjml6/bLp/vq5hldyoBBlzJg0KUMGHQpAwZdyoBBlzJg\n0KUMnPDP0VetWlXaPzw83KVKVJfzzz+/tP+aa65p2/byyy+Xrrtnz57qhfUxz+hSBgy6lAGDLmXA\noEsZMOhSBgy6lAGDLmXghH+OPtl3lzX7bN26tfK6IyMjNVYye5gCKQMGXcqAQZcyYNClDBh0KQMG\nXcqAQZcyMOufo080Re5Y8+fP71Il6pbTTjut8rovvPBCjZXMHlMKekQMAFuA9SmlRyPifGAjMBd4\nF1idUjrYuTIlzcSkQ/eImA88Arw0pvl+4LGU0hLgLeCWzpQnqQ5TuUY/CFwL7BvTNgQc/Rzi88BV\n9ZYlqU6TDt1TSoeBwxExtnn+mKH6fuArZdsYHh4+bo6zoiimV2mHLF26tLStX+o8qt/qGaufazs6\np9q2bdt6XEmrbh2zOm7GTTor3eDgYMtyURS1TWY32c24HTt2lPbv3LmzZXnp0qUtPyA4NDRUuba6\n1Xnc6tbN2t5+++3S/gsvvLBludFoHAvURD8cOdb27dtnVtw01H3Myv7RqPp47ZOImNd8fR6tw3pJ\nfaZq0F8EVjRfrwD6azwkqcWkQ/eIWAisAy4ADkXEDcBNwJMR8V3gHeDnnSyyzMqVK0v7Tzpp1n9U\nIDvnnntuaf/ZZ59dedtvvPFG5XVns6ncjNvN6F328a6uvRpJHeFHYKUMGHQpAwZdyoBBlzJg0KUM\nzPpnT5dddtmM1t+9e3fL8tKlS49rU3c99dRTpf2TffX4wIEDLctnnXXWsbaPPvpoZsXNUp7RpQwY\ndCkDBl3KgEGXMmDQpQwYdCkDBl3KwKx/jj5Tr7766pTa1Or0008vbVu1alXbdW+99dbSbV966aXV\nCwMeeOCBluUNGzYca/vggw9mtO3ZyjO6lAGDLmXAoEsZMOhSBgy6lAGDLmXAoEsZyP45+hlnnDGl\ntk5YvHhxaf/cuXOPa1uyZMmx19ddd13bdcfPVjLeKaecUtq/bNmy0v6JZhh57733jr0+fPhw23VT\nSqXbPnLkSGn/nDnl56eJZueZbMaeE51ndCkDBl3KgEGXMmDQpQwYdCkDBl3KgEGXMtAoiqLzO2k0\nWnZSFMWEz2Gr2LJlS2n/9ddfX9r/2WeftSzPmzePTz/99NhyJ7+/PNn0wOM1Gg3G/vf6/PPP2773\n0KFDpdvat29faf+uXbtK+3fu3NmyvGHDBu64445jy1u3bm277t69e0u3/eGHH5b2n3rqqaX946fK\nrvP/tzrVXVdRFG03NqUPzETEALAFWJ9SejQingQWAu833/JQSumXMy1UUmdMGvSImA88Arw0ruuH\nKaUXOlKVpFpN5Rr9IHAtUD7Wk9S3pnyNHhH3AgfGDN0XACcD+4HbU0oH2q07MjJSDAwMzLxaSWVm\ndo0+gY3A+ymlPRFxN3AvcHu7Nw8ODrYsezNulDfjJubNuOrba6dS0FNKY6/XtwI/qbIdSd1R6Tl6\nRDwbERc1F4eAkdoqklS7Sa/RI2IhsA64ADgE7GX0LvzdwF+AT4CbU0r72+6kg8/RJ/Pwww+X9g8N\nDbUsL1y4sG/mR9+0aVPL8oMPPshdd911bPn1119vu+727ds7VtdEpvPf9J577intH/+77ONNNrQf\n/3sCGQ3dq1+jp5R2M3rWHu/ZGdQkqYv8CKyUAYMuZcCgSxkw6FIGDLqUgVn/NdW6WVs106ntlVde\nKe1ftGhRaf/GjRtL+9esWVO5tm7q5uM1z+hSBgy6lAGDLmXAoEsZMOhSBgy6lAGDLmUg+2mTNfs8\n/fTTvS5h1vGMLmXAoEsZMOhSBgy6lAGDLmXAoEsZMOhSBgy6lAGDLmXAoEsZMOhSBgy6lAGDLmXA\noEsZMOhSBvw+uvrOZL91fskll5T2b9u2rc5yTghTCnpEPAgsab7/x8AuYCMwF3gXWJ1SOtipIiXN\nzKRD94j4BjCQUloEfBv4V+B+4LGU0hLgLeCWjlYpaUamco2+A1jZfP0nYD4wBGxttj0PXFV7ZZJq\nM6251yLiNkaH8MtSSmc3274KbEwpLW633sjISDEwMDDTWiWVa3tzY8o34yJiObAW+Bbw5lQ2ftTg\n4GDLcr9OegfWVlWdkywuXtz2nAHAnXfeWdq/fv36yrV1UwcmWWzbN6XHaxGxDPgRcE1K6SPgk4iY\n1+w+D9g30yIldc5UbsZ9EXgIuC6l9EGz+UVgRfP1CsDnGapNURSlf3PmzCn90/GmMnT/DnAmsDki\njratAX4WEd8F3gF+3pnyJNVh0qCnlH4K/HSCrqvrL0dSJzjOkTJg0KUMGHQpAwZdyoBBlzLg11Q1\n61x55ZWl/evWretSJbOHZ3QpAwZdyoBBlzJg0KUMGHQpAwZdyoBBlzLgc3T1nX78NZjZzjO6lAGD\nLmXAoEsZMOhSBgy6lAGDLmXAoEsZ8Dm6uu65554r7V+0aFGXKsmHZ3QpAwZdyoBBlzJg0KUMGHQp\nAwZdyoBBlzLQKIpi0jdFxIPAEkafu/8Y+EdgIfB+8y0PpZR+2XYnjUbLToqi6NvvHFtbNdY2fXXX\nVRRF241N+oGZiPgGMJBSWhQRZwD/A/wn8MOU0gu1VSmpY6byybgdwH83X/8JmA/M7VhFkmo3paH7\nURFxG6ND+CPAAuBkYD9we0rpQLv1RkZGioGBgRmWKmkSbYfuUw56RCwH7gG+Bfwd8H5KaU9E3A38\ndUrp9rY78Rq9FtZWTb/W1lfX6AARsQz4EfDtlNJHwEtjurcCP5lRhZI6atLHaxHxReAh4LqU0gfN\ntmcj4qLmW4aAkY5VKGnGpnJG/w5wJrA5Io62PQFsioi/AJ8AN3emPEl1mNbNuMo78Rq9FtZWTb/W\n1s1rdD8ZJ2XAoEsZMOhSBgy6lAGDLmXAoEsZMOhSBgy6lAGDLmXAoEsZMOhSBgy6lAGDLmXAoEsZ\n6MrXVCX1lmd0KQMGXcqAQZcyYNClDBh0KQMGXcqAQZcyMKWZWuoUEeuBy4ECuCOltKvbNUwkIoaA\nZ4DfNpuGU0rf711FEBEDwBZgfUrp0Yg4H9jI6CSX7wKrU0oH+6S2J5nGVNodrm38NN+76IPjNtPp\nx2eiq0GPiKXA15pTMF8C/AewqJs1TOLllNINvS4CICLmA4/QOv3V/cBjKaVnIuKfgVvowXRYbWqD\nPphKu8003y/R4+PW6+nHuz10/ybwC4CU0u+AL0XEF7pcw2xxELgW2DembYjRue4Angeu6nJNR01U\nW7/YAaxsvj46zfcQvT9uE9XVtenHuz10XwDsHrP8x2bbn7tcRzt/GxFbgS8D96WUftOrQlJKh4HD\nY6bBApg/Zsi5H/hK1wujbW0At0fEnUxhKu0O1nYE+N/m4lrgV8CyXh+3NnUdoUvHrNc34/ppnpw3\ngfuA5cAa4PGIOLm3JZXqp2MHo9fAd6eUrgT2APf2spjmNN9rgfHTeff0uI2rq2vHrNtn9H2MnsGP\nOpfRmyM9l1LaC2xqLr4dEX8AzgN+37uqjvNJRMxLKX3KaG19M3ROKfXNVNrjp/mOiL44br2cfrzb\nZ/RfAzcARMTXgX0ppY+7XMOEIuKmiPhB8/UC4Bxgb2+rOs6LwIrm6xXAth7W0qJfptKeaJpv+uC4\n9Xr68a5/TTUi/gX4B+Bz4Hsppde6WkAbEfFXwFPA6cDJjF6j/6qH9SwE1gEXAIcY/UfnJuBJ4FTg\nHeDmlNKhPqntEeBu4NhU2iml/T2o7TZGh8BvjGleA/yMHh63NnU9wegQvuPHzO+jSxno9c04SV1g\n0KUMGHQpAwZdyoBBlzJg0KUMGHQpA/8PepcDf6ebt3oAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": { "tags": [] } } ] }, { "metadata": { "id": "_JlE_1qKUFrD", "colab_type": "code", "colab": { "autoexec": { "startup": false, "wait_interval": 0 } } }, "cell_type": "code", "source": [ "inputs_ = tf.placeholder(tf.float32, (None, 28, 28, 1), name='inputs')\n", "targets_ = tf.placeholder(tf.float32, (None, 28, 28, 1), name='targets')\n", "\n", "### Encoder\n", "conv1 = tf.layers.conv2d(inputs_, 16, (3,3), padding='same', activation=tf.nn.relu)\n", "# Now 28x28x16\n", "maxpool1 = tf.layers.max_pooling2d(conv1, (2,2), (2,2), padding='same')\n", "# Now 14x14x16\n", "conv2 = tf.layers.conv2d(maxpool1, 8, (3,3), padding='same', activation=tf.nn.relu)\n", "# Now 14x14x8\n", "maxpool2 = tf.layers.max_pooling2d(conv2, (2,2), (2,2), padding='same')\n", "# Now 7x7x8\n", "conv3 = tf.layers.conv2d(maxpool2, 8, (3,3), padding='same', activation=tf.nn.relu)\n", "# Now 7x7x8\n", "encoded = tf.layers.max_pooling2d(conv3, (2,2), (2,2), padding='same')\n", "# Now 4x4x8\n", "\n", "### Decoder\n", "upsample1 = tf.image.resize_nearest_neighbor(encoded, (7,7))\n", "# Now 7x7x8\n", "conv4 = tf.layers.conv2d(upsample1, 8, (3,3), padding='same', activation=tf.nn.relu)\n", "# Now 7x7x8\n", "upsample2 = tf.image.resize_nearest_neighbor(conv4, (14,14))\n", "# Now 14x14x8\n", "conv5 = tf.layers.conv2d(upsample2, 8, (3,3), padding='same', activation=tf.nn.relu)\n", "# Now 14x14x8\n", "upsample3 = tf.image.resize_nearest_neighbor(conv5, (28,28))\n", "# Now 28x28x8\n", "conv6 = tf.layers.conv2d(upsample3, 16, (3,3), padding='same', activation=tf.nn.relu)\n", "# Now 28x28x16\n", "\n", "logits = tf.layers.conv2d(conv6, 1, (3,3), padding='same', activation=None)\n", "#Now 28x28x1\n", "\n", "decoded = tf.nn.sigmoid(logits, name='decoded')\n", "\n", "loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=targets_, logits=logits)\n", "cost = tf.reduce_mean(loss)\n", "opt = tf.train.AdamOptimizer(0.001).minimize(cost)" ], "execution_count": 0, "outputs": [] }, { "metadata": { "id": "NR7lvV2AUFtr", "colab_type": "code", "colab": { "autoexec": { "startup": false, "wait_interval": 0 } } }, "cell_type": "code", "source": [ "sess = tf.Session()" ], "execution_count": 0, "outputs": [] }, { "metadata": { "id": "kkGi9JpUUFwx", "colab_type": "code", "colab": { "autoexec": { "startup": false, "wait_interval": 0 }, "base_uri": "https://localhost:8080/", "height": 357 }, "outputId": "164837ee-46c0-44bc-ff57-d9f59c49a87f", "executionInfo": { "status": "ok", "timestamp": 1523225723939, "user_tz": 420, "elapsed": 1739379, "user": { "displayName": "Arun Rajendran", "photoUrl": "https://lh3.googleusercontent.com/a/default-user=s128", "userId": "100710189298922321078" } } }, "cell_type": "code", "source": [ "epochs = 20\n", "batch_size = 200\n", "sess.run(tf.global_variables_initializer())\n", "for e in range(epochs):\n", " loss=[]\n", " for ii in range(mnist.train.num_examples//batch_size):\n", " batch = mnist.train.next_batch(batch_size)\n", " imgs = batch[0].reshape((-1, 28, 28, 1))\n", " batch_cost, _ = sess.run([cost, opt], feed_dict={inputs_: imgs,\n", " targets_: imgs})\n", " loss.append(batch_cost)\n", " training_loss=np.mean(batch_cost)\n", " print(\"Epoch: {}/{}...\".format(e+1, epochs),\n", " \"Training loss: {:.4f}\".format(training_loss))" ], "execution_count": 5, "outputs": [ { "output_type": "stream", "text": [ "Epoch: 1/20... Training loss: 0.1633\n", "Epoch: 2/20... Training loss: 0.1351\n", "Epoch: 3/20... Training loss: 0.1288\n", "Epoch: 4/20... Training loss: 0.1199\n", "Epoch: 5/20... Training loss: 0.1118\n", "Epoch: 6/20... Training loss: 0.1169\n", "Epoch: 7/20... Training loss: 0.1090\n", "Epoch: 8/20... Training loss: 0.1083\n", "Epoch: 9/20... Training loss: 0.1090\n", "Epoch: 10/20... Training loss: 0.1067\n", "Epoch: 11/20... Training loss: 0.1082\n", "Epoch: 12/20... Training loss: 0.1055\n", "Epoch: 13/20... Training loss: 0.1006\n", "Epoch: 14/20... Training loss: 0.1043\n", "Epoch: 15/20... Training loss: 0.1003\n", "Epoch: 16/20... Training loss: 0.1007\n", "Epoch: 17/20... Training loss: 0.1002\n", "Epoch: 18/20... Training loss: 0.1008\n", "Epoch: 19/20... Training loss: 0.0995\n", "Epoch: 20/20... Training loss: 0.1032\n" ], "name": "stdout" } ] }, { "metadata": { "id": "vXBhRTs_UFzy", "colab_type": "code", "colab": { "autoexec": { "startup": false, "wait_interval": 0 }, "base_uri": "https://localhost:8080/", "height": 337 }, "outputId": "7381cbc9-0da6-4a6f-98b0-ba8a68971db6", "executionInfo": { "status": "ok", "timestamp": 1523225725482, "user_tz": 420, "elapsed": 1491, "user": { "displayName": "Arun Rajendran", "photoUrl": "https://lh3.googleusercontent.com/a/default-user=s128", "userId": "100710189298922321078" } } }, "cell_type": "code", "source": [ "fig, axes = plt.subplots(nrows=2, ncols=10, sharex=True, sharey=True, figsize=(20,4))\n", "in_imgs = mnist.test.images[:10]\n", "reconstructed = sess.run(decoded, feed_dict={inputs_: in_imgs.reshape((10, 28, 28, 1))})\n", "\n", "for images, row in zip([in_imgs, reconstructed], axes):\n", " for img, ax in zip(images, row):\n", " ax.imshow(img.reshape((28, 28)), cmap='Greys_r')\n", " ax.get_xaxis().set_visible(False)\n", " ax.get_yaxis().set_visible(False)\n", "\n", "\n", "fig.tight_layout(pad=0.1)" ], "execution_count": 6, "outputs": [ { "output_type": "display_data", "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABawAAAEsCAYAAAAvofT2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xm8XfO9P/4dkSAjEYkpCWL2iIgE\nQYw13Yu0huCqoWpqEWpoUbPSmqtXtaXVEt/mtqYbSquqZioIgkqbEiRCRBKJyEBEvn/cx/39vme/\n32Q5e59zVs55Pv9bL2vv/cnZn73W2h/7sV7tlixZUgEAAAAAgJa2XEsPAAAAAAAAKhUL1gAAAAAA\nlIQFawAAAAAASsGCNQAAAAAApWDBGgAAAACAUrBgDQAAAABAKSz/Rf/x/ffnLmmugdC6rLZa13bm\nD41l/lAL84damD/UwvyhFuYPtTB/aCxzh1qYP9RitdW6tvu8/+YX1gAAAAAAlMIX/sL6/9WrV7em\nHAetwPTpH37ufzN/WBrzh1qYP9TC/KEW5g+1MH+ohflDLcwfamH+UIsvmj//yy+sAQAAAAAoBQvW\nAAAAAACUggVrAAAAAABKwYI1AAAAAAClYMEaAAAAAIBSsGANAAAAAEApWLAGAAAAAKAULFgDAAAA\nAFAKFqwBAAAAACgFC9YAAAAAAJSCBWsAAAAAAErBgjUAAAAAAKVgwRoAAAAAgFKwYA0AAAAAQCks\n39IDgGXF5ZdfHrJOnTqFbMiQISEbOnToUp//nnvuCdnDDz8csmuvvXapzwUAAAAAyyK/sAYAAAAA\noBQsWAMAAAAAUAoWrAEAAAAAKAUL1gAAAAAAlILSRUg8+eSTIdt2220b/XxLlixZ6j777rtvyLbf\nfvuQZeWMkyZNatzAaNUGDBgQsvHjx4fsBz/4QcguuOCCJhkTTatLly4h++1vf9tgOzvWTJ48OWRf\n+cpXQvb666/XMDoAAGhbVl111ZBttNFGjX6+f/zjHyG79NJLQ1b9ve+ll14K+zz11FONHgc0Nb+w\nBgAAAACgFCxYAwAAAABQChasAQAAAAAoBfewps2r9/2qp0+fHrKHH364wfb6668f9hk8eHDIevTo\nEbKRI0eG7NRTT/0yQ6SN2GGHHUKW3U99ypQpzTEcmsE666wTsn322afBdjYH+vbtG7LDDjssZBdd\ndFHjB0eL2XHHHUOW9SGsvPLKzTGcpTrkkENCNnbs2JC98cYbzTEcWsCRRx4ZsptvvjlkF154Ycgu\nueSSkC1evLgew2Ip1lhjjZA98sgjIXviiSdCdtlll4XsX//6V13G1RRWWWWVkA0fPjxko0ePbrC9\naNGiJhsT0LwOP/zwkGXXMFtvvXXIsvtaFzVjxoyQZddwyy+/9OW+5ZbzG1bKy+wEAAAAAKAULFgD\nAAAAAFAKFqwBAAAAACgFC9YAAAAAAJSC0kXalF122SVk22yzTaHHTps2LWQ77bRTof3mzp3bYLtj\nx45hn9dffz1ka621Vsh69er1heOE/7XVVluFLCv7+dWvftUcw6HOVl999ZDdfffdLTASyu5rX/ta\nyNq3b98CIynm4IMPDtlJJ50UsmHDhjXHcGhi2XXNddddV+ixWenilVdeGbL58+d/6XHxxbLCsNde\ney1kK6ywQsiywrBlrWAx+7d27tw5ZOPGjWuw/corr9RvYG1UVi6XlbJuuummDbY322yzsI8STCqV\nSmWTTTYJ2fnnn99ge//99w/7ZKWG7dq1q9/APkfPnj2b/DWgDPzCGgAAAACAUrBgDQAAAABAKViw\nBgAAAACgFCxYAwAAAABQCqUuXTzuuONCNnLkyJC99957IcvKVW688caQTZo0KWSvvvpq0SGyjOnb\nt2/IsmKErDgxK2ecMmVKo8Zx+eWXhywrUMvcddddjXpNWrdsfh566KEhu//++5tjONTZxRdfHLIR\nI0aEbJ111qnba+6xxx4hW265+P+5n3/++ZApf2w5WQHQvvvu2wIjabwnnngiZKeffnrIunTpErKP\nPvqoScZE08nmZ9euXQs99vHHHw/ZggULah4TDfXu3TtkjzzySMhWWmmlkP33f/93yA444IC6jKu5\nZCWgWRHj2WefHTIli7U5+eSTQ5ZdE3Xr1m2pz5W9Z9OnT2/cwGhVNtpoo5BlBdAtIZuj2RoW5VJd\n+tqnT5+wT/ZdfaeddgrZZ599FrKf/vSnIXvggQdCtqyfg/zCGgAAAACAUrBgDQAAAABAKViwBgAA\nAACgFCxYAwAAAABQCqUuXcyK6bp37x6yzTbbrNDz7bPPPiH75JNPQjZ16tRCz9cSsoLJc845J2QP\nP/xwcwxnmXPLLbeELCt3mjNnTshmzJhRt3EcdNBBIWvfvn3dnp+2Z+DAgSHr0KFDyH7zm980x3Co\ns3PPPTdkS5YsadLXHDp0aKFs9uzZIcsKtbKCLuov+9uvt956Ibv55pubYTSN07Nnz5BlpW9KF5c9\nK664YsguuOCCRj/fDTfcELKmPja2RbvsskvIspKyzIknnljv4TSpIUOGhCwrxnrmmWdC9otf/KJJ\nxtRWZMXRP/rRj0KWlXsWcccdd4Rs//33D1k9v/PRNLJrgksuuSRk2ZrI6NGjQ7Zw4cKQffzxxw22\ns3Wjjh07hmzcuHEhywrKn3zyyZBl18rz5s0LmWudlrPNNtuELPuetuuuuzbYbuxx6/NcddVVIcvK\nGd9///2QPfvssyE78MADQ5bN+ebmF9YAAAAAAJSCBWsAAAAAAErBgjUAAAAAAKVgwRoAAAAAgFIo\ndenicccdF7Itt9wyZC+//HLIBgwYELJtt902ZIMGDQrZuuuuG7IPP/ywwXa3bt3CPkVlN0OfP39+\nyLIyoWxsxxxzTMiULhb3+uuvN/lrXHHFFQ22e/XqVehxb7zxRsjuv//+uoyJ1uX73/9+yLLy0Acf\nfLA5hkMNXnzxxZC1a9euSV9zwYIFIcuKNrLi41VWWSVkDz30UMiWW87/I6+3rPglK1adNWtWyL7z\nne80yZjqISvBonXYbrvtQtanT59Cj82un3/729/WPCYaWmONNUJ2+OGHF3rsd7/73ZBNmzat5jE1\nlaxgseh3qP/6r/8KWXbdRXHV35cqlfoWlQ0bNixkU6ZMCdlPfvKTkJ1//vkhK0MhWVuQrYk899xz\nIVtrrbVClhUbZrLv15tvvnmD7X/9619hn6zU+s033wxZdv6iXLJi+fPOOy9k1WWKlUqlssIKKyz1\n+efOnRuy8ePHh2zixIkhO+qoo0I2efLkkPXr1y9knTt3DtmOO+4Ysu9973shy4pMm5tvjwAAAAAA\nlIIFawAAAAAASsGCNQAAAAAApWDBGgAAAACAUih16eLtt99eKKvFqquuGrJddtklZNVFZbvvvnuj\nXzMrWBw3blzIJk2aFLIVV1wxZP/85z8bPRbq74gjjgjZqaee2mC7ffv2YZ958+aF7PTTTy+0H23L\nBhtsELK+ffuGbMaMGSH76KOPmmRMNM7Xvva1kGXv5ZIlSwplRYwZMyZk99xzT8hmz54dsj333DNk\nxx9/fKHXzYpLfvCDHxR6LLmrr746ZB06dAjZwQcfHLKs/KUl9OzZM2QbbrhhyBo73ymXouV9mZde\neqmOI+HzZGWCO+20U8iysrobbrihScbUVPbaa6+QZQVVf/3rX0OWFfNRXP/+/UM2fPjwQo999913\nQ5aVC2+22WZLfa6sLO3EE08M2XXXXReyqVOnLvX5+XI6duwYskceeSRkWcHiTTfdFLJa1o6yksVq\n2XoN5XffffeFbOeddw5Z0dLXCRMmhKz6muWb3/xm2Ccrvc9khbGHHHJIyO68886QZcXW2XrSxRdf\nHLJf/epXDbZbokTZL6wBAAAAACgFC9YAAAAAAJSCBWsAAAAAAErBgjUAAAAAAKVQ6tLF5jBz5syQ\n3XHHHUt9XL3LH4899tiQZQWLWcnEz372s7qOhdoMHTo0ZFnJYrU//elPIcvK0WDfffcttN+cOXOa\neCR8GVlZ5q233hqyTp06Nfo1sqLEe++9t8H2CSecEPYpWub6yiuvhCwrUcv+Deeee27IsjKTCy64\nIGSLFi0qNL7W7LjjjgvZkCFDQpaVrT700ENNMqZ6+M///M+QZQWLWcF0dg1Hue24446F9lu8eHHI\nTjrppHoPh0TRkt/3338/ZB9//HGTjOnLys5B1157bcgOO+ywQs+3++671zwmGsqOBVnh3muvvRay\nrJg3u56oPmacddZZYZ9VVlklZF26dAnZk08+GbKi52ByXbt2DdmPf/zjkG255ZYhmz9/fsi+973v\nhazo9S2tQ3YcuPLKK0P2b//2b4WeL5tno0aNClk29z766KNCr1FEt27dQrb88nEp95xzzgnZ6NGj\nQ9a9e/f6DKwZ+IU1AAAAAAClYMEaAAAAAIBSsGANAAAAAEApWLAGAAAAAKAU2nzpYktYY401QpYV\nDLRr1y5kF154YciUO7ScZ599NmQDBw5c6uOyAqyjjz66LmOi9Rs8eHCh/S655JImHglfxgorrBCy\nWgoWsxK6XXbZJWTvvfdeo1+j2uuvvx6ya665JmRZwWKHDh1CduaZZ4YsK6KcMGFC0SG2WkceeWTI\nsr/pz3/+8+YYTqNkxaPDhw8P2WeffRay8847L2TKOMuvuthovfXWK/S47L3NSs9oOYMGDQrZyy+/\nHLIPP/wwZNl5o7F22223kGXnwnXXXbfQ8/3tb3+reUws3Yorrlhov8suu6zQfgsWLAhZddna17/+\n9bBPVrqYlYwuXLgwZGUpGV1WffOb3yyUZSXy2fHngw8+qM/AWGbtt99+ITv22GMLPTYrSdx///1D\n9uCDD375gX2O9u3bhyy7Tsq+G2XjKHpczdYZH3nkkZCVodzcL6wBAAAAACgFC9YAAAAAAJSCBWsA\nAAAAAErBgjUAAAAAAKWgdLEFnH/++SHLireycofx48c3yZhYuj59+oRs0003Ddnyy8eP1fz58xts\njxw5Muwzd+7cGkZHa7bXXns12M4KJd5+++2Q3XbbbU02JprX5MmTQ7bPPvuErJ4Fi0WNGjUqZEcc\ncUTI+vXr1xzDaRWyEqjNNtus0GMvvvjieg+nbs4666yQrbTSSiGbPn16yO64444mGRNNa7vttmvU\n437729/WeSQUddFFF4XsnnvuCVmXLl1CtuGGGxZ6jdGjR3/5gTWBrKTtmGOOaYGRtD1HHXVUof1G\njBgRsl//+teNes2s+LeorIzTd7fa7LrrroX2mzhxYsjefPPNOo+G1iArMcyKvDOLFy8O2Q477BCy\n7DtOkWv0bG0vKwPu3bt3yKrXkiqVSqVz585Lfc3PM2/evJCdfPLJIStDublfWAMAAAAAUAoWrAEA\nAAAAKAUL1gAAAAAAlIJ7WDexvffeO2THHntsoccecsghIXvmmWdqHhON88gjj4Qsu/dmpvrefxMm\nTKjHkGgj/v3f/73Bdjbv3njjjZAtWLCgycZEfbRr167Qfuuss07TDqQGyy0X/9939u8q+m/9xS9+\nEbKddtrpyw9sGbbiiiuGrGvXriF74oknmmM4dbPxxhsX2u+1115r4pHQXHbcccel7pPd1/GSSy5p\niuFQQHa9m91nc+eddw7Z8OHDQ3b44YeHLLsf55133llsgFWuv/76kD399NOFHpt1A7lGbx6/+c1v\nQjZkyJCQbb755iHbYostQjZ06NCQHXrooQ22s3NrdvzJ9jv44IND9tOf/jRk48aNCxm53XbbrdB+\ngwYNCln2uf/d734Xsscff/zLD4xlVnYeybrDBg4cGLLu3buHLOueW7JkSaGxVO9X9HtQpuj9qrOx\nZeuHBx10UMimTJny5QfWDPzCGgAAAACAUrBgDQAAAABAKViwBgAAAACgFCxYAwAAAABQCkoXm9h+\n++0XsqygKiv4+OMf/9gkY2LpvvGNb4Ssb9++hR77z3/+M2THH398rUOiDdtqq60abGeFCqNGjWqu\n4dBIZ599dsiKFneU2WGHHRayPn36hCz7t2bZt771rfoMbBk2Z86ckE2dOjVk66+/fsh69uwZshkz\nZtRnYF/CGmusEbJtt9220GMffPDBeg+HZrDPPvuEbIcddljq4z7++OOQvfnmm/UYEnUyc+bMkGXl\nVll25JFHNsmY/lfRMtfsGFpdykfzuf3220N2zTXXhCw7lzz//PONes2///3vIcvKFLPi0ezceuGF\nF4Zs3333bdTY2qJOnTqFLLsuXH75uGT17W9/O2TZ9eOYMWNC9uijj4YsKzefOHFig+1nn3027JOp\n/t5WqVQq999/f8ic5+ovK/TdeuutQ9ajR4+QZcef7bffPmSzZ88O2VtvvRWylVZaqcH2pptuGvbp\n169fyGpx7733huyoo44K2axZs+r6uk3JL6wBAAAAACgFC9YAAAAAAJSCBWsAAAAAAErBgjUAAAAA\nAKWgdLGOsuKAPfbYI2SLFy8O2RlnnBGyRYsW1WdgfKFevXqF7IILLghZ+/btCz3fCy+8ELK5c+d+\n+YHRJq211lohGzBgQIPtrEDtpptuarIxUR/Z+aDMVl999ZANHTo0ZKeddlqjXyMrR8kK2Nqa7O8y\nZcqUkGXvxzPPPBOyK664oj4Dq1QqAwcODFlWJLPmmmuGrGjJaGsoI22LVltttZC1a9duqY/729/+\n1hTDoY24/vrrC+2XfdeaNm1avYdDQdm1bFbQecstt4RsxRVXDFl23qguAT3iiCPCPgsWLAjZH/7w\nh5BlxWXDhg0L2SabbBKyCRMmhIxK5be//W3IailCzc43++23X6GsqWXXdS+++GLIsjlF/WWlg9/4\nxjea9DUffvjhkBUtXfzkk09Cdv7554fs6quvDlm29rgs8QtrAAAAAABKwYI1AAAAAAClYMEaAAAA\nAIBSsGANAAAAAEApKF2so6zUaO211w7ZSy+9FLI//elPTTImlu5HP/pRyIreAD8rtzr++ONrHhNt\nV1ZgV13o+vTTTzfXcGjD/vM//zNkBxxwQKOfb/bs2SHLCk4mTZrU6NdozU466aSQZWVjQ4YMKbRf\nY2UFVVnZVVZEXdRVV13V6MfScooUFi1cuDBkV155ZROMhtboW9/6Vsh22WWXkGUFVe+++26TjIn6\nue222wrtd+yxx4YsK3E87rjjGmxn56/MyJEjQ1ZdgF6pFD/f7rrrroVet63JSjZ//etfhyybF+3b\ntw9Zt27dQlak+Lc5ZNdE2267bciya++TTz65ScZE06q+ttlhhx0a/Vzf/e53Q3bdddc1+vmWJX5h\nDQAAAABAKViwBgAAAACgFCxYAwAAAABQChasAQAAAAAoBaWLjXT44YeH7Nvf/nbIPv7445CdddZZ\nTTImGueII45o9GNHjBgRsrlz59YyHNq4DTbYYKn7vP/++80wEtqSF198MWR9+/at62u89dZbIbvn\nnnvq+hqt2QsvvBCy7bbbLmRZqcsmm2xSt3HceOONhfZ76KGHQrbTTjsVeuz8+fO/1Jhofuuss07I\nihQKZeWr2VyBTNHi37Fjx4bsscceq/dwaAZZ4V7RcsbGys5Bt9xyS8iy0sXBgweHrGfPniHLSiLb\nmsWLF4csOx9kf79M9r28Q4cOIbv00ktD1q9fv0KvUU9ZIeTQoUObfRzU7swzzwxZdXnrcssV+63w\ne++9F7Jf/vKXjRtYK+AX1gAAAAAAlIIFawAAAAAASsGCNQAAAAAApWDBGgAAAACAUlC6WFCvXr0a\nbP/kJz8J+2Q3zn/22WdDdv/999dvYLSo3r17h+yTTz6p2/PPmjUrZIsWLQpZVijRo0ePQq+x2mqr\nhSwroyji008/DVlWajlv3rxGPX9bsPPOOy91nzvvvLPpB0LdZeeILMt8/etfL7Tfz3/+85B16dJl\nqY/LxrFkyZJCr1nUoEGD6vp85B5//PFCWVObMGFCyIqWLm6zzTYhy0rUaDn/9m//FrIix7N77723\nKYZDG5EVkmXXxeedd15zDIc2JLu+Ovjgg0M2bNiwkF144YUhO+mkk+oyLv5/t99+e6H9smLMU089\nNWSfffZZg+0//elPYZ+rr746ZBdddFHIipQSs2zYbbfdQpa95x07dlzqc2XrRsccc0zIFi5cWHB0\nrY9fWAMAAAAAUAoWrAEAAAAAKAUL1gAAAAAAlIIFawAAAAAASkHpYqJ9+/Yhqy5PXHnllcM+H3zw\nQciOP/74+g2M0nnmmWea9PmfeuqpkL399tshW3PNNUOWlX60hB/+8IchO+WUU1pgJOUzfPjwkHXu\n3LkFRkJzuPHGG0N25plnFnrsrbfeGrKipYiNLU+spXRxzJgxjX4srUMtJaMKFsuvZ8+ehfabP39+\ng+1zzz23KYZDK1U9X7JrpOo5VqlUKo899liTjYm2qbqAr1KpVM4+++yQPfzwwyE74YQTQnbDDTeE\n7OWXX27k6Pgy7r777pBlpYvLLdfwt51777132Kd///4h22ijjRo9tqlTpzb6sTSPgw46KGRFChaz\nguBDDz00ZPfdd1/jBtZK+YU1AAAAAAClYMEaAAAAAIBSsGANAAAAAEApWLAGAAAAAKAUlC4mNt10\n05D16dNnqY877bTTQjZhwoS6jImm8/zzz4dsq622aoGRRNttt11dny8rDClarFZdMPnkk08WetxD\nDz1UaL+26JBDDglZVkpWXbT53//93002JprOTTfdFLKRI0eGrFOnTs0xnKXKiqyy0tf9998/ZJMn\nT26SMbHsyM4ttRR5Ui5ZaXBm5syZDbZnzZrVFMOhlfr2t7+91H2ygvJM9+7dQ7bqqquGbNKkSYWe\nD7LvQtdcc03Ivve974Xsl7/8Zch23XXXkGXXYtTmueeeC1n2Xm6//fZLfa6NN9640Gtm38GzNYjD\nDz+80PPRPLLzxje/+c1GPdcDDzwQsrvuuqtRz9WW+IU1AAAAAAClYMEaAAAAAIBSsGANAAAAAEAp\nWLAGAAAAAKAU2nzpYv/+/UP2+OOPL/VxV1xxRchGjRpVlzHRvLbZZpuQXXnllSHr2LFjo19j0KBB\nDbaHDRvW6Of685//HLKJEycWeuzNN98cshdeeKHRY6G4zp07h2y33XYr9Ng77rijwfbixYvrMiaa\n1+uvvx6yww47LGRZGefBBx/cJGP6IldddVXILrroomYfB8umouWhn376aROPhFp16NAhZGuvvXah\nxy5atOgLt6FW2THk5JNPDtkZZ5wRstdeey1kWfEdFHXttdeG7JhjjgnZ1ltvHbLNN988ZE8//XR9\nBsb/JyuyzK6z77vvvgbb66+/ftgn+343e/bskP3ud78L2QknnPCF46R5de3aNWRTpkwJ2XLLFfvN\n77vvvttg+6CDDmrcwNo4v7AGAAAAAKAULFgDAAAAAFAKFqwBAAAAACgFC9YAAAAAAJRCmy9dPPvs\ns0PWrVu3pT4uK75bsmRJXcZEy/vud7/b0kOglfnkk09CNnfu3JC99dZbITvvvPOaZEy0vLvvvrtQ\n9oc//CFkp5xySsiGDBkSsmeffbbB9k9+8pOwT7t27UKm6IdajBgxImQff/xxyK6++urmGA41+Oyz\nz0L297//PWSrr756yLJzGtTTXnvtVSi7//77Q3biiSc2yZhou6ZNmxayrGAxK/y8/PLLQ7bTTjvV\nZ2B8oXfeeSdkgwYNarD9ne98J+yz8847h+zb3/52yKoL+CifAw44IGRZEWPRNb/q72kLFixo3MDa\nOL+wBgAAAACgFCxYAwAAAABQChasAQAAAAAohTZ1D+vhw4eH7LDDDmuBkQBtzaJFi0LWv3//FhgJ\ny6LRo0cXyqAsJk6cGLIf/vCHIbvjjjuaYzjUYPHixSH75je/GbKbbropZE888USTjIm2ofpesNk9\nfh9++OGQXXLJJSGbMWNGyLJ+Eai3SZMmhezVV18N2dChQ0M2ePDgBtvjxo2r38D4Uq699tpCGcum\nSy+9NGRF71d96623hsz1bX34hTUAAAAAAKVgwRoAAAAAgFKwYA0AAAAAQClYsAYAAAAAoBTaVOni\nzjvvHLKOHTsWeuwHH3zwhdsAAPyPLbfcsqWHQBOaPHlyyHbfffcWGAmt2T333POF27CsGjZsWMje\neOONkA0YMKDBttJFaBpdunQJWbt27UI2b968kJ177rlNMib8whoAAAAAgJKwYA0AAAAAQClYsAYA\nAAAAoBQsWAMAAAAAUAptqnSxqHfeeSdkW2yxRYPtGTNmNNdwAAAAgFZg9uzZIVtllVVaYCRApVKp\nXH/99SE7++yzQ3bVVVeFbMqUKU0yJvzCGgAAAACAkrBgDQAAAABAKViwBgAAAACgFCxYAwAAAABQ\nCm2qdPG0004rlAEAAAAArdv3v//9QhnNyy+sAQAAAAAoBQvWAAAAAACUggVrAAAAAABKwYI1AAAA\nAAClULh0cfr0D5tyHLRy5g+1MH+ohflDLcwfamH+UAvzh1qYP9TC/KEW5g/14BfWAAAAAACUggVr\nAAAAAABKod2SJUtaegwAAAAAAPDF97B+//25VrNplNVW69rO/KGxzB9qYf5QC/OHWpg/1ML8oRbm\nD41l7lAL84darLZa13af99/cEgQAAAAAgFKwYA0AAAAAQCl84S1B/l+9enVrynHQCkyf/uHn/jfz\nh6Uxf6iF+UMtzB9qYf5QC/OHWpg/1ML8oRbmD7X4ovnzv/zCGgAAAACAUrBgDQAAAABAKViwBgAA\nAACgFCxYAwAAAABQCoVLF4HGa9euXYPtJUuWtNBIAAAAAKC8/MIaAAAAAIBSsGANAAAAAEApWLAG\nAAAAAKAULFgDAAAAAFAKShehoPbt24esY8eOIevWrVvIVl111aU+17vvvhuymTNnhkxhIwAAAACt\nlV9YAwAAAABQChasAQAAAAAoBQvWAAAAAACUggVrAAAAAABKQekibV67du1C1qVLl5DtvvvuIRsw\nYEDIBg8eHLINNthgqeN4/PHHQ3bhhReG7J133lnqc0GlUqkst1z8f5I9e/YM2YcffhiyhQsXNsmY\naH7Vx7is9PXTTz9truEAAAB1lK1pVFuyZEkzjATqxy+sAQAAAAAoBQvWAAAAAACUggVrAAAAAABK\nwYI1AAAAAACloHSRNq9Pnz7vWzHTAAAgAElEQVQhe+CBB0K23nrrhSwrN/jss89CVl1+lz2uf//+\nIfuP//iPkK277rohmzFjRshgo402Ctkdd9wRslGjRoXs8ssvb5Ix0bSWXz6e1r/yla802B4+fHjY\nZ8yYMSH761//GrLs+MayqUg5T6WioIeWkc3PFVdcMWQff/xxyBynWk5W9pwV/S5evDhk3jegNcjO\nX9n1eceOHUPWoUOHkHXu3Dlkm2++ecg222yzkM2cObPB9hNPPBH2mTp1asicWykLv7AGAAAAAKAU\nLFgDAAAAAFAKFqwBAAAAACgF97CmTcnuAfWHP/whZBtssEHIsvvyLVy4MGSzZs0KWfX9qLJxZPex\n6tKlS8juvvvukG2//fYho23J7o128cUXh6xfv34hK3ovW8oluy/oLbfcErLqe1Znx5rsvtbHHHNM\nyP7yl7+EzD3tyi87l2T3OszuV/3666832J4zZ07YJ5sD2XNlWTaPs/Ptp59+Wuj5WPZkc+DYY48N\n2WmnnRaym2++OWSXXXZZyByn6i+7lt15551Dtskmm4TsqaeeCtlzzz0XsurPfUu9j9kc7dSpU8i6\ndu0asvfee6/Bdnb/bmqXXcs6R1CL6s99di211VZbhWz//fcP2W677RayVVddNWTZPayz488KK6wQ\nskz1WsXvf//7sM+1114bstdeey1kixYtKvSaUE9+YQ0AAAAAQClYsAYAAAAAoBQsWAMAAAAAUAoW\nrAEAAAAAKIVSly7WUgRWtHhBGUPbkpUl9OjRI2RZqcvs2bNDdtNNN4VswoQJIasuptlzzz3DPsOG\nDQtZ9+7dQ5YVQmbFL/Pnzw8ZrVdWpLfllluGLJsXt99+e5OMifrJzmlf/epXQ5YVvVTPjey5evfu\nHbKf/exnITvhhBNC9sADD4TMubXlrLjiiiH7zne+E7J99903ZC+//HLIqos8X3zxxbBPViKWnUez\nc9URRxwRsgMPPHCp46hU8sI9pUDLnv79+4fsiiuuCFlWMjVixIiQXXPNNSHLSrIpLisTzEows8/z\n+++/H7KJEyeGLCtbrT5f1btYLysz23DDDUP24x//OGTbbrttyGbMmBGywYMHN9jOvk/w+bLr2803\n3zxkAwcODNnjjz/eYDsrklPI2vZkn/u+ffuG7PDDD2+wfeSRR4Z91lhjjZBlc7beBffZ8TI7Fi6/\nfMPlviFDhoR9slLrLPNZqb+i86Itr236hTUAAAAAAKVgwRoAAAAAgFKwYA0AAAAAQClYsAYAAAAA\noBRKU7qYleHtvPPOIevXr1/IshKf7Gb6WRHG9OnTQzZlypSQffjhhw22s/KWrHSo6H7ZDdI//vjj\nkCkTqs3MmTNDdsopp4Rs0KBBIRs3blzInn322UKvW12M8NFHH4V9BgwYELJu3bqFLLvpflbuoHSx\nbVl11VULZW+99VbIpk6d2iRjon422mijkN14440hy0rJqo8Z2fkmO2f26dMnZL/85S9Dtvfee4cs\nK++j/rLzQXbtdPrpp4csuz45//zzQ/bcc8812M6uTbJxZFmHDh1CtvXWW4esuqSsUsnPkX/9619D\nNmnSpJBRHllRVDY/q8uqK5W88On1118P2SeffNLI0VGp5OeDb3zjGyE7+eSTCz3fD37wg5BlZb0t\nUYyZHaeyUrIddtghZCuttFLIsuL1efPmNXJ0bU/2feb6668PWVa2mhUOVxd+HnvssWGfBx98MGRZ\n4RzLpuwznq0dVRcsVipxvvTo0aPQ82ffwbP1pawENLtOys6b22yzTciyeVu9fnHPPfeEfaZNmxay\nbL2K/5G959l5s7qseJNNNgn7rLnmmiHLjmXZsbF6fbJSqVTeeeedkI0fPz5kCxYsCFlZSzX9whoA\nAAAAgFKwYA0AAAAAQClYsAYAAAAAoBQsWAMAAAAAUAotVrpYfbPy9ddfP+zz4x//OGTZjcmzG9Fn\nshuJZzeUz25YX13gkt1MPytEfO+99wqNIyvX+8c//hGy0aNHh+zpp58OWVYwSf7ejhkzJmR/+ctf\nQpYVNGTFPtl8rN7v1VdfDftkZTNZOVo2pxQsti1Z2cO+++4bsqzMdvbs2SHLStRoOVlZZlaSUrT8\npVp2DsrOX9l+2WtmhUVZme3tt98eMqUutclKv84777yQZQUud999d8geffTRkNWzCC0rPr711ltD\ntueee4asurymUqlUVllllfoMjGaTvY/Dhw8PWXYsy67h/vjHP4asrMVBy4pevXqF7Lvf/W7IspKp\nrIz8zjvvDFlLFCxmsqLiot81s9Kq7PibnV/J7bXXXiE75JBDQpaVsmbHjOr3MiuOzq5XsmsuRYzl\nUrTYefXVVw/ZgQceGLJ99tknZNUFdtn55qWXXgrZ2LFjQ5aVLhb9/pUdQ7Lrv6zgtXotITuWFT1G\nZesSrUk2f7p37x6yrJh31113DVl1WW92bs2+B2Xv4/LLx2XbbGzZ82VFjNm8zQpuq9esWuL6yi+s\nAQAAAAAoBQvWAAAAAACUggVrAAAAAABKwYI1AAAAAACl0GKli9Wym85Pnjw5ZFnxXVb6MWfOnJBl\nBR8dO3YslFXfYHzu3Llhn6yALytoyAq1+vbtG7JNNtkkZHvvvXfI7rvvvpAdeeSRIVP6kctuHp/d\n7D7bLyuyKjJ/tthii7BP7969v3Cc/+vJJ58Mmfe2bcnm3VlnnRWy7Nj45z//OWStvUSjzLLSmGOP\nPTZk66yzTqHny97L6nNfVvqaFfVusMEGIevZs2fIsuK7G264IWT9+/cP2TXXXBOyrMiKvCinutCl\nUqlUNtxww5BNnDgxZOecc07ImrqANZufffr0CVl2rZf54IMPah4TTav6GPe1r30t7JNdF2fHxuw6\nOysKpbjsuHLAAQeEbLXVVgvZ9OnTQ/arX/0qZNk1dUvIromywupTTz01ZNnf6a677grZ448/3sjR\ntT1ZidgZZ5wRsqxcLjuXFClxzq5hLrvsspCtv/76Ibv66qsb9Zp8OdmxP/vsZsek7PN83HHHhSz7\nzv3666+H7KqrrmqwXbSYOpsXtXzXyh5bz+Nq9jdv7d8Ns+vMwYMHh+zoo48O2e677x6yrAi2+vtM\nVrz55ptvhiy71sm+aw0aNChkWbHj2muvHbItt9wyZNkx+eSTT26w3RLf0fzCGgAAAACAUrBgDQAA\nAABAKViwBgAAAACgFCxYAwAAAABQCi1Wulh9I/d//vOfYZ8DDzwwZFkRYVYSlN3UPNsvu7l4t27d\nQlZdclb0BvtZScdaa60Vsj333DNkI0eODFlWPJGVDlCbrGAxmytZWdTqq68esq5duzbYPvfcc8M+\n2c36s0KFSy+9NGStvRihrasuw9hjjz3CPtlxJSvjvPnmm+s2Lmq38sorh+yYY44JWVY4kx2n3n77\n7ZBVl2CNHTs27FN9jKpU8vK+ESNGhGyjjTYKWVYMmpUpvfvuuyH7zW9+EzLHuPzcctFFF4UsmxdZ\nKeu0adNC1tR/5y5duoRs//33L/TYrGDx/fffr3lMNK0OHTo02D799NPDPtn1VTYXJ02aFLJ33nmn\nhtGR/e2/+tWvhiz7PvPaa6+FLPs+1xKyAvSsKOv8888PWXacysqKTznllJBl3w/JZUVgAwYMKPTY\nqVOnhuzFF18M2ZprrtlgO/uulX3vP/PMM0P29NNPh+yxxx77wnHyxbLPaXZNudNOO4XskEMOCVlW\nlpmt/zz44IMh+9GPfhSyN954o8H2p59+GvZpDdenreHf8EWy9bOTTjopZN/61rdCll17Z8aNGxey\n6vPL888/H/bJCi+z72TZ98WhQ4eG7OKLLw5ZtlaYfa/MPnvVn1GliwAAAAAAtFkWrAEAAAAAKAUL\n1gAAAAAAlIIFawAAAAAASqHFSherZSVBWcHO3/72t5DV+0bxs2bNCll12UhWPpKNI7uR+syZM0OW\n3Qz+61//esiym6bfeuutIcsKIKlNViK26667hiy7Yf0WW2zRYDt7H7PPwJ/+9KeQZaVqtG7VxQhZ\nUUR2rKkuC6lUKpX33nuvfgPjS8neoxNPPDFkWRFRZs6cOSH74Q9/GLInnniiwfbs2bPDPtk5aOLE\niSHLCqWy+ZiVgGZlR1m58OjRowu9bmuWlaGceuqpIdt0001D9sILL4QsK4bKzjn1lF0nZYVI/fr1\nC1lW6pKV1WQFSJRLdVFQ3759Cz0ue2+vu+66kLW1Y0O9ZaWLPXv2DFn2vSIrM8s+z9m5JPuMF/k+\nlx1XOnXqFLJBgwaFLCvSy8rTs8LzCy64IGTZ91Ry2fXPPvvsE7Lsu1b2Gb/qqqtC9txzz4Wsej5m\n11dZcdmee+4ZsqyQ7fHHHw9Zay+wq0X153fHHXcM+2TF21kJXfZ3zj67o0aNCtkvfvGLkGUlztXn\nIe9t+WXniKOPPjpkF154YciyEtDsWjkrgD722GNDVl1MnD1XNt5PPvkkZNk5M/tOP3/+/JBl8zYb\nS7bG1NTfFYrwC2sAAAAAAErBgjUAAAAAAKVgwRoAAAAAgFKwYA0AAAAAQCmUpnSxqOa42X32GtVl\nI9kNyLNCiSzr0KFDyA455JCQrb766iHLypTuuOOOkJXhBunLsux969KlS8g233zzkA0ZMiRka665\nZoPtrExo7NixIcsKYry3bU91Cc3GG28c9snmxZVXXhkyhawtZ4UVVgjZUUcdFbKsBCs7Ztxzzz0h\n+/Of/xyy6iKZRYsWhX2yY152LpwyZcpSn79SqVROOOGEkGXHxvXWWy9k6667bsgmTJgQstYsKxg6\n9NBDQ5aVM95yyy0ha2zBWS2ysVUXEFcqlUqvXr1Clo1t/Pjxhfaj5WTHkeqizazUKDN37tyQ3XXX\nXSEzB2qT/f2yc1VWDLXllluG7PTTTw9Zdv2cldVlRVPVhcBrrLFG2Gf77bcP2QEHHBCyzTbbLGRZ\nyd/rr78esuwa3fV4bbJrgkxWBPbQQw+FLCuiri7hy0rKsnNVVrq43XbbhSz7Tp/NY/5H9d/67LPP\nDvv07t07ZFnB6y9/+cuQ/f73vw/Zq6++GrKsyNPnuXXISoPPOeeckGXnuUx2/TxmzJiQZfMnO79U\n69GjR8i6d+8esuy7/2GHHRay7ByZycoZszXF7N/f3PzCGgAAAACAUrBgDQAAAABAKViwBgAAAACg\nFCxYAwAAAABQCstc6WJZZCUlWdlMdkP3vffeO2QjRowI2Ycffhiy//iP/whZdtN0apO9l9lN/Pv2\n7Ruyjz76KGQffPBBg+1//etfYZ/zzz8/ZO++++4XjpO2YdVVV22wvfLKK4d9suPAnXfe2WRj4ssb\nPHhwyLJyjOz8kpUOXnPNNSHLCoWqC4BqKSnLjm9PPfVUyLIyyazYqFOnTiHbaaedQtbWShc32mij\nkGUlLLNmzQpZVkbVEsV0WXnowIEDQ1ZdqlapVCozZ84M2d/+9reQZWWktJzs2mnYsGENtrOSsmx+\njh49OmTZdTG1ycrMfvGLX4Ts8ssvD1n1tUmlUqlssskmITvuuONClpXNr7LKKiGrLunM5k9W3Jpd\nJ2XfybKCvOuuuy5kM2bMCJnCz+Ky0s6sBDPbL/s7DxgwIGTZdXD1fMlK0KqLYSuV/PyVzfesIDAr\np+Z/VL+XWcF0NgeyQruJEyeGrPr79uc9X1b+m71GdnysVnRNyPGi/rK/86677hqyrNgwe2x2TTl7\n9uyQZdeyl156acjeeuutBtvZ8Scrc832y/4N2Xku+66VzeNHH300ZE8//XTIFi9eHLLm5hfWAAAA\nAACUggVrAAAAAABKwYI1AAAAAACl4B7WdZTdC2fttdcO2bnnnhuy7H4z2X5Tp05t5Oj4MrL73O2+\n++4hy97fN998M2SPPfZYg+0xY8aEfV5++eWQuT9n25MdR6rvb5Xdw/HFF18Mmft9tpzsfRw5cmTI\nsvskZvfUvPLKK0OWHWuyx1bfN6/o/faKyp5vrbXWqutrtGbZ36V///4hW7RoUcheeOGFkGX38azn\n/RSz58qy7N56e+yxR8iy41l2b+6xY8eGLLvnJC0nu1dodW9Ldr1b9D7C3u/6y/6m2T2ss3u+Zr06\n2X1lFy5cGLLNN988ZNk9gouMIzvWZPtl9+J87rnnQnbvvfcWeiy1ye4Lns3H7P0944wzQpZ1bLz/\n/vsNtufNmxf2ye6lXfT8uO2224bMPaw/X/X369VWW63Rz7XnnnuGbPXVVw/Z5MmTQ5Z9nrPujOrv\n5tm1SXZ/4KL34c7OfRSXfU7vu+++kD355JMh22qrrUI2Z86ckE2bNi1k2TGjW7duIau+Ns6ulbNz\nVSa7dsrmWTYfn3nmmZBlPVdz584tNJbm5hfWAAAAAACUggVrAAAAAABKwYI1AAAAAAClYMEaAAAA\nAIBSULpYR1kpxPDhw0PWu3fvkL3yyishGz16dMgUztRfdsP6rAxmv/32C1l2A/zbb789ZPfff3+D\n7axoJCvUou3J5uM+++zTYDsrmfj1r38dMiVBLScr1thkk01Clr3fWQlLVgRStDyxer/sNYsW6a24\n4oohy46Nffv2LfR82XHv+eefD1lbM2HChJC98847IcsKpHr06BGyrIRlwYIFISsyp4oWv/Tr1y9k\n2fVPdpy64YYbQla0oIuWk5UHrb/++kt93PTp00OWlcrSPLJz0FVXXRWya665JmTZsSA7Jm2wwQYh\n23LLLUPWvXv3BttDhgwp9LiuXbuGLJtTp556asiqi/qoXXacv/zyy0PWq1evkGVlnBtvvHHIsnlb\n/Z5nZeSrrLJKyDJZSfaRRx4Zsj/84Q8hy863VCorrbRSof2ya8/dd989ZF/5yldCll0nZNee2Xv0\nxhtvNNj+85//HPbJ1nCy4vGXXnopZE8//XTIfHerTVYcmM2VrKCzZ8+eIRs4cGDIDj744JBl56Hq\n6+Xq0tFKJT9nFpUVGv/85z8P2fXXXx+ybL4X/V7Q3PzCGgAAAACAUrBgDQAAAABAKViwBgAAAACg\nFCxYAwAAAABQCkoXGym7+X92A/avfvWrIcsKHy677LKQZSVJ1F9W+HDWWWeFLCuImT17dsgeffTR\nkL377rsNtrNChaJFaMuarKBLUdbny4qCdttttwbbWQHCgw8+2GRj4svLPs9ZmUcm+3xkRR1FixKr\ns2xsWZlQhw4dQrbHHnuELDteZuPN5u0HH3wQsilTpoSsNcv+LlOnTg1ZVig1dOjQkJ177rkhGz9+\nfMhmzpwZsqw0r/ocmY33o48+CtkBBxwQsuz4lpUfZeNVRFR+6623Xsiqj3vZ/LnttttCpoi6/LJz\nVZZlpZpZieqLL74Ysi5dujTY/uc//xn26dSpU8hWW221kD355JMhmzRpUshcozaPxx57LGR77713\nyPbaa6+QnXPOOSHLjhkPPPBAg+3sO1+3bt1ClhWFZtdOm222WciGDRsWsr/85S8ha4uqS+KyY//R\nRx8dsuzaJFuLqeV7c/a5rz6OZAV8WclfdVlspZKXvmal5dkxqQzFd8uy7Poxu86uXq+pVCqVyZMn\nhywrJ8yuqatLZLNixs6dO4cse7+zdcGbb745ZNddd13IstL2TFmvs/3CGgAAAACAUrBgDQAAAABA\nKViwBgAAAACgFCxYAwAAAABQCkoXC6ouWshKFk477bSQZeUOt956a8juu+++kCn9aB4DBgwI2a67\n7hqyrEQse4+y8oUiZQlFC9Sy12yJMoaVV145ZIccckjIstLFm266qUnGtKzJ3t+sqLX6b/3222+H\nfbKiCFpOVliYFUNlcyB7bPZ5y0poslKO6uNDVhyUnav69+8fsgsuuCBkq6yySsgyWSHSnXfeGbKs\niLGtyQrJ/s//+T8hO/TQQ0O27rrrhiw7z2UFiFn5S/WcygoWs1K1ddZZJ2TZ+SCbF9OmTQuZ0qFy\nyd7LrAit+niWHaN+/vOfh8z73bpl17Lz5s0LWfV8ef/998M+WZYV3L/xxhtLfX6aTzYHsmP/qFGj\nQjZmzJiQZSV81a+xwQYbhH2ygryi12bZdd2RRx4ZsnHjxoVs1qxZIWvtqkvdzj777LBPVjB91FFH\nhSz722fXt1mWKbLukq0FZNfiWbb++uuH7Ec/+lHIvvGNb4Rs/vz5Sx0btcvmwJw5c0I2duzYkGVF\nvzvuuGOD7eoS4c/z3nvvhez8888P2X/913+FrLrYtFJZ9q+n/MIaAAAAAIBSsGANAAAAAEApWLAG\nAAAAAKAULFgDAAAAAFAKShcTWdFCdRHR1VdfHfZZe+21Q/bOO++E7MorrwxZVjpE/S2/fJzyP/jB\nD0JW9Kb4WdlYv379QjZ79uwG29WlE5VKXh7x6aefFhpHvedPVqZUXRwwevToQs+VFWoULcBo7bIC\nl7POOmupj7vxxhtDlpUs0HKyz26RQsRKJf98ZEV6Waldds6pnhvZ8W348OEhO+WUU0K23nrrhSwb\nb/bvykqwfvWrX4UsK9xpa7Lilx//+Mchy0qcs/doyJAhIcvKp7LCy+r3LXt/suPPQQcdFLLsOimT\nnYMol6yodc899wxZ9bHg5ZdfDvu8+eabdRsXrUv19XJ2DNl0001DlpX3ZeflotfZtJzsfFj9verz\nVH+nz85x2fVKdn215pprhiwrp+7Vq1fIDj744JBlRcpz584NWWuWFa2eeeaZIfvZz34Wsp133jlk\ne+21V8g23HDDkGVF5kWuf7Jizz59+oSsd+/eIcsem11777vvviH7/e9/HzKaR3Z8yNZdsu9p1ddE\nWWlndk194YUXhiy73m8r64dWjQAAAAAAKAUL1gAAAAAAlIIFawAAAAAASsGCNQAAAAAApaB0MZGV\nLm6zzTYNtgcOHBj2yW6afs4554Rs1qxZNYyOWvTo0SNkgwYNClk2BzJZMdT2228fso8++mipz7X6\n6quHbObMmSGbMmVKoefP/g0dO3YMWVYMsffee4fshBNOaLDdrVu3sM+zzz4bssceeyxkShf/R/a3\nX2uttUJWfWx56qmnwj5ZKQQtp2iZYiYr48w+k1mJ7KuvvrrU1x0xYkTYJyuvyQpiihYszp8/P2TV\nx5BKpVJ55ZVXQpYVLJH/XaZPn14oGzt2bMiy97LI+5vNz+zc0rVr15DtsMMOIctKY5TIlt8aa6wR\nsqyIsXre3nbbbWGfrIgaKpV4LZuVxWZFwtl5ac6cOfUbGMuE6nmQnW+y8+P48eNDlhWm9ezZM2T7\n7bdfyI488siQZefbrFywrV3fZ+eDSZMmhSwr683KCbNSxMGDB4esU6dOIVuwYEGD7ey8d9hhh4Us\n+36XfS/P5sAWW2wRsuy82dbmRUvJ1nqyz/ihhx4asuq1kuw9e/rpp0N2xx13hKytFCxmrBoBAAAA\nAFAKFqwBAAAAACgFC9YAAAAAAJSCBWsAAAAAAEpB6WKie/fuIbviiisabGdlVM8991zIspumu0l+\ny6kuT6hU8pvpZ8UI2fuWlU+NHDkyZMcdd1yD7ayYKLuZ/rvvvhuyu+++u9B+G264Ych23HHHkG20\n0UYh69y5c8iqiyE++OCDsM/5558fsnfeeSdkWUFpa5fNqd122y1kWXlZdfnm5MmT6zcwmsSnn34a\nslGjRoXslFNOCVlWpph9nvv27RuybJ5VH2+y4qCix7yiRVZZ4fCYMWNClv2dqL/sfcuKjYqU32Xl\nj1lZUVYUms29bA6YF+WSHR+23nrrkGXHrur3MrtWhs9TfczIitKz40pW+pqVhWePbYvXqG1Zdt6b\nN29eoezDDz8M2R//+MeQnXbaaSE76aSTQnbLLbeE7KOPPgoZ+bVI9h794x//CNnUqVNDtscee4Rs\n//33b7C9yy67hH2y4s2i19Rz584N2b333lvosTSP9ddfP2Tf+c53QpbNg2rZ/Dz++ONDpiC4Ib+w\nBgAAAACgFCxYAwAAAABQChasAQAAAAAoBQvWAAAAAACUQpsvXcwKYs4+++yQbbbZZg22s4K8yy+/\nPGTZfrScrLji0UcfDdm///u/F3q+rBhqtdVWC1lWzlhEnz59QrblllsWemxWIpIVJWalk2+++WbI\nHnnkkQbb48ePD/u88MILIfv4449D1hbLI7ICjgEDBoQsez+qSxqy8lDK7/vf/37IsrKNrMAuK2rN\nskw294rIPqdZwdDuu+8esuxYUKTQj/LL5kVWFrvGGmuELJuL2XnUMa78ssLm6nLmSiXOl6zsCj7P\nyiuv3GB70003Dfv06NEjZNlxpV+/fvUbGFTyeZYd47JzZPYdb4MNNghZdj1FbbKywxVXXDFkw4cP\nb7DduXPnsE/RgsWFCxeGLFtzGjt2bMhoHtl38H322SdkvXv3Dln2nlevgVxwwQVhn9dee63Qc7Vl\nfmENAAAAAEApWLAGAAAAAKAULFgDAAAAAFAKFqwBAAAAACiFNl+6OHjw4JCNHDkyZNXljHPmzAn7\nVJfSUT7ZTexHjBgRsqxMqFu3biHLyheyArKDDjqowXZWEJMVkmUFENl+WRHanXfeGbJrr702ZF27\ndg3Z9OnTQ5YVVlabP39+yBQH/I+s4HXQoEEhK1JK9sknn9RvYDSb7H075ZRTQnbNNdeELPucZgVn\nRWSfyaw4KCtf3WWXXUKmRK1tyeZPdnzLzl+ZrPyoumiWlpWdl9ZZZ51Cj62eL1n5M1Qq+TzbYost\nGmyvvfbaYZ+s0C4rxcrOc1kxONQiO6fNnj07ZKuvvnrI9t1335ApXWwejz32WMiqv3N/9tlnhZ5r\n1qxZITvnnHNC9utf/3qpr0nz6d69e8hOOumkkHXp0iVk2bXx3//+9wbb119/fdin6Jxqy/zCGgAA\nAACAUrBgDQAAAABAKViwBgAAAACgFCxYAwAAAABQCm2qdDEr88hugJ+Vd1TfEP2KK64I+ygJWjYt\nWrQoZK+88kqjn+8vf/lLyL73ve812O7QoUPYJ5t3WdFjVrCo7LD8soK8J554ImQbb7xxyKqPN1np\nK8umrHBl1KhRITvjjL1x14QAAAPBSURBVDNC9v3vfz9k2bHlnXfeabB99913F3rN6rKQSiU/XkJW\nVJPJyqh++tOfhkzpULlk1xPjx48P2QEHHBCyf/zjHw22nb/4PNk8W3PNNRtsZ9fK2fe7rAz49ttv\nD1lWxAi1yObUI488ErIDDzwwZJtvvnnIque373dNY8qUKSFbf/31G2zvscceYZ9s/ScrcMyKN72X\n5XLkkUeGrE+fPiHLvtMvWLAgZMcdd1yDbd+hGscvrAEAAAAAKAUL1gAAAAAAlIIFawAAAAAASqFN\n3cO6U6dOIdt1111Dlt2Xpvr+RPfcc0/Yx32IKCq7h1GWuS9667Fw4cKQXXjhhSG7+OKLQ1Z9PzzH\nmtYtu//hZZddViiDlvDBBx+E7LrrrgvZzJkzQ5b1PriHdblk55yf/exnIXv77bdD9txzzzXYds9g\nvoy77rqrwfZ5550X9sm+t40cOTJkL774YsiqO4qgVtnxMusJGThwYMjat2+/1MwxtPnMmDGjwfbo\n0aNbaCTUW9Z9UH3P6UolP79kn/GsH+jZZ59t5Oj4f/mFNQAAAAAApWDBGgAAAACAUrBgDQAAAABA\nKViwBgAAAACgFNpU6eLRRx8dspVWWqnQY998880G22+88UY9hgS0YVmxmLIxYFkzderUkF177bUh\ny0pulMgumxYsWBCy3//+9yGrfs+933wZ1YWu/fv3D/tkx5XsWsrco6U8/PDDIdtpp51CtummmzbH\ncKDNW2GFFULWu3fvkGXFvFmBeFb0q9S3PvzCGgAAAACAUrBgDQAAAABAKViwBgAAAACgFCxYAwAA\nAABQCq22dLF9+/Yh23HHHUM2bdq0kD311FMhO++88xpsL1q0qIbRAQC0LUrP2h7vOfWkmJrWYu7c\nuSEbN25cyMx5qL+FCxeG7MQTTwzZt771rZAdddRRIZsxY0Z9BkbgF9YAAAAAAJSCBWsAAAAAAErB\ngjUAAAAAAKVgwRoAAAAAgFJotaWLn332WcgOO+ywkC2/fPwTfPrpp4UyAJrfcsv5f60ALHucv4DP\no2ARWs7vfve7kN12220hy9YZaTqumgAAAAAAKAUL1gAAAAAAlIIFawAAAAAASsGCNQAAAAAApVC4\ndHH69A+bchy0cuYPtTB/qIX5Qy3MH2ph/lAL84damD/UwvyhFuYP9eAX1gAAAAAAlIIFawAAAAAA\nSqHdkiVLWnoMAAAAAADgF9YAAAAAAJSDBWsAAAAAAErBgjUAAAAAAKVgwRoAAAAAgFKwYA0AAAAA\nQClYsAYAAAAAoBT+Lya7zoOi3JioAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": { "tags": [] } } ] }, { "metadata": { "id": "3YxH2GhCUGMM", "colab_type": "code", "colab": { "autoexec": { "startup": false, "wait_interval": 0 } } }, "cell_type": "code", "source": [ "sess.close()" ], "execution_count": 0, "outputs": [] }, { "metadata": { "id": "RzsG1JuaUGVI", "colab_type": "code", "colab": { "autoexec": { "startup": false, "wait_interval": 0 } } }, "cell_type": "code", "source": [ "# Denoising" ], "execution_count": 0, "outputs": [] }, { "metadata": { "id": "P_dDk22NUGeo", "colab_type": "code", "colab": { "autoexec": { "startup": false, "wait_interval": 0 } } }, "cell_type": "code", "source": [ "inputs_ = tf.placeholder(tf.float32, (None, 28, 28, 1), name='inputs')\n", "targets_ = tf.placeholder(tf.float32, (None, 28, 28, 1), name='targets')\n", "\n", "### Encoder\n", "conv1 = tf.layers.conv2d(inputs_, 32, (3,3), padding='same', activation=tf.nn.relu)\n", "# Now 28x28x32\n", "maxpool1 = tf.layers.max_pooling2d(conv1, (2,2), (2,2), padding='same')\n", "# Now 14x14x32\n", "conv2 = tf.layers.conv2d(maxpool1, 32, (3,3), padding='same', activation=tf.nn.relu)\n", "# Now 14x14x32\n", "maxpool2 = tf.layers.max_pooling2d(conv2, (2,2), (2,2), padding='same')\n", "# Now 7x7x32\n", "conv3 = tf.layers.conv2d(maxpool2, 16, (3,3), padding='same', activation=tf.nn.relu)\n", "# Now 7x7x16\n", "encoded = tf.layers.max_pooling2d(conv3, (2,2), (2,2), padding='same')\n", "# Now 4x4x16\n", "\n", "### Decoder\n", "upsample1 = tf.image.resize_nearest_neighbor(encoded, (7,7))\n", "# Now 7x7x16\n", "conv4 = tf.layers.conv2d(upsample1, 16, (3,3), padding='same', activation=tf.nn.relu)\n", "# Now 7x7x16\n", "upsample2 = tf.image.resize_nearest_neighbor(conv4, (14,14))\n", "# Now 14x14x16\n", "conv5 = tf.layers.conv2d(upsample2, 32, (3,3), padding='same', activation=tf.nn.relu)\n", "# Now 14x14x32\n", "upsample3 = tf.image.resize_nearest_neighbor(conv5, (28,28))\n", "# Now 28x28x32\n", "conv6 = tf.layers.conv2d(upsample3, 32, (3,3), padding='same', activation=tf.nn.relu)\n", "# Now 28x28x32\n", "\n", "logits = tf.layers.conv2d(conv6, 1, (3,3), padding='same', activation=None)\n", "#Now 28x28x1\n", "\n", "decoded = tf.nn.sigmoid(logits, name='decoded')\n", "\n", "loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=targets_, logits=logits)\n", "cost = tf.reduce_mean(loss)\n", "opt = tf.train.AdamOptimizer(0.001).minimize(cost)" ], "execution_count": 0, "outputs": [] }, { "metadata": { "id": "rybBLFl9Ubnx", "colab_type": "code", "colab": { "autoexec": { "startup": false, "wait_interval": 0 }, "base_uri": "https://localhost:8080/", "height": 357 }, "outputId": "48810182-61c9-4bf9-aecb-b439f4d79642", "executionInfo": { "status": "ok", "timestamp": 1523229982770, "user_tz": 420, "elapsed": 4253555, "user": { "displayName": "Arun Rajendran", "photoUrl": "https://lh3.googleusercontent.com/a/default-user=s128", "userId": "100710189298922321078" } } }, "cell_type": "code", "source": [ "sess = tf.Session()\n", "epochs = 20\n", "batch_size = 200\n", "# Set's how much noise we're adding to the MNIST images\n", "noise_factor = 0.5\n", "sess.run(tf.global_variables_initializer())\n", "for e in range(epochs):\n", " loss=[]\n", " for ii in range(mnist.train.num_examples//batch_size):\n", " batch = mnist.train.next_batch(batch_size)\n", " # Get images from the batch\n", " imgs = batch[0].reshape((-1, 28, 28, 1))\n", " \n", " # Add random noise to the input images\n", " noisy_imgs = imgs + noise_factor * np.random.randn(*imgs.shape)\n", " # Clip the images to be between 0 and 1\n", " noisy_imgs = np.clip(noisy_imgs, 0., 1.)\n", " \n", " # Noisy images as inputs, original images as targets\n", " batch_cost, _ = sess.run([cost, opt], feed_dict={inputs_: noisy_imgs,\n", " targets_: imgs})\n", " loss.append(batch_cost)\n", " training_loss=np.mean(batch_cost)\n", " print(\"Epoch: {}/{}...\".format(e+1, epochs),\n", " \"Training loss: {:.4f}\".format(training_loss))" ], "execution_count": 10, "outputs": [ { "output_type": "stream", "text": [ "Epoch: 1/20... Training loss: 0.1694\n", "Epoch: 2/20... Training loss: 0.1427\n", "Epoch: 3/20... Training loss: 0.1280\n", "Epoch: 4/20... Training loss: 0.1264\n", "Epoch: 5/20... Training loss: 0.1245\n", "Epoch: 6/20... Training loss: 0.1204\n", "Epoch: 7/20... Training loss: 0.1202\n", "Epoch: 8/20... Training loss: 0.1119\n", "Epoch: 9/20... Training loss: 0.1143\n", "Epoch: 10/20... Training loss: 0.1159\n", "Epoch: 11/20... Training loss: 0.1138\n", "Epoch: 12/20... Training loss: 0.1147\n", "Epoch: 13/20... Training loss: 0.1107\n", "Epoch: 14/20... Training loss: 0.1082\n", "Epoch: 15/20... Training loss: 0.1093\n", "Epoch: 16/20... Training loss: 0.1085\n", "Epoch: 17/20... Training loss: 0.1133\n", "Epoch: 18/20... Training loss: 0.1092\n", "Epoch: 19/20... Training loss: 0.1051\n", "Epoch: 20/20... Training loss: 0.1059\n" ], "name": "stdout" } ] }, { "metadata": { "id": "5PL7rsirUbt9", "colab_type": "code", "colab": { "autoexec": { "startup": false, "wait_interval": 0 }, "base_uri": "https://localhost:8080/", "height": 337 }, "outputId": "0d8087e2-114d-41f8-acea-cc88cf2e7936", "executionInfo": { "status": "ok", "timestamp": 1523229984306, "user_tz": 420, "elapsed": 1504, "user": { "displayName": "Arun Rajendran", "photoUrl": "https://lh3.googleusercontent.com/a/default-user=s128", "userId": "100710189298922321078" } } }, "cell_type": "code", "source": [ "# Check out performance\n", "fig, axes = plt.subplots(nrows=2, ncols=10, sharex=True, sharey=True, figsize=(20,4))\n", "in_imgs = mnist.test.images[:10]\n", "noisy_imgs = in_imgs + noise_factor * np.random.randn(*in_imgs.shape)\n", "noisy_imgs = np.clip(noisy_imgs, 0., 1.)\n", "\n", "reconstructed = sess.run(decoded, feed_dict={inputs_: noisy_imgs.reshape((10, 28, 28, 1))})\n", "\n", "for images, row in zip([noisy_imgs, reconstructed], axes):\n", " for img, ax in zip(images, row):\n", " ax.imshow(img.reshape((28, 28)), cmap='Greys_r')\n", " ax.get_xaxis().set_visible(False)\n", " ax.get_yaxis().set_visible(False)\n", "\n", "fig.tight_layout(pad=0.1)" ], "execution_count": 11, "outputs": [ { "output_type": "display_data", "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABawAAAEsCAYAAAAvofT2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsvXfcluPj/38gmVkNe2SWoigloUHI\nKiOkVMhIZpKR0aBkRFF2paGMZKShhcpoGA1SKqOiYSaU8f794ZO6jtfzvu7jHt7v6/t7vJ5/db4c\n13md13ke57Hcj+O5yX/+859gjDHGGGOMMcYYY4wxxvyv2fR/fQHGGGOMMcYYY4wxxhhjTAhesDbG\nGGOMMcYYY4wxxhiTI3jB2hhjjDHGGGOMMcYYY0xO4AVrY4wxxhhjjDHGGGOMMTmBF6yNMcYYY4wx\nxhhjjDHG5AResDbGGGOMMcYYY4wxxhiTE5TI9h9Xrlz9n//WhZj/f1G2bKlNXH9MYXH9MUXB9ccU\nBdcfUxRcf0xRcP0xRcH1xxQW1x1TFFx/TFEoW7bUJnn9N/+FtTHGGGOMMcYYY4wxxpicIOtfWG9M\nuXLbFfpL7r33Xsnq1KmTcbxq1Sop069fP8m+++47yerVqyfZmjVrJLv77rsl23fffSVbtGiRZCkM\nGTJEsmbNmkl25ZVXSnbwwQdLRr/11ltvlWyXXXaRbI899pBsxowZGcddu3aVMrfddptkxDbbbCPZ\n4sVf51n+0EMPlOybb76RbKuttpJs4sSJktWqVSvj+MYbb5QyPXr0yPN6NoaeET3LkiVLSrb77rtL\ntnjxYsl69+6dcTx69GgpQ9nw4cMlO+ussyS7/PLLJfvxxx8lGzp0qGTECy+8INnZZ5+dcXz++edL\nmWeeeUYyqu/0fvbo0SvP60ltf+i8VFdTGDx4sGRjxoyRrH///pK1bdtWsoEDB0r22GOPSdayZct8\nr23nnXeWbPny5ZJdeOGFkp1yyimSzZ8/X7IXX3xRskGDBklWsWLFPK8zG1SPP//8c8monTr55JMl\nW7Hipzy/i+pP9erVJaM2l/qDuJ7Tu/Dzzz9LVrt2bcmon6tWrZpkqYwbN06yuC7vtddeUobuM/WZ\nN910k2R//fWXZJtumvb/w/fZZx/JjjvuOMnmzZuXcUz9fvfu3SWjenz00UdL9uefm+d5jantz/HH\nHy/Z+PHjkz4b89BDD0l2zz33SHb77bdLdskllyR9B7U1S5culSz+Df/5j/4BzSab5PmHEYWC2tCH\nH35YMvoN1NbGpLah77//vmRTp06V7Nxz8263qf6sW7dOMhpjzJkzR7JRo0ZlHHfo0CHP7y4uDjvs\nMMlOO+00ybp06fKvX0tx8uabb0rWokULyapWrZpx/PLLL0uZY445RrLJkydLVtDxM9Ufet/ovaxR\no4Zk06ZNy/O71lOmTBnJ4nsQAvePW2yxhWTLli2TjMY/V1xxhWTUL8fQfabnQdSsWVOyP/74Q7KZ\nM2dKNmDAAMlatWqV73e2a9dOsrfffluyRo0aJWVlyuicbz1Fmb+bf5cnnnhCsjvuuEOy+P2pXLmy\nlKE2ab/99ku6jmzj56uu0vHEs88+m3TevffeW7Ivvvgi3881bNhQMpojV6lSRbKTTjpJMpoPX331\n1ZLRHG/u3LkZx7SmRWszI0eOlGzhwoWSbb65jj0nTJggGc0fttxyS8moH4jHy2+88YaUIYYNGyYZ\nrUv06fNUnudIbX923HFHyajtj+cvv/zyi5T59ttvJSvO9YHiZrfddpOsUqVKktH8jrjqqqskozlF\nKk8//XTGcZ8+fZI+d+KJJ0p27bXXSpZt/rUe/4W1McYYY4wxxhhjjDHGmJzAC9bGGGOMMcYYY4wx\nxhhjcgIvWBtjjDHGGGOMMcYYY4zJCbxgbYwxxhhjjDHGGGOMMSYn2IQ2Z1/PypWr//mPtGl66dKl\nJWvatKlkJMr54YcfMo7bt28vZZ588sk8ry0/pk+fLhnJMV5//XXJFixYUOjvjYlleyGw0O6tt96S\njJ4NSSL3339/yVavXi3Zu+++m+d1roc2ZafN22lD+403TS9bttQm+dWfVMqVKyfZihUrMo5J3EUC\nt1RIZEWiGtoA/88//8z3/OXLl5fsgQcekIxkDLFwKQTeAP/cc8+VLFWUQRvljx07Nt/PderUKSkj\ngdPYsRvkRyn1h8QknTt3luyQQw6RbPbs2RnHVO/puqneFwWSo5FEhMSVMdT2kmTz1FNPlYzkIARJ\nWXv27CkZyS1SoDbqyCOPlIzkK9WqbRCSxPXnmmsuk/J0b+6//37JSKIa92lTpkyRMiT2IwkmSTsJ\n6g8222wzyUiAWFhIBELCp0ceeaTQ30HCFJIGx1LIr776SsqQ4IfqJ73bDRpsEMgVZ/+V0qfutNNO\nUiZFNBZCCOedd55kJK1MFTESH3zwQcYxiYluvvnmQp+/uKH6eOmll2Yc07tDpIo0N5ZWFWf9oboa\nS6Cef/75pHPF/V4I3D9SP0r9bYMGDZKy4pRCkpCWxsCpY52PP/5YMhr/xFKteA4TQghPPaXiKRIa\n03h12rRZ//w7pf5MmjRJsrp160pGcsZYaEr9NfU3NLYl0RvJyEkYe/rpp0t20UUXSfbrr79mHKfK\nw4nWrVtLRuMaGmf/9JOK6Uj4njIWIxkejS+pntH71L79hvqZUn/atGkj2Q033CAZzTlToDaJ1gzq\n168v2dZbby0ZjRNIXPnZZ59JFrd7NKajcQ3V7eKG+hJqR+KxzeGHHy5l3nvvPclo/k6fnTfv8xCC\n1p0Qil/aGcsOadx2/fXXS0bj0fvuu0+yd955RzL6Dlp3uu666ySL5+bHHnuslCHJOLXRNKcnwWsq\ntE5GbdzatWszjqnfJ0FvLGzPi/XjH6o/NWvqnJbeQRrz0lpMLGek+cItt9wiGbWvVH9ozPXoo49K\n1rx5c8moDY1lvRMnTpQyBAkhqa/ec889JaP5EUF1mdYjP/nkk4xjWteldajUMefG9Seva/VfWBtj\njDHGGGOMMcYYY4zJCbxgbYwxxhhjjDHGGGOMMSYn8IK1McYYY4wxxhhjjDHGmJzAC9bGGGOMMcYY\nY4wxxhhjcoJk6WKXLrqBebzxeQgqRkolluiFwLI9gjbnJ+ng448/LhnJu/r16ydZvEk6yRSbNWsm\nGYktdt11V8loY/kmTZpIlirXIWIRytKlSwt9ri+++EKyrbbaUB+KUzqUuvF8DAk5SMCVCtWpUqVK\nSUaSm1hI1a1bt0JfB8lrYqFCCCG8+OKLksXyrBBYAkrEkoS77rpLypAghqCN/l94YYP4L6X+vPnm\nm5LVqVNHMpJtUP2NOeCAAyRr2bKlZB999JFk9J7G0q8QuE0ievXqlXEcS0tCCKFEiRKSpQhA84J+\nPwlpqQ1t2LBhob6TJCiHHnqoZC1atJAsm/Tso49URnPKKadIRvIOEoGk1HNqX0lG9c0330i2yy67\nSEb3lARDw4YNk6xWrVoZx+vWrZMyl19+uWQkGiHp2ZAhQySrUKGCZKmkijpiqF+gukIixBIltv3n\n33H92WcffR703LbbTtup2rVrS/b9999nHJP4jbKDDz5YMoJEnq+++qpkJABKldWlQO/YBRdcIBmJ\nI+vVqycZSYyGDx8u2VlnnSVZ3LaQbGfbbbeV7Oeff5ascuXKkk2c+PY//y7s+Ifu12uvvZb02eIk\ntW+lNmnJkiWSff311xnHq1atkjI0fqZ25b8BzYvicV1KmRBYWkdzjIMP3iBCi+tP3boqHqb24Zxz\nzpGMZGBbbLFFxjGJDul5E8uWLZOM5GgESRdfeeWVpM/+26SK3GMhZAghbLXVVpLFz+aJJ56QMttv\nv33StdE44oMPNkixCtv+0HXT74tFtCTGpnk5ieWpzaW+ntqa1HcwLkdlbrrpJsnuvvtuyYrCXnvt\nJdmXX35ZqHPRe0LjQZIuUr+fTZo3c+ZUKV/YMT4xbtw4yUje2717d8lIWEjPN5bm5gW1oXH/NXny\nZCnTpUsXyeh30b1v1aqVZDRuJXbeeWfJli9fLlm8HpK6FpIq5ctWf6j9ofaV+gNqc+O6T3NQ+n30\nPFKhtR7q22lsGMsZaaxTsWJFyWLRYQgsNiTJb1Gg3xrXUerjSbxOEsp7771XMksXjTHGGGOMMcYY\nY4wxxvw/gxesjTHGGGOMMcYYY4wxxuQEXrA2xhhjjDHGGGOMMcYYkxN4wdoYY4wxxhhjjDHGGGNM\nTqCWrjx4+OGHJaON7a+44grJttxyy3w/SwI3koXQpt702TfeeEOyxx57TLKzzz5bMpL4xJDwhHjk\nkUeSyhH169eXjDaXJ5kbyS/nzp2bcUxyARIC0HMmkd3G0rOYTp06SdajRw/J6HkMGjQoz/Ouh0Rg\nixYtkmzWrFmSkdTtjjvukCwW34XA4tHq1atLduONN2YcU5398ccfJZs/f75kJDghWRzJPE488UTJ\n6J4T48ePzzgm8RyJ1khaR9KGbFx77bWSPf3000mfJcFi3D507txZypDgi8SGqSJUEiymin2uueaa\nrMd5QUKS8uXLS/bVV19JRoJFEuSQgCSFjh07SkbvBTFw4MACfRcJXAhqM4hYhEaytCOOOEIyEu5O\nmDBBsilTpkh29NFHJ10btYUxJGohSQmJj0kuQ8JGgkQdJO0i6dJOO+2UcUztCgkn6Z7TdWTrv375\n5RfJSLA4YMAAyRYuXChZipyaBIsklSQp8YUXXpjv+UNgaRXd13iMQTIYEkeTMJCyUaNGSRb3mSHw\n+HL69OmS0diRJMQxJFikfoCEkAWFxqOXXXaZZGPGjJHspJNOyjhOlTXS76MxDEl9qa7UrFlTMhpj\nlSlTJuOY+oz33lMxLkkXaYw6c+ZMya688krJVq5cKRnVZRrznn/++RnHNBYgeSi1SdTmbSxdjKH5\nRt++fSWj94PGo7H87phjjsnzuzeGBEqpgkWCxHE07ogF0HRPaQxD10v89JO2/SQNpHaKRIUk0IrH\nTiRYTBWckdC5oHz77beSlS5dOumz8VwgPg6B+ziSRVKbl0qqMJ7e55gnn3wy6Vy0nhFL+UJg4Xnc\nDobA7QiN29u0aZNxTII66oOpvaRnn83PTtdIkEj0kksuyfdzND5PlU536NBBMppD7bfffpLR2Oy5\n557L6zKzctRRR0lGY+Xff/9dMqqfdE/iNZwQeJz04IMPStatW7eMY2q3aP61du1ayUgSWVDi+hwC\nr22ceuqpksV1mvp/EixuttlmktF7SqxevVqyjz76SDJ6brGgtHHjxlLmpZdekozWhGjdrrih/jAe\nn9EYmyDBIs3vUvBfWBtjjDHGGGOMMcYYY4zJCbxgbYwxxhhjjDHGGGOMMSYn8IK1McYYY4wxxhhj\njDHGmJzAC9bGGGOMMcYYY4wxxhhjcoJNSKSynpUrV//zH484QjfJJqlL5cqVJTvwwAMlI5lcDAni\naJPzX3/9VbKHHnpIsgsuuECyHXbYQTKSiJCYJQUS2tF3kvChd+/ekpEMp1GjRpLRJv6HH54pdSFB\nVKp0jERPixdvEE+ULVtqk43rT7lyKqgiqD6SuCCuByRUIjESCZTot5BwhcR8JAGljARdMSSXJHFA\nioQyBJaNkRyEILlFimh09uzZkqVusL+x9Kyw9effht61l19+WbLrrrtOslh0lBexXC4EFqEVFnrH\nSDxKz5J+F9XROXPmSBZLsEjkS0IJklqS9HXatA2yr7j+fPzx+1L+tNNOk+yss86SjNrJWMD1zDPP\nSJmiQG0S9V9jx46VbPHixZLFshYSrVHbSPI+erbUx6cyePBgyZo3b17o86VA0snZszfIvlLaH5Ln\nkOCIiOs0yeBGjBghGck4Kbvlllsko7qy1157SUZtf1wfU8TUeVG3bl3JSHxD33HRRRdJVqVKFclI\nHhRLiOm3E6ltfrb+68AD9btIWkzSMxJkxePKVPkYiZbo/r377rtJ5/vss88kI4lsLAMjgSzJJUky\nStdGsiYae9N9Ivk3iaxiSHBIIsRUstWfNm20HS7KOxhz2GGHSUb1k/rHOnXqSEZ9K/XZJMSmeWUs\nFU0VqN1///2S0dieoHFSirwvL+JrIYEazT1pbkNj8Wz156CD9N5///33+VxxOi1btpSMRMUkkKS+\nnp4btbnUZsTz3BDSxH8EzV1oXEyQ4Jbkph988EHS+eIxA7VvJKlt1qyZZFSP19efuO6EEMLee+t4\nidZdiLjfDUH73jPPPFPKpEiSCwK9b5UqVUr6bNzWkxTz8ccfl4zmRiTlo7kQSYNpbF++fHnJiHiM\nRQJCguZkJKbMVn+KMn+n+xW/M6tWrZIyJEf98MMPJSP5NY0Nae5LkPw37ktSx57EihUrJCtXrpxk\n1LdSH0ykyClfffVVKUNj++OPP14y6qs//vjvtceyZUvl2cn6L6yNMcYYY4wxxhhjjDHG5AResDbG\nGGOMMcYYY4wxxhiTE3jB2hhjjDHGGGOMMcYYY0xOkLyHdbVqutdPrVq1JKN91Wh/wphNN9W187/+\n+ksy2uu5devWkp177rmSvfnmm5LRXjy099ZJJ50kWUyZMmUku/TSSyXr1q1bvucKIX0PNdpXjvYW\njPdiXb16tZShvaRofyAi2x5qQ4f2l/LXXHNN0nnbtWsnWc+ePTOOX3/9dSlzwgknJJ1/4MCBktHe\nZVWrVpWM9sWivaP33XffjGOq77RP8fLlyyWj/Vdpn7Ki7KtL9TbeU4z2odx6660lo/1ZaW+vbPXn\n1Vd1H+PPP/9cMtrPtX79+pLF7wftx0TPg/YVo/3HUt9d2iuT9nyL25ZHH31Uyqxbt04y2mezY8eO\nkjVs2FAy2juV9ui88847JZsxY4ZkKdCeye+8845k8+bNk+zf2gOd6lS8T1nTpk0LfX5qa2bNmiUZ\n3fu2bdtKRnuG0fuWAu15RvWT9t5ctmxZ0nfQ/ql0T6idLizDhg2TrH79k//5d0r9IUcCPSMan0yd\nOjX9Yv9FyMtwxx135Pu50aNHS0ZtCI2laM/A1P0BCeoPqd+MadKkiWS0X37Xrl0l+/TTTyXr2XPD\ns0+pPzQepf2AqW+nvUr/F1A/N336dMnisQLtW1uyZEnJqP256aabJFuwYIFkVLfJgUPjE9qfvmLF\nihnHu+++u5Sh+UQq2fqvHj30t1BdofaH3Adxnfpv1DGqKy+99JJkNE6K952mPTBpz9LffvutIJeY\nL6ltDe23HP9Wev9THUJEtvpTq5b2sbSfO40daHzXpk2bjOOjjjpKyrz33nuSpawFFBX6DbFDiPZH\npnaFnkfqO077VU+ePFky2iOY2pYUBw6tBdCaDPXxbdv+/Y6l7kHcqVOnpIyI2wIa4w8dOlQycpO1\natVKMrr37du3l4zWIGh8EnsOWrRoIWVKlSolGdUzmiPT+5MK7WdPe3NnW+tbT+oe/bT//e+//73v\nMdWfEiV0z29yNRWnF2LUqFGSnXzyyZKR/4Lmr7Rv+amnnirZyJEjUy+xUKSuLVC5eB0qhBAuu+wy\nyagtTKFGjRqSTZs2LemzG++BnlcZ/4W1McYYY4wxxhhjjDHGmJzAC9bGGGOMMcYYY4wxxhhjcgIv\nWBtjjDHGGGOMMcYYY4zJCbxgbYwxxhhjjDHGGGOMMSYnKJFaMJZMhcCbzJNUYb/99pOsT58+Gcck\nNTz22GMlIznaDTfcINm9994rGfH0009L9tRTT0kWb8S/ZMmSpHOlChZJ3EYbqW+//faSffjhh5LF\nkokQWG4VU7duXckaNWokWUElSSQ36NKli2QkoDjvvPPyPT9JWFI3pycpDUECKRKXpIgnSLJAcgES\nSpCojyQaJIZavHixZCQXHD9+vGQxJMz5t7j44oslI4EJCWKqV68uWYkSmU0f3QOC3tNy5cpJRtdL\nxDKPEEKoUKGCZLFkcM8995QyqeIFYvbs2UnlSFpFgoratWtLFovmevfuLWWuvvrqpOto3LhxUrn1\nkHDlvvvuS/osSV9jkQT1e5tttplk1157rWQPPvigZKVLl5aMRKixCCwEFSKFoO8K9QXUB3/xxRdJ\n30l9NQk4SEBI/Sa9xxMmTMg4JpkqvQMkDx0zZoxkBWXSpEmS0b1J4ZJLLpGM3l2STqdCki8SR1au\nXFmyWBREgkXKSDD09ttvZ73O9ZBgiWTaBx54YNL5HnnkkYxjek9IHhqPVUNgIXg2SNjcoUOHQn82\nFuKRaCylDw8hXRxEIit636iPjIXA/fr1kzLU/pBcmMaI9I6T/LooIsHiFKVWqVKlQOWpr6J736BB\nA8lIqBhTlPvSsmVLyWLBewgsb6cxL7V78ZyMfmdRBIv0LpLIneZaqWOse+65J+O4KILFgrLFFltI\nRjIseo9ShM3U19P7QqL2orxXJGWldi9+RrRmcPfddxf6OmguO2jQoKTPFkXUGkPj7vPPP18ymhMV\nFJqb0tz31ltvlSyew8bvRgjpz4PaGsp22WUXyVIlkbFkkdY/TjjhBMlorHP77bdLRgJCEhuS7JF+\n69KlSyWLIel0KjvuuKNkG0tfY+j3ESSpJGJ5ILWlJFhs2rSpZCT3TF076tWrl2R0b1LaAhqPUv+Y\nKsakNcDVq1dL1r1796TzpfDWW29JRnObE088sVDn919YG2OMMcYYY4wxxhhjjMkJvGBtjDHGGGOM\nMcYYY4wxJifwgrUxxhhjjDHGGGOMMcaYnMAL1sYYY4wxxhhjjDHGGGNygmTpIm2SPXbs2KTPkjgl\nlmbEUsMQeAP2l19+WTL6LG2a3rVrV8loA3zim2++yTgeMWKElPn5558la9u2rWQk8bn//vslu+ii\niyQj6dnZZ58t2c033yxZTP/+/SW78MILJSOJRcr584PuPUkQSHAUi7pIMjB9+nTJqF588MEHkpF8\nhIRPsQwvBP4Nu+++e8YxyRhIyEZiQxJUkBCS5IwkLIqvLQSWGMT3jt4nkrRtueWWktE7kA2SvpLc\ngOSeKQJWkkLE73wIIZQsWVKyU045RbKJEyfm+50hsCyzc+fOksViUJInnH766UnfSeKgVGlXLM8K\nIV1QMX/+/IxjkqXddNNNkpF8Ze3atZJlI1WwSJCcKIYEi8QVV1whGYnpSFR8yCGHSEbCDKq3sXCm\nbNmyUmbw4MGS0XOkd5fEm1QvqK8+9NBDJdtmm20ki98BukckACOBJYl2GzQ4TbJskGiK6kosiAlB\nBZpU7zfdNO3vCUjWEgsGQwjhjz/+kIxkofTMScYcQ+OfBx54QDKS91EfQYKuX3/9VbIffvhBMhI9\n0VgsZtmyZZLR8yuoMG3FihWSkTjuvffek4wEYTEkiyRZI7XzqW3jcccdJxmJj6+88krJ4t9Vs2ZN\nKUPvzk8/qchpn332kYz6g9tuu02y4iQWN4cQwvvvv590HTSPyQa9kzTueO2115LOF8unaIy0xx57\nSEb1p2fPnpJR2099BIkN6bemCkQLC42pqQ2hMTqRIsbaa6+9JPvyyy+Tzp8qp17P3LlzJUud+9I8\nPJaN0bibZNJr1qyRjPp6kplRn01C7BT5JonWCBL10fiK2vcFCxZIVpR3NgUaS9E7e8ABB0g2derM\nPM9LUlZqhwkSaMeQRJ3E2DQ3ojkUjWWbN28uGa2xkBA4bs9oXk5tVKosl64tVdpJ56P2N5670lwu\nVehXUOh6zjjjDMnovhLx+GvhwoVShuYH3333nWRU90hYSFDdo/Fi/PsvvvhiKUNjdlrDobaf3vvZ\ns2dLRu3qjz/+KBkR30+65zSOT23zs0k71+O/sDbGGGOMMcYYY4wxxhiTE3jB2hhjjDHGGGOMMcYY\nY0xO4AVrY4wxxhhjjDHGGGOMMTmBF6yNMcYYY4wxxhhjjDHG5ASb0Gbo61m5cvU//7FcubRNyEke\nREKYWJaw+eabSxkSyaVCwr1q1apJRmIjEulVqFAh43jlypVS5tlnn5WMBDTt27eX7KyzzpKMZFFl\nypSRbIcddpCMBDnxxv4TJkyQMrSJfPzb82LjTdPLli21SWHqD1G7dm3Jpk6dmnHcqlUrKTNgwADJ\nUoRkIbAkgIQ6VKeIeIP6jh07ShmSy+29996SkRjh8ccfl4xEDttuu61kJLVs0aKFZAMHDsw4JlFN\nhw4dJEulOOoPiX1IUFivXr3CXCKKJkmqtP3220tGcgMSolDbNWvWrIxjqhfUDnz//feSURtNAowj\njzxSsqIQywVJHvHGG29I9u677yadv6D1Z9KkSZKl1ov4uZE48ZVXXpGM2nQSvBLUJpHs6KCDDpIs\nFvOR9OOuu+6SjOpF6vOgNvmyyy6T7Kijjko6Xyx7JOkPSY1SyVZ/Lr1U20MSxNCYhepGLIeMJcJ5\nQXLm66+/PumzVH9IkpsqUyosdB0kqKpcubJkJEWkMdGcOXPyPR8JdGncRKLU005TQWe2+jNu3KtS\nnkSWJEAmKfRhhx2WcUzSVxJqksCRroN+H/Uv1H/ROCYWEZHwjbITTjhBMhq3brHFFpKRVCoVemdj\nqRbJmkgKSuOP6tWrSzZq1AZRc1x/2rbV9vr555+XjGRq9G7FkMCaBFWpgi8iVehF72WdOnUyjseN\nG5d0rtatW0tG0tf4/CFwO5gqmCbieRTNMwmSz5100kmSZWt/LrrofCk/cuRIyUicu2TJEslS54Qx\nNOaj9/TRRx+VjO798OHDJaO59Jtvvplx3LBhQynzwgsvSEZyRppD0XoAXVsqNCaMRe5NmjSRMltt\ntZVk1CaRpPbHH//O4roTAo+fd955Z8meeeYZyahPjfsImpPstNNOklGbRHTq1EkyWtugd/frr7+W\nLJbExQL5ELgPpnaV5m49evSQjISQ5cqVk6x8+fKSLV68WLIYkhw3a9ZMMpoT0XrD+vYntf4QNBah\nOWFMynrFf4uU/vDDDz+UjMY1qWP7VGhcTOLjeK4VQgjPPfdcxjGNYQ455BDJSLD95JNPSrZx/ZH/\n+H/4L6yNMcYYY4wxxhhjjDHG5AResDbGGGOMMcYYY4wxxhiTE3jB2hhjjDHGGGOMMcYYY0xO4AVr\nY4wxxhhjjDHGGGOMMTlBsUsXU9l1110zjmmje9rYnWQw8bkKAv1+Eh6QLCsFEkA88MADSeePN/oP\nIYSffvpJsu2202eTKgJJ4e2D1WVaAAAgAElEQVS335aMRBx1624QgcQb7x93nIoTZ8+eLRlJG84/\nX4UhhYUEeSTSI2JxYggh7LfffpKReDAWFKaKagg6/7333isZfQdJ+EhuUZzQdcQSwRBC2HXXDfKI\nwkoXt9xyS8l+++03ySpWrJhx/MknnySdn6hatapkJAoleQ7VKZJ89e3bN9/rIGkDSUHpfpBAisQQ\n9NlU0UthSZGuhlA80k56t1asWCHZ0qVLM45JuBuL0UJgyR2Jeek6SLhCsjGSrcWSKpI2kZxr7ty5\nklFdSZVJ0u+itoBEL7GIiaRYJGghmdvNN98s2erVv//z77j+7LGHiv1IFkXP8uGHH4bvyhSxlSpV\nSsr06tVLsljWGAILTEjWQhKoGjVqSLbXXntJFkvzFi1aJGVIMES/gQQ5RGofOWTIEMlIIBq38Qce\neKCUIZlSKtnan5o1q0h5Epr27NlTMhIAnnrqqRnHsRAnhBAOPvhgyT7++GPJCGpDSCpFUF8a97dE\nUcZERx99tGTvvfeeZH/88UfS+eg9i8WoxS0gXL58g5Q5pf8aPXq0ZPSOk/w37tNIAk7vUCyvCyGE\nY489VjKiOOck1Lem9NMhhNC7d2/JaE5GbRxBIjj63kMPPTTjmISln332mWQkSm3btq1k/5b0PrVP\niyFpXL9+/ZK+k+ZVJEVcvny5ZCeeeGK+548FhiGEUL9+fcmobyWRJ322Vq1aknXr1i3fawuB++X4\nfWzQoIGUSb1eIps0r359FWPT/D31HY/7bJKoDhgwIOlcJIijOdQ333wjWeraUTzHo7kRCbGpX6J2\nldro/wW01kJrMtTPrVz595iW6s+CBVpXSMZJIk+aM8Vy4RSxcEEgeSAJaamPoLlvLM4m0fzMmTMl\no35u003174xT2zO6T/S76Ppo7h9z6aWXSkbruISli8YYY4wxxhhjjDHGGGP+n8EL1sYYY4wxxhhj\njDHGGGNyAi9YG2OMMcYYY4wxxhhjjMkJvGBtjDHGGGOMMcYYY4wxJicokVqQRDkkMCEZH22Af955\n52Uck4yJNvAmTjnlFMlIpHf44YdLRsInkuHEEprPP/9cypAIjCQotPH5tttuK1kseQmBn0OJEvoY\nSUQQizpIakDSBNqAndhY+hFDgoaGDRtKRtIR2uA/vk6qYyQJShUsbr/99pKRCITkGHS9RREKxcQC\nxxBYujh06FDJSO6Vyt57751x3LRpUykzbdo0yVJFHNnqD0HP8tZbb036/muvvTbjmMR+lStXTroO\nkviQbIwEiyTUmTx5smSxLJR+O0nEnnjiCcnat28v2bvvvisZySRJNkKSiREjRkgWt6upAllqt6mt\nLSgkWCOhIIkrY0lMqmCR6iIJjNq1ayfZp59+KlkswwuB+5Jhw4ZlHFN9J2Ep9YWpomLql2jMQPeE\n+otly5ZlHC9evDjpXF26dJGMRFIh6O9fDwkWCXqW1BfHIkgSLFP93GGHHSSj5/HDDz9IdvbZZ0tG\n7Q8Rv6u77LKLlHnooYck++WXX5LOT5A0r2bNmpJRm0/yzVjSSfc3tc4WFKqrsUQ0BBbYvfXWW/le\nE9V7EiySNK9OnTqS0Tie7j09o5tuukmyFC644ALJBg0aJBnVKeoPXnrpJclIknTddddJFgvyiKKM\n6Qr6WWqbafxMkBT58ssvzzieMWOGlKH5F9WVlPF5QahSRQWl8biDzk/tG4kYSfZ19dVXS0bfQdI8\nuk8p9Ydk9lS3SbB4zjnn5Hv+/KhQoYJkxxxzjGQpgsWnnnpKsosvvliyu+++WzJ6Rvfdd59kf/31\nl2Q0Rk2RoZKQjCBhIYkNX375ZcmaNGmS9B3UD61Zs0ayeIxJdTFVsFhQaHyb+o7T3LxZs2YZx/Qc\nqS8mOSPV41dffVWy008/Pet1rodE45UqVco4JjkhScBpbWrVqlVJ10FQW/viiy9K1rx5c8nieRqN\nJXffffek66Bnn23+TmteNG+k85577rmSxQJAGo/SPJqgNSda64nFiSFwffz6668li8W8NP8iqC+k\nse3IkSMlozYullXmRaNGjSSLx44k+qbxK0ncU+cdMf4La2OMMcYYY4wxxhhjjDE5gResjTHGGGOM\nMcYYY4wxxuQEXrA2xhhjjDHGGGOMMcYYkxN4wdoYY4wxxhhjjDHGGGNMTrBJNvnHypWr//mP5cqp\nDOvggw+WLBYj/f3ZcpLFogESKtAm9l9++aVk9Bto03QSrhCpAokUSF7TsWNHyZ5//nnJSLxAkPjm\nyCOPlCyWr5BIId4cPgQWqJHQ5uKLN8hBypYttcnG9We//XQzf9oov27dupKROC6WVpEUiyRQdJ/j\nc4XAcksSs5BQggRLo0aNkizmq6++kow2rCdIEPjss89KFstOQ2DBGdX3H3/8MeP4hRdeSLo2goQP\n8+dveLfj+kPtT5kyZSQjoQWJ9GIhyk477SRlSHRUr149yf4XvP7665I1aNBAMqpTJOqj308ynFi8\nmddnSb5AIsqYkiVLSrbbbrtJRtLbjaUfcf2ZOnWClCc5xtq1ayUjKVcsxG3ZsqWUIajOrly5UjKS\nEJNsdfny5ZJdeOGFkk2aNCnjOJaWhMBCDpKlkOyL+g0SeaZC8pW47YpFkkUlW/2h9odEtyQToWce\nC/dIGEbyn4suukiy+NmGEMI111wjGfWjBEnzSJaVQvXq1SUjwdsll1wi2eOPP570HVRX6D7169cv\n45jEMiTPojEJiW+y1Z+SJXV8S30gQe16/P6SYKhixYqSffLJJ5JNmKBtI8kOSdKdSiyTo3O1adMm\n6VylS5eWjNofkiHTGI4ESCRxjOWtNG6kfvmEE06QjCho+/NvkyqGPOSQQySbM2eOZDT/on6OxpWt\nWrXKOKb6Q/NMGsOk/q7Uekb9bf/+/ZO+IyaWYYbAclYS+vXps2HeGtefq69WMST1n9T+kbwrRd5O\nbQ3NPz766CPJaD1g5syZkj322GOSkRi8e/fuGcdly5aVMiQ4I6i/oTHiAw88IBnJMnv06CEZ1YOx\nY8cmXV8M3fNatWpJ1rTp3/U4rjshhFCmjIq8aY1h2rRpSdcUt50kxn7nnXeSvpMEnXQdNPcnEeMr\nr7wiWWEhmTatCdEY8c8//0z6DpK30hguHkfE4ssQeG54/PHHSzZ+/HjJ1vdfVH/mzdN3ktYP6T7Q\n2HDrrbfOOKZ2i+aIBPUH8VpHCLwmMnz4cMlIeDl48OCMYxrrPPLII1mvcz2vvfaaZPF8NARe/ykK\nRREpxxx11FGSvfTSmBDC3/Unr8/5L6yNMcYYY4wxxhhjjDHG5AResDbGGGOMMcYYY4wxxhiTE3jB\n2hhjjDHGGGOMMcYYY0xO4AVrY4wxxhhjjDHGGGOMMTlBkaSLBJ2PNutu165dxnEsZQmBZROp50+F\nxD6XXqqCisJCgkWS+FSrVk0yko/QtdFvIElSLO0iccn555+flJGU5oADNshXilMaQ5KCPfbYI+P4\ngw8+kDIklSSBG4lCUyHhA4kcYqHZTz/9JGW23357yVLre6qAMJVU+UsKVH+eeeYZyQoqHXr44Ycl\no9/cqVMnyeL7Svc09d4fc8wxktWsWVMyqiuFJVUctP/++0tGQsRUSRBJb6mdmjJlimQvvvhixjHV\nMZKUxMKKEFimtHz5BlFGXH9Wr1axIYl5U+tBcUKSoIMOOkgykoDSZ2NBVQgqNiLZFbWDdO9TZYNv\nvfWWZPSudO3aVTJq8+N+jgQx1K6QqIfGGz///Mc//47rzz77qCCYzkGSXBJkxQIgqnckjTn88MMl\ni2WCIXCbR2Ka1PHEv0358uUl+/jjjyWrUaOGZCQNTmHcuHGSkYiVBMxEQfsvkkBRW5oiz6F3gX4L\nvc9nnXVWvucPIYQrr7xSsrhNDyGEzp07SxaLk3744QcpQxKokSNHSlac8p8QQujTp49kJDIfOHBg\nvue69tprJXvwwQclK1GihGTLlm0Q+sX1p2rVClC+8OPWmFSxMfXZJPyO53chcNtMY8OUcVe3bt2k\nzBlnnCFZhQp632iuQAL4XXfdNd/rCCGE5557TjKS68Wkzk9IskVka3+ef14lqm3btk06LxGLGCdO\nnChlaE5L4kSC6gAJ7klUdtVVV0n20EMPZRxTn/z9999LRn1E6tytKOyzzz6Sxe8jzX9IYJkqW84m\nzbvgAr1f1IZTu1lYqA6Q7JjE461bt5bs559/Tvpeuq/xeJzmS9S+ESTmfeqppySjfp8E9ySC7du3\nr2T0/qRcG0mDd999d8k++OBvySrVn2231f7u999/lyz1PVq6dGm+10OkzuVIRE3yycKy7bYqMU2t\nn2vWrJGMxhMlS5Ys+IX9H6+++qpksfR15UqdUx999NGSUTl6Z++88+/1EUsXjTHGGGOMMcYYY4wx\nxuQ8XrA2xhhjjDHGGGOMMcYYkxN4wdoYY4wxxhhjjDHGGGNMTuAFa2OMMcYYY4wxxhhjjDE5ge7U\nnQdbbbWVZCSISZVWTZ8+PeOYZDq0kXhxC1feffddyS6++GLJSC4TU6VKFcnuuusuyWjDcSIW1YTA\nkiSSW5Fw5+yzz873O0lyM2vWLMkaNWok2XvvqfChOCD5S4MGDTKOSWBC133ooYdKRjKhWNIRQghl\ny5aV7KijjpIsFiwSJK8hiiIDpOu46aabJBsyZIhkd955p2RxPUu9DpKvpAoq1kPPiMSGRxxxRNL5\n4utMFewQ1atXl6wogsUxY8ZIliKLeOCBByRbuHBhUkbUrl1bMpLKkcSRZEcxqRJPkg0WVIRIgkWS\nRZ166qmSkcA2lgySBPLpp5+WjMQd1G+kylWo3bvlllski8VqJB2qWLGiZHSfN9007f9zU/0hLrro\nIslISvLjjz9mHJcuXVrKkNC4adOmku2www6SLVmSt6SWBIvEiBEjJDvxxBMli+WwsRA5hBDq1Kkj\nWZs2bSSrWrWqZCRYLIpIt3379hnH1L698sorkm299daSHXfccUnf+dJLL0lG4xp6V84880zJnnzy\nyYxjGg/FdSwv6L3LxqRJkySj/oX6xRTp4qJFi5Kug6S5qZCMioSNJPmK+xzqH+jZ0j0i6VlcP0MI\nYfjw4ZLFsqYQuH8pLOvWrZOM5FIFHR9Q/SExLwkFSYAYn++CCy6QMtQ2kByMuO6665LKUdtM8qm4\nHyLpO4lHCap7PXr0kIzkoQTJ51KgZ0VZ8+bNJSN5ajZIfEXtH83pSXBJY4wYmkPRfClVxEgCceL6\n66+XbNCgTOkkiYVpTECQGG7HHXeUjCSOBMlmSV4Wj71POeWUpPPT+5Qq2l1PLFwLgQXa1C9+8cUX\nksVjWap3NFelsfhtt90m2bfffivZFltsIVnjxo0lo7lmTEH7/42hcU1KHx8CzwGIFMEiiT0vu+wy\nyR577LGkctmgMer8+fMlozo1efJkyVIki9tss03i1Sm0jkBzIWpXqb+N6xm9f7/++qtktO4azx1C\nCKFMmTKSUftLQlp6P08//XTJ4jkZtSskICZSpMSE/8LaGGOMMcYYY4wxxhhjTE7gBWtjjDHGGGOM\nMcYYY4wxOYEXrI0xxhhjjDHGGGOMMcbkBMl7WNM+jLfffrtktL9lyl6w8Z7EIYQwZcoUyWjfStrT\njvaDISpVqiQZ7TEd7wnZokULKfPmm29KRnt2ffLJJ5LR3qa0Rx3tF0v7mfXp00ey+D7R3mG0l9RJ\nJ50k2bJlyyTLBu2nQ3sH0r7dtJ9X/fr18/3OPffcUzLa14j2tKNnRHv60f6zhd1nvXz58pItXry4\n0Oen94d+w8SJEyWjfUbjaxk6dKiUoX2paE+5I488UrJs0J6k9erVK9A5skH7Z9IeTbS37urVqyWj\n/a5oH6+PPtJ935csWSJZvB8yvZO0byRlqfXnm2++SSpHe+jTnpvxPn+0byRBe7HPnj076bProXaN\n9nCcM2dO0vn69++fcUx9EPWF48ePl4zaPNqrjvZZJ2jPyRi6p3vvvbdktK81fZb6pdS9rgcMGCAZ\n9YfxPn/U3/bt21cyaqdoH8pslCtXTjLat5zqNO0517Zt24zjDh06SBm6f927d5eM2hUidb9q6ofi\nPXepHaR7SnvV0Z6T8f0IIYSSJUtKRveSIDdJDO0927VrV8lonEt7zWajOPuqEHS/VfotNNbp169f\nsV4H1RXqSz/++ON8y9C1/fXXX5KRZ4X2pCVozLnzzjtLRnU5Hts0bNhQylD7Qxntz5oN2hufIAfD\naaedJlm8p+b9998vZWi/86uvvloyGuvQM6KxMu0rS3tqxn01zT/++OMPyd5++23JatWqJdmtt94q\nGe2nSl4l8ibQHs8p/TL5XkqVKpXv5/KD9nzt1KmTZDQ2pN8S1x+qn6njzGHDhkl28MEHS0ZzEupf\naBwT16ntttsu6dqov0l196QSjyVD4DEWvaMpUF9N/pZsUHtN41FyMJx//vn5np/aUtqjm+rKHXfc\nIRk5DQjaT5rGHbG/gRxP5G4gvwbtX0zzNHISUftL/SbtMR2vE82bN0/KUP9Y0P2qCarPtFZA+1Wn\nQOtdNAelcSa1y6nzA9oTmuroV199lXFM7zK52s4991zJaD0s1XVGrpPevXtLRv1rPB74888/pQzN\nic444wzJaK/rhx9+UrIY/4W1McYYY4wxxhhjjDHGmJzAC9bGGGOMMcYYY4wxxhhjcgIvWBtjjDHG\nGGOMMcYYY4zJCbxgbYwxxhhjjDHGGGOMMSYn2IQ25l7PypWr//mP5cqlSQouvPBCyaZPny5ZLNsg\nASDx1FNPSUabf1966aWS0ab4JLwi4g3R99lnHykzZswYyWhz9ddffz3pO3fbbTfJSH6QyujRozOO\nSXRAkPxpv/32k2zq1A3PsGzZUpsUpv6kEosqSDBEQg5i3bp1ksVSoxBCGDdunGQk1ezcubNkscAv\nllgVFarvJCKijf2nTZsmGb1TsbThtddekzIkbfjtt98ko/s7f/6GTf3/7fqTwl577SUZ/T6SLpLM\nlYR7xNZbby3ZkCFDMo5j6U0IIdxwww2Spdaz1q1bS/bkk/lLEP4bHHjggZLR72/ffoM4Ka4/jRur\npJKETCS5iGV/IWibQaIWavspo+/s2bOnZCSuJQkLEUs6SUr3+++/S0bCDJL8EiQUJfHWmjVrJKP2\nPOb555+X7I033pBs4MCBkpHs6+OPNwhJ4vpTu7bKsBYsWJDvNaZCsj8S1VBdKYrwqXbt2pJNnTpV\nsljs+OGHHxb6OwkSzZIMb/PNN086H4lk4neFpGok/WnZsqVksQQ3hBBWrNggXo3rzz777CLlf/nl\nF8kIkk/FkkV6ZqmQMJVEuiTqIklto0aNJLv88sszjkmaS2Ll/fffX7JDDjlEMjrf+++/L9nhhx8u\nWZkyZSSjMW8sOyLJ3yuvvCIZyWHr1KkjWbb6Q+MfkpmRPJAkUPE8aunSpVKmRo0akpHMnu5p9erV\nJSNBVSqjRo3KOI4FziGwTJHmtzQuJrFYx44dJaOxHskpSeYWzxX22GMPKUMyKpLHxxKvEApef1Ih\nSS71VzEkTozlqyHwPHfChAmSVahQQTKS/JFQMZaRkoSb7j2N40nyV5Q+mKD2N26nSaZIovjhw4dL\nRnOyBg3+lrPGdSeEEPbeW/viiy++WDKaH6XMQbKtQ+XH8uXLJVu4cKFkNH4eO3asZCQ8j58vXS/N\nmanNiwWOIfC4lSSjRJcuXSQjUXQMrf/Ea0Qh8Jzl+uuvl2x9+0P1p0ULXYuh+tOkSRPJvv/+e8ni\n/p7mKd9++61ka9eulYzGTj/99JNkNK6hdysWBIeg726zZs2kDK3hFAV6bqkyUhpHxG0+tXkkk777\n7rslI5HwwoV/j0HKli2VZ2Pqv7A2xhhjjDHGGGOMMcYYkxN4wdoYY4wxxhhjjDHGGGNMTuAFa2OM\nMcYYY4wxxhhjjDE5gResjTHGGGOMMcYYY4wxxuQExS5dpPMddthhkhWntIfkeiRQ+OSTTyS74IIL\nJJsxY0ahruOiiy6SrEOHDpIddNBBktEG5nvvvbdkX3zxRaGuLQQV3zz66KNSpk2bNpI98sgjSefP\nJv3o1auHlL/rrrskmzVrlmSHHnpo0vfH0D0lAcSKFSsko835aaN8Eu+Q0CKWfPTp00fKFDf0XrRt\n21ayXXfdVTIS3RUWEsSQSCZb/dl0UxVjkiypYsWKktF7H8swSMhBsgCSCpBw78EHH5TsiiuukIyE\nDyR3iM9H9y8Wy4TAkiAS2jVt2lQyki5utdVWkpGIiYglECRrqlevnmSpUrBs9adqVRX2kISXpHYp\n7ziJMkkmSMRCqRBCOPnkkyWj9qxEiRKSTZw4UbL4HqaKwIhUQQ61gyTlIUh6Fn8vCU9orLHvvvsm\nfWe2+tOxo0pmqP4QKSLaESNGSJl27dpJRkIpGmOQTJHqGbVJJBdu0KBBxjGJjsqVKycZQW0tSXj/\n+usvyVq1aiUZtV1Dhw6VLBYxkTj69NNPl4xEetTmL1my6p9/p0jP+vbtKxk9jxRS6+K9994r2fz5\n8yWjcVKqsGfx4sWSxfdr9913lzLUrqTKzEiCSbJMEnmSuI2keZ06dco4Ll26tJQ5/vjjJSMRPfUX\ntWtvkGwVpzSPpPfdu3fPOH7xxRelDD0Pkr6TNI8g2diVV16Z9NkUUvslqlMk2Vq2bJlkNF4jeVhh\niedoIfA8jcjWfx15ZFUpT20dib9Inhi3GXH/EAKLMUk0OXLkSMno3tM8hYRs9L0xqe0K1SkaU3fr\n1k0ymuPRZ2nMO2nSpKTri9lnn30kO+GEEyQjmWTTpn+3UyTN23FHHfdT/3niiSdKFguCQ2BhdgzN\nK+h50JwkFRo73XPPPYU6F4lISVhK6ym0trD99tsnlRsyZEjS9cXzypdfflnK0Fx9zJgxkl1yySWS\nZZMupvZf9F2xMD4ElVTWrVs36fw0v3v22WclI8E0Qe0eiTbjOQjV40GDBklG65OLFi2SrHXr1pLR\nuIPafBp7p0BiTxKA0jz4008/lWyPPf4WbFu6aIwxxhhjjDHGGGOMMSbn8YK1McYYY4wxxhhjjDHG\nmJzAC9bGGGOMMcYYY4wxxhhjcgIvWBtjjDHGGGOMMcYYY4zJCYpdukg0bNhQsliSQvINEiemQqIc\nEvFcd911kpGkKRa8pUohCBI+DBw4UDKSefz++++S9eihQkOSQPz4448Zx3R/aSP1mjVrSkaSm2zS\nj8qV94fyKjsk7rjjjnzLdO7cOelcJIUYO3asZKkCF4KEQnF9IVkayd1o43ySW1EdIPHWlClTJKP6\nSFKpdesyxYckaHn88cclI84880zJHn10wD//TpEOffTRR5KRPCgWDIWgv+X661WqFksCC8Krr74q\n2WmnnSYZiaHo3YrrIwlJSORUFEj6QUISEpR++eWXksUiL5JLkggklWztT2r/VaGCyhlJ1JHa3sT8\n+eefkn3++eeSUV9Sq1YtyUgWRdKzwlKUdjAVan9IXBLL+qh+xn1cXpDM5P77N0iSUurPKaecItlr\nr70mGYnubr755oxjkogeddRRktH7d+2110pG9SxVeEnEAtb69etLmcsuu0yy/v37S0bCWLqXJIu6\n+uqrJSPRbs+ePSWL5XqDBw+WMiTba9y4sWT0G2bOnPvPvwvb/lC/SH1aPC4gGd6CBQskI5FlantB\nY9QWLVpIRm3G3LlzM47p3aWx2ccffywZiY5IFJoKteWzZ8+WLB7vUP38+eefJdt2222TrqM4+i8i\npQ2nNpikr/RepUJjLBKqn3XWWZLFv6FUqVJShoSINJaiukfXRiIvkmqSTJKIhVc0RyUZXZMmTSSj\nuexxx21oQwsrfaV5LfWpJM4tLDTWofd58803l4zk8FTfY4kzicZIDkhrF1RXjjvuOMlIOk2CQBr/\nkTwxhsbdtI6SKuQtqDSP3kGSShKx3I/WGKgupo5H6Z7eeeedkpFcmOp7vEZAc1/qC6nPpHlr6ntX\ntarKU2n8878gW/156ikVkN51112SkZSVZIRHHHFExjGJLNu0aZPPFf8Nta+09kbyR5rnk9gwrrdF\nmVdR3a5WrZpk+++va25nnHGGZLQukSKdpDEwfScJZOl6R4/+u5yli8YYY4wxxhhjjDHGGGNyHi9Y\nG2OMMcYYY4wxxhhjjMkJvGBtjDHGGGOMMcYYY4wxJifwgrUxxhhjjDHGGGOMMcaYnEDNbwWAJD4k\n0nr22WclmzBhQsYxbbZO0Mb2I0aMkIw2PicOOuggyTp16pTv53bbbTfJ3nnnHcmOPPLIpOug30WQ\niOnGG29M+mzMOeeck1Ru3rx5hTr/xpBg8bbbbpOsa9eukpHI5v333884jqVQIbCgac6cOZI99thj\nkpHEkM5HojsSSMVShUMOOUTKkKiONqynTfd33nlnyUiKQQIp4ttvv833fCRGIRkXiR7feOONpOvI\nRpUqVZLKkaAwlp+QyHLatGmSxbLGEFha0KtXL8lItECyo5UrV0oWQ21eKiSSGT16tGQkWCIZBUHy\nuVtuuSXjeKeddko6V3FAgiOSrtF7Se3UYYcdlnH8wQcfJF1HLP8JgSW/S5culYxkLUR8n0MI4YEH\nHsg4pneidevWki1fvlwyamsIeleWLFmS9FmSOt10000Zx3fffXfSuQiS4axcmbcwiOROJCahet+7\nd2/JYnkyiadIvET3lNpXEvaQcIXo00cFOW3btk36bAxJ1dasWSMZ9aMkcaT2Mq4XIYRw8sknp15i\nBiTBJWJpVH6ktv0kWCRIZhlD7QX1mTSu2XHHHSVLHaMSlSpVyjieP3++lKF+iaSLNCYiqD0jSS29\nxyT6rlOnTr7fef755yddG9WHbO0P9ZXfffedZDQXOProoyVbtGhRxvENN9wgZUgWS4LO8uXLS0as\nWrVKMnrfqD7GAkS6f82aNZNsyJAhkpG8mH4rkToXIqlvLEGlZ0p1lmjatKlkG0s7U8pTv0RjXhI8\nxkJBWgsgGVzZsmUlI1JGIjEAACAASURBVOEwzd/jOpsXJNKLIcEiQePi8847L+mzJD4mWrVqJVnH\njh0li8cMND4/9dRTJYtlwyFwH5yNd999VzJa23jhhRckO/vssyUjYVsK1GcSJOal+0X9HK03kGQx\nhsaUBPXBlBVWxlnclClTRjJqy7MRS8bz4osvvpAsnrsQRZEuk+iWMoLacOqb4ozqMX2OxNmpoln6\nDhJHPvXUU5LRM4/HSbSGQ/dj+PDhkpFYOQX/hbUxxhhjjDHGGGOMMcaYnMAL1sYYY4wxxhhjjDHG\nGGNyAi9YG2OMMcYYY4wxxhhjjMkJvGBtjDHGGGOMMcYYY4wxJicoknQxFi+EEEK3bt0kI+nimDFj\nMo5TZRbDhg2TbO3atZLRhuNVq1aVrF69eklZLFyJpVshsISARIzbbrutZLTRP1GtWjXJSIy1cOHC\npPOlkCrvKSgkPCA233xzyWLxDol4SPqx/fbbS0b3lLK//vor63Wuh8RbscztiCOOkDIkbiP5IW2I\n/+ijj0p2++23SzZ79mzJiEGDBkkWC4VIZEfCLhIxfvrpp0nXURzEgkWCZEUkVo3lmXkxfvx4yahN\nKlmypGT0fDt06JBxnCoJIkgkQ9dBgkWSPZKUkMSjMVR/zj33XMlIEFhQSOJD8sDnnntOMqoHqZLF\nmF9++UWyt99+W7Ljjz++UOcPIYS77rpLsliaR7+puKE6td9++yV99vLLL5csRbJIUrXttttOMnoX\ns0mrSKAUi+RCCGHixImSkVBw+vTpGcc1a9aUMtQO0LswcuRIyVJENXlBgsX4vacxAcmqSQxHgpjJ\nkydL9vjjj0tGMknq06muxEIzur90fur3SQiZjbj9DiGEvffeWzJq/+655x7J4vaHxqOx2DyEdFld\n3759JSPicXwqJFP8+uuvkz77xx9/JJUjETdBbT6JPGfMmJFxTM+F5g4kNycR2SOP5C3SJHHa3Llz\nJbv++uvzPMfGxL+Z+qCZM2cmZSQSpneG2mGaz5EsPB5P0JyPBIulS5eWjNokggTtJOh8+umnJSOZ\nZPwb6DpI6Ef3qKCQIIveN3pG1GaQwC7mk08+kezWW2+VjKSLJPckoSm9FzQPj38D9XHU5tF10Pyd\nvnPs2LGSEfRsKItFvySpPeaYYyQjqVpB6xS1YY0bN5aMxtTUlsb9M/X1KaLDvGjevLlk7du3l2yz\nzTaTbJtttsn3/CQnrVGjhmQ03qc5PfXV9BtSpZPFCUn+CipdpLEOCRbpfqX8ZpJV03ofjTtIZE7Q\nO0lCQWovL7nkkozj1Pn7AQccIBkJRekekQyZ+k2q79S+x+MNastp3rrHHntIVlj8F9bGGGOMMcYY\nY4wxxhhjcgIvWBtjjDHGGGOMMcYYY4zJCbxgbYwxxhhjjDHGGGOMMSYn8IK1McYYY4wxxhhjjDHG\nmJygSNJF4s4775SMNqiPy7333ntJ57/55pslS92I/sMPP5Ts2GOPlYyEhQMGDMg4JmEFCZeOO+64\npGu79tprJSMRUVEEi7EAkgRqJKAhweL3338v2e+/5/3dVC/uu+8+yUiQR5KCFObPny8ZybNIsEjP\n48EHH5SMhBa0Gf2sWbMyjkla9dhjj0lGMk4SRZDY8PXXX5eMRC8kbGzUqJFk/fr1yzhevXq1lDnp\npJMkGzx4sGR33HGHZNmIpQUh8G8hCQKJJuM2g2Q6JFgkUUTHjh0lo99MMgYSKNSuXVuypUuXZhzT\nO3HFFVdIRsJbIlVkRe8sSbuonY4hESJJkopDukji1lTZRopoM1XQRFIjuvcrV66UjMSydevWzffa\nQuD7+m9DkptUttxyS8mef/75jOMePXpImVR5MfX72SD5yS677CIZtcOFhd6PVIES1TMSCqZyxhln\n5FuGhHN0j0jmSv1t7969JRs4cGC+1xECy+FI/hRz9dVXS1ahQgXJnnjiiaTrWA9Jhqkvoff+3Xff\nlSyWLPbq1UvKXHPNNZK1adNGMpKC0jiM+nuSZcVjnRBCuOGGGzKOqT7R83nppZckI7knje0JuueF\nFbxS/0FtHtXjzp0753v+jaFxFbV/NJaldyGWqJG4lMYwJItMlZGTnJEkg0Qshtpiiy2SPpcqWCSo\n/yZIsEiQWC1m6NChktF9I9lgNlKFpkSXLl0ki8fv1B7SmL1s2bKSvfnmm5LRegDNrwkSYsdjamoH\nSbpIMlua09O7SO8UzQGofaC2+9VXX804pjFnnTp1JCMJN82JoCn/B2o3qR0m6SPNyWJIsEjrOnT/\npk6dKtlvv/0mWaoEk4j7ZXpmcR8XAq+dUH/bqlUryVLnbjvttJNkO+64o2Sx+JDE3HS9JOSl+p4N\nqj/xnDaE9LW8WFJO7UXqmIDaZRLp0lxryZIlkpGkktaiYui3jx8/XjJaJ9p3330lI2EsPTfqc5o2\nbZrndWY7F60FHHXUUfmeKxX/hbUxxhhjjDHGGGOMMcaYnMAL1sYYY4wxxhhjjDHGGGNyAi9YG2OM\nMcYYY4wxxhhjjMkJvGBtjDHGGGOMMcYYY4wxJifYhDaxX8/Klav/+Y/lyqnE59+GRFGFFfCFEMLx\nxx8v2QknnCAZbRweb2JPUhra6J/KpUJSxBT5UQgs5ouFg7SZPm2Qfu+990o2ffp0yR5++Ml//l22\nbKlNNq4/e++9s5RPlamReCfeUH7RokVS5oUXXpCMBDSp4sRUQcxPP/0kWSxAJNHa3LlzJatUqZJk\nqTIKuo61a9dKFgttQmDpWbdu3TKO6R6RYIOeA4nCVqzYcL1x/Snu9icWmJx22mlShsSQJEsiYQjJ\nqD777DPJ9t9/f8noWcZiI3q/jzzySMmqVq0qGUk2iYYNG0o2evRoyeh6SSoat7+rVq1Kuo4bb7xR\nMhI+/Fv1h35f/A6mlCnI+QkSd+y1116SPfnkk5JdeeWVGcckgSMZHkk2SULXoUMHyQoqptuYiy66\nSLJY+koSQRId9enTR7K2bdtKVtD6Q4LiWGYWQgjt2rWTrGfPnhnHJCwkyWb16tUlmzFjhmQki6K+\nhCRqjRs3liwWsDVv3lzKpEL1mKSWqe8PQeOTI444It/PFeU9zlZ/brxRJVokpiVhz2233SZZ165d\nM45HjRolZU4++WTJUvsqer4k4aPnRs83FrBR20DyNWrL6DpIiNSkSRPJ6L0naNwe96/UP1I7SFCd\nWr58Q3sW159evbS/I5laKrFgjn7vBRdcIFmJEiUko7EcjZVJaErjH7qH8byPxGVEUdqQf5tU0Wyq\n1DJb+3PDDVdJeRKLXXjhhZL1799fslha/NZbbyVdI/HII49I1r17d8nGjBkjWcWKFSVLeeZFaedT\nOfHEEyWj30B9NQnj4vaGxuKpwjcS3LZrd0sIQetOCCGMGaNz8BYtWiR9F13TbrvtlnGcIjYPIYTX\nXntNslNOOUUyaptpvkqC+4ceekiyWGZLokOSI5N0muoFyZbLlSsnWSok6aW6l8J1110nGQkb17c/\nVH+GDtU2hPoDmsOSUHG//fbLOF64cKGUobkL9Znff/+9ZO+8845kRx99tGS0jkNy6gcffDDjmOYE\n1BcOGTJEMpK+xkLNEFhQTlJWGsPRusG8efMyjl9++WUpQ/LH1D5l4/oj//H/8F9YG2OMMcYYY4wx\nxhhjjMkJvGBtjDHGGGOMMcYYY4wxJifwgrUxxhhjjDHGGGOMMcaYnMAL1sYYY4wxxhhjjDHGGGNy\ngmTpYtmypeS/k5SMRFqx4COEEH7++eeM4y222ELKvPLKK5LRpv4kr7n99tsl69Kli2S0aTptgB8L\n8a6//nopQ6KE1q1bS0bCNBLf/NtiiDJlykiWKkIjskk/+vbtiZ+J6dSpk2Qk5Yjrzw033CBlSFqw\nYsUKyUj2Q1IBkj8SLVu2lOzhhx/OOCYRGMnlaPN/EmMSJLUkaee6deskmzBhgmTFWffo2cyZs0FK\nmCI9u//++yWj95KIJR/t27eXMtdco6IskgnFAtAQVLIZAj/zWL4WAssSzj333IxjEkB89913ksWy\n2BBYMkGQPIJkeCRAonZv3LhxGcd03wYNGiQZtY2xxCuEEFau3HC9cf3ZbruSUr5BgwaSLViwQLJb\nbrlFsjfeeCPjmGQT1O/98ssvkpFoKZbShMCCvFSBXfy9n3/+uZQ5+OCDJfv666+Trq18+fKS0fP9\nX5Daj2brvwYMUFEpiX1IdkPt1Jw5czKO77zzTilDz+Pjjz+WjKD+kOojCW0qV66c7/nj/jeEEEqV\n0jEi3XvKfvjhB8nKli0rGfXL2267rWQkeokFpdQHkcCS+oHLL79cstKld//n33H9ufVW7V9I0k1t\nP8mTt9suf4kstcs0JiAREbV5BI2n6LkV59iBBENffPFFoc9HfT8Jm1KgOkXPj559tvbniiu03yWZ\nNdGxY0fJ4mdOgkXqiwkac1HbTyKnyZMnSxaPE0JQSSeNL0jCu8MOO0hG8jXq96mPvOoqlRemCmhL\nlswcg9C4e8SIEZLRmJ0oDun01KlTJfvyyy8li0X148ePTzo/jU3o3tMcZ/fdd5cs7kdDYJllLIUk\nmRnN20hMSYLXWEgWAj9fei+oLaffGs9ZSpcuLWViOWleUB+8fvxM0rzU+kPSa3ov/21ojEptQep4\nKn7mJMQmOnfuLBm1tbFEMAQW4VL/nUqNGjUyjqdNmyZlaI5B/QyV69v3byk61R9aPyzKmCC+r7QW\nSeNuko3+/vvvkpFQlNqCVHr0yJQm03UQZ511lmT0PIpyLz/55BPJaO4f1x+C2h9a96B11yuv/Hsc\nZumiMcYYY4wxxhhjjDHGmJzHC9bGGGOMMcYYY4wxxhhjcgIvWBtjjDHGGGOMMcYYY4zJCbxgbYwx\nxhhjjDHGGGOMMSYnSJYupm66n0osRnjwwQelDG1Ev3DhQslI5kECROKQQw6RbNasWfl+jkQjJFAj\nRo0aJVmrVq0kO+ywwyR79913JftfSA2Igko/xowZIxlt5k+Cp1jCEksNQ2CZx5o1aySjDesPPPBA\nyZo2bSoZSRVIGDJlypSM40031f9XNGzYMMlI8kcceeSRklFdqVatmmQzZ85M+o4UiiJCLGj9IVEZ\nCXUKS4kSJSQjWQC1oSRNIRHI9OnTJaM6euKJJ2Yc77///lKmKFKIVEjkRSLB/wXFIR1KJZaw7LPP\nPlLmiCOOkCyWb4TAUiOChCtbbrmlZEuXLpUsFsa2bdtWytC7Q+caPHiwZPRexJKpEFhyQ3IikgHG\nIr3jjz9eypD8icYHdB1LlmwQDsf1p25dbV9J1kKykm+++UayFAHXxIkTJVu0aJFk1E6RAJFEL9RH\nNmvWTLKTTz453zIkJ6RxHUHvSvydIbA4u3///pKRVCtVDFZYCtr+0P367LPPJKNnTqKcFOg7e/Xq\nJRm99zTOpLEZPcsnn3wy45ikuST7PPPMMyU76KCDJKP6SNAYju5lyvyBpFUdOnSQ7M8//5RswIAB\nkpUqtUFWGdefDz/UsRxJg+m6aR4RS6VI9nn33XdLRnJLEoOnzr/oft1zzz2SxfWFRMypkFiQJNYk\ntyJZZqp0MaYoUrXatWtLNmLE6H/+Hdefxo1VBkxjz3POOUcykgvHv5naAZLhkliexkTPP/+8ZE2a\nNJGscePGksVjnRBUBhZLs0Ngwdnmm28uGYlmSW5O0HrD+++/Lxn16fH7ePPNN0uZMmXKSLZq1SrJ\nSHK8bt3fc9JU6WIsgg8hhGeffVYyIqX9IYYPHy4ZPTdaRxg6dKhkVKfGjh0rWcp7SaJnGpukSsCp\n36c+Z/To0ZKNHDlSshQhJ72L9M7SWLJdu79FzVR/atXSPojW8khoSu/qZpttlnFMfWwqVFdonYR+\nM40dKlasKFlhpYht2rSRjH4r9Yc0JqJxMX3HpZdeKlk8jijKuiuxfvxs6aIxxhhjjDHGGGOMMcaY\nnMcL1sYYY4wxxhhjjDHGGGNyAi9YG2OMMcYYY4wxxhhjjMkJin0Pa9qXhvai3nfffTOO165dK2Vo\nHz3a17F+/fqS0Z6ilNG+NLTnJO0xHUN7r9EebanQHqC0ByF9LxHvo0PPnvbBpd++/fbbS7ZgwVf/\n/DtlD8dbbrlFMtpPed68eZLFe+nRbzn00EMle+655ySjPYeIU045RTLa77xChQqSjRs3LuP466+/\nljLly5eXjPbMI2gv21122UWy1q1bJ31Hx44dJaM992JmzJghWfXq1fP9XAjZ9wB9+unHpPx9990n\nWd++fSWj9+ODDz7IehxCCJUqVcrniv+G9oul30x1lPbDo/11Y4455hjJaB9ByuK6GALvxUV7FxYn\ntB827Z2Vug9uQfeQjfugEHjfONojL35/zzjjDClD+0TTO1TY/c1C4D1ea9WqJdkNN9yQcUz70dK1\n0V5uO+ywg2RvvfWWZLRn3sUXXywZ7fNHY4Z4T8yvvvpKyhDxfnch6P0IYcMefCH8+3ugF5addtpJ\nspo1a0p2+umnS0Z7zlFdIeK6QXs60nWQR+HUU0+V7LXXXku6DqI499W/7bbbJOvatWvSZwva/rRr\n104y8qBQex3vG3z77bdLGRqb0H2pV6+eZOeff75ktFcm7bVKe/LHfR/tUU9749N3nnbaaZJRH0H1\nkb63OCE3Sbly5SSjOUa2+nPrre2lPO3VS+MJaocvu+yyjGPar5lcLDTup/kXta/0fGn/57lz50oW\nj8W+//57KTN58mTJaJxE/T7t80seEtrDm+75nnvuKVkKtO8zjeGIgrY/tHcr1YMUUh06tE893Sva\no7sofpq4/Ukdcz300EOSXXXVVUmfpbHZiy++mPRZmivEfS65bmhfe9o3m+bZb7zx9/NK3cOa9san\neRT1abHTIGXOEwK3ITVq1JCMfFDURxJ071euXJlxTGtJ9LzJSdGvXz/JDj74YMmojpIvgL532bJl\nkqVA62HkMqC93Zcu/bufofrTsKGOMchtReOOFIrbZ5VtXXRjaL5I1xKPs+P6HwLvT05Q/3jSSeoo\noPkRtQWzZ8+WLGV/elpfonENrfN169ZNMu9hbYwxxhhjjDHGGGOMMeb/GbxgbYwxxhhjjDHGGGOM\nMSYn8IK1McYYY4wxxhhjjDHGmJzAC9bGGGOMMcYYY4wxxhhjcgI1phSATp06SUZCC9rs/rHHMiVq\nu+66q5Qh6SJtJE6CONqcf9KkSZL98MMPktGG659//nnGMW26nypYbNKkiWS06X737t0lu/feeyXb\nbbfdJLvuuuvyvY5U8QRJq0ielQ3auP+4446TjDZjJ5nKJZdcknFMv4UEMe+//37W61wP1QuSIpL8\nZcCAAZJVqVIl45jqe1EgceKxxx4rGcn1hgwZItk222xTqOto2rSpZA888ECRz08SH2pr5s+fLxmJ\nlmIpBb1DBMngSKxx4IEHSkZtBslGSOK4evXqjGOSY5AUlCBJEmUkRxs5cqRkO++8s2TLly/P9zpI\nAEZS1OKUqm0MCTMIknzFIlpq+1MFi6NGjZLs1VdfleyRRx6RjCQ+lMXPl9pGEnKQUIokHfTZOXPm\nSEYSIxIJEnfddVfG8RVXXCFlUmQhIYTw+OOPS7axdDGGpFLU1nTp0kWyK6+8Ms/zrof6FnqvSGRF\nYjrKCOoPW7ZsKVksMKY+g66NxGUkBEqVddOY6Oabb5aMiOVE1BeSYJHGPzSGywYJ8ho3bpz0WRJp\nxW3LjTfeKGVIOn3eeedJRn1JPL4KIYSnnnoq63Wuh4SuhRXLksBxr732SvpsqmDx+OOPl2z8+PGS\nxaJdastIYkoSpilTpiRd23ri+VIIIZQtW1ayE044QbLSpUtLFsvRSLZHMjzq5x5++GHJCBIsElRv\nY8nXjjvumHSuVOjaSCC1xRZbFOv3xqQKFkl6u3r17wX6LnrmqSLqmDJlykhGUq499thDMhLukryU\n3hmSM1544YV5Xud6aLw7ceJEyVIFizRea9SoUdJniVjyF4Kuh5D0sCiSyIJCgkViyy23lKywYnl6\n72kcGEtaCwL1VXHdoPkHrTndc889kpFsmeaGNIarWLGiZESPHj0kozFCDM1liY8++iip3HpI8pkq\nWIzX3kLQ+/Xnn38mnStF6FsQqD37448/JLv00kszjml9bsaMGZL99ddfklWrVk2yunXrSkZrpami\n+sMPP1yyuG4cffTRUubNN9+UjNb0Cov/wtoYY4wxxhhjjDHGGGNMTuAFa2OMMcYYY4wxxhhjjDE5\ngResjTHGGGOMMcYYY4wxxuQEXrA2xhhjjDHGGGOMMcYYkxMUSbpIcjASZA0bNkyyeKP86tWrSxmS\niJEQ6IADDpDsiy++kOy7776TjARAlStXlow2a48h8RQJHJ9//nnJ6HfR/Z02bZpkBRUgZqNq1aqS\nffjhh5L17NlTsptu6pTneVetWiUZyYQIEs7EwqR58+ZJGRIUNGvWLOk7STpEAimSLtJ3kMAlhjas\nr1OnTr6fC4FlKQMHDkz6LPHOO+9IFovBGjZsKGVI+JYiAA0hhMaNVQi1HpJSkBiTBFzXX3+9ZK+/\n/nrGMbUhCxYskIzkYCVLlpSM7s0rr7wiGRELFkNQ6SS1jXSfx44dKxkJT0is07t3b8k+/fRTyUjk\nQCIvEq/GUHtM7LDDDknl1tOrVy/JrrnmmqTPUpsby6dIpJIqVaO60qdPn6TPkuyIhJ+xNIbaMpIp\npnLSSSdJRtJFqj+dO3eWjK5vzZo1GcckJSTBIvHTTz8llVsPCQWJtm3bSkaiu/i5LV68WMpQlgqN\nHUiCNXToUMmoHpAUOqawYr0QWOJIpAoWSeQZiw9Jmrn//vtLRu8TjWl791aR53qoLViyZIlk9erV\nk4z6oVi6tm7dujy/e2Pougkam5HEsGbNmpKR0DWGng+diwSLJJOm9oLqNkGCxXLlykkWi7LpfSJZ\nEd03Ehq/9Zb2M+shqVssoQ0hhHHjxuV5jo2JhW2pcktqX0nG2b9//6TrICEbCcRjqVaqpJX6R5qL\nkDwrlQoVKkhG85F4vFrQMczGkNB5xYqC9WnUR9A4kASzcX2h/pHu85gxYyRr37591utcD0m+CgsJ\nFgnq004//XTJSMydCo0PqP1JGbOQYJGuN3Uukg2ab6xdu1aySZMm5XuuVFkkPTdaO6KxIYmPr776\nasmoLSRJZwwJaSmjuSaJBX//vWAS1Y0hwWI8n6PfTmtT9A7QeDBb+xMLr0PgtQLilltUhh6vq9E1\njhgxQrLiFACGEELHjh0loz4thuoiCRYJ6h+pXaX2YrvttpPsqKOOkoxEynFfSiL61HH8yy+/nFQu\nxn9hbYwxxhhjjDHGGGOMMSYn8IK1McYYY4wxxhhjjDHGmJzAC9bGGGOMMcYYY4wxxhhjcgIvWBtj\njDHGGGOMMcYYY4zJCTYhKeB6Vq5c/c9/POwwFdide+65ktHm+bNmzZKsVq1aGceNGjWSMk8//XSe\n11YYUsUiJJl47rnnMo5pk3cST7Rq1UoyEnIQJIvbZpttJOvSpUvS+WLi3xRCCOecc07SZy+//HK4\njnv++XfZsqU22bj+lCunm70TJMuM60oIKnUjgQBRpUoVyXbccUfJ3njjjaTzkQSCBA133nlnxnHf\nvn2lDG2ST8IByog77rhDMhKcERdccIFkgwYNSvpsYdlY2pBSf95//33JSHpUWOhekWCRRGAkUR0w\nYEDS965YsUIykogUFpITkcSIoHaPBBIkoCUxaMyMGTMkI6kKiWSefHLwP/+O688111wm5TfffHPJ\niiIqjUkV2KZCfXWq6C6WbNG7Q9IzEk6SyIqeR79+/ZKujfp+knLEMmSSOqYyatQoyapX3yB1Kmz/\nlcpmm22WcRxLxfKC+mfqx5s3by4ZyQNvv/32pO9NYebMmZJde+21kk2ePFmyrl27SnbbbbclfS8J\n6UiCFbc/1O/TbyDJDYl1Ctp/FUWyXJwcc8wxktEzojHfo48+KhkJuWOBFPVnJPEiqXVqO0jfsXz5\ncslI+nbfffdJ9m+Trf688MJgKT9lyhTJSJhKUsBYSEXjZ3qOBMnsSapJ9744xzX0HJ955hnJaN5a\nu3ZtyUjGSfW9sBT3/Sho+5MKyc0vuyxzPJUqO04llsqGEEKlSpUka9GihWQkjI/n+U888YSU+eij\njySj+SJB/TeNZWmMRSJcEjHG0FyE5LskqX3rrbckW19/4roTQtHqD7XXZ5xxRsYxzSGKAgn3SGRJ\n73358uUl6969e8YxPZ+KFXWN7IgjjpBs+vTpkpEUnuooSRH/beKxaghc37PVn6lTJ0h5kk+S7C+l\nzaXx7uDB2mcWN9T+0BwyFhu+/fbbhf7O1HFNKvQO0Nh45MiRhTp/qlB14/qT17n8F9bGGGOMMcYY\nY4wxxhhjcgIvWBtjjDHGGGOMMcYYY4zJCbxgbYwxxhhjjDHGGGOMMSYn8IK1McYYY4wxxhhjjDHG\nmJwgWbpoTEGgjfeNScX1xxQF1x9TFFx/TFFw/TFFwfXHFAXXH1NYXHdMUXD9MUXB0kVjjDHGGGOM\nMcYYY4wxOY8XrI0xxhhjjDHGGGOMMcbkBFm3BDHGGGOMMcYYY4wxxhhj/luUyPYfvQ+NKSzex8gU\nBdcfUxRcf0xRcP0xRcH1xxQF1x9TFFx/TGFx3TFFwfXHFAXvYW2MMcYYY4wxxhhjjDEm5/GCtTHG\nGGOMMcYYY4wxxpj/r707ja6qOtg4floLCGFImOdBEkAEAyiICAXRJaKoOFBFgaLWCZVFLdSqazm1\niLbUVmoVqy6LA2ClUBWoYlUcigzilIAIgjUyJcGEeXB8P7jed733PA9lmxvIIfn/vp3Hc8nNvfvu\nc+42az+J8F+3BPn/GjeuezCfByqBoqLt+/1vjB8cCOMH6WD8IB2MH6SD8YN0MH6QDsYP0sH4QToY\nP0jHfxs//4u/sAYAAAAAAAAAJAIL1gAAAAAAAACARGDBGgAAAAAAAACQCCxYAwAAAAAAAAASgQVr\nAAAAAAAAAEAix6RBhwAAIABJREFUsGANAAAAAAAAAEgEFqwBAAAAAAAAAInAgjUAAAAAAAAAIBFY\nsAYAAAAAAAAAJMKPKvoJAIezH/5Q/5+Py7755puU42+//VbOcRkApCs+Jx1xxBFyzg9+8APJvvzy\nS8mYpwAAAAAABxt/YQ0AAAAAAAAASAQWrAEAAAAAAAAAicCCNQAAAAAAAAAgEViwBgAAAAAAAAAk\nAqWLgOGKE7OysiTLzc2V7MQTT5QsXmiWnZ0t5yxdulSyWbNmSVZcXCwZRWhw3Dh25XrxUtAoYkwd\nro488kjJOnbsmHLcqFEjOWfHjh2S5eXlSbZnzx7JGCtA5eauG2XNQh/nrl9ff/11UOauaQAAHI7c\nNTL0vHjRurs+uusokBT8hTUAAAAAAAAAIBFYsAYAAAAAAAAAJAIL1gAAAAAAAACARGDBGgAAAAAA\nAACQCJQuokpxZQS1a9eWbPDgwZJNnjxZsiZNmkjmioLimXsew4cPl2zYsGGSjR49WrKCggLJKEKr\nWlzZ3pgxYyTLzMyU7JFHHpFs48aNkn311VdlfHY4GGrVqiXZTTfdJFl8HqlRo4acs2rVKskmTZok\n2eLFiyX74osv/uvzBMpDaOkQ1770hJQ2RVEUVatWTbLq1asf8N9z5zRv3lwyd0/kSqddOfX69esl\n4/p1aISOFXfdcJ/dw+3zHDpPxR1uvyeA/Qu9jmZkZEjmvqd17txZsgEDBkiWm5sr2cqVK1OO586d\nK+csW7ZMMlfGDlQE/sIaAAAAAAAAAJAILFgDAAAAAAAAABKBBWsAAAAAAAAAQCJUij2s2dcQjttL\num3btpLdeeedkg0dOlQyt8/UN998I5nb82nXrl0px/Xq1ZNz3L6OvXv3luwXv/iFZOPHj5eMfWWr\nlqysLMnGjRsnWd26dSWbOXOmZF9//XX5PDGUC3edO+644yQ788wzJWvWrFnK8Z49e+Scbdu2SbZv\n3z7J3LzqnhvX22QJ6VaIIv++uetcyOPcuHA/s2bNmpL96Ed6e+r26Xf7EpeWlkrGfJYe9/q5cRFy\n3+HGQJ06dSQbMmSIZPXr15dsyZIlkrleD5Q/tzf1GWecIVn79u0lW7BggWSffvqpZHv37k05dp/5\nirreuA4cN5bj3wt2794t53DN/H5Cr1+8rihPbty5Xhh3rTrttNMkGzRokGQdOnSQLH4fH0V+/nH3\nXZ06dUo5dh1F+fn5ksXXLqIo7H4QKG/8hTUAAAAAAAAAIBFYsAYAAAAAAAAAJAIL1gAAAAAAAACA\nRGDBGgAAAAAAAACQCIkuXXQbx7uN7Y844gjJXEGMK4OprAUNIUWUleH3/F+uBCFeMhBFUTRr1izJ\n2rVrJ5krfCosLJTs97//vWQvvfSSZPHCFffcrr/+esn69esn2aWXXirZvHnzgp4HZQmVlyskc6Uf\nriTJlfBVpvmhMnDFdBdccIFk2dnZksULXV3Boiu7cj8ztOQlXpQVRYypQ8XdEzVq1EgyNz+4Mp54\n8Y67v3JjwGXuubkx1aVLF8nc9fDdd9+VbP78+ZJRuhgu9HNa1s+ze5y7h2vQoIFkmZmZkrlxzFxT\n/tznuUePHpKNHTtWMldE6O47XGl5SUlJyrG7toSWgqbDFa/fcsstkrnysvj9uPvdsX/uO1nz5s0l\ncyVx8TH15ZdfyjnMF1VP6D1L/LtVkyZN5JxTTjlFslNPPVWyPn36SFa3bl3JQsfopk2bJHNzaF5e\nXsrxihUr5JydO3cG/Uzsn7uPiX//ct/V3fzmuOtGaPm1O+9wen/5C2sAAAAAAAAAQCKwYA0AAAAA\nAAAASAQWrAEAAAAAAAAAicCCNQAAAAAAAAAgERJTuug2uncb25933nmS9e3bVzK3MfnixYslW7ly\npWSff/65ZPFN7N3m5aFFj/v27ZPMCdn8P4r8Ju+7d++WrDKVfMRfm/im9lEURT179pTMlYi592jp\n0qWSTZgwQTJXruL+vbgtW7ZI5gpdcnJyJGvdurVkf/zjHyUbNmyYZB999JFkX331lWSH00b8VZGb\nG3r37i2ZK1h0721lmhsqq65du0o2atQoydw8ElI417JlS8muvfZayT7++GPJ3Ph58sknJXPFjpTh\npceVtRxzzDGSuSI0V7wzY8YMydz9RAg3T7n7FXcNatiwoWSnn366ZG78uNJFJEdoeZ8ro3LjJ7QE\nlPua9DRu3FiyqVOnSta+fXvJ3L2nm3+2b98uWXx+CC1zdee5727uvFq1aknmChbdNfiBBx6QLF5o\nxnVv/9x76a5pd911l2RFRUWSPf300ynHod/7QwvOkCyhayft2rWTrE2bNpLFyxO7desm57g5z12r\n3Nj+5JNPJJs2bZpkrhB79erVkrm5JV5U68oaKUrfPzemXNmzu0c999xzU467d+8u57jicVe86eY3\nN3dNnz5dMrcG+tlnn0nm7veTMO/xF9YAAAAAAAAAgERgwRoAAAAAAAAAkAgsWAMAAAAAAAAAEoEF\nawAAAAAAAABAIlRY6WJ8M3q3efnIkSMlu+GGGyRzj3UuueQSydyG8qFZnNvo3pU2lJSUSOY24o8X\nPUaR3/h94cKFkt1zzz2SlbU46XDgXpc1a9ZI9uijj0rmihdeeOEFyT788EPJQksK4s/PFbqcdtpp\nkjVt2lQyV7LlzjvzzDMlc2OqsLBQMvd7ITncfHHhhRdK5sbK1q1bJaN0MVnq1KkjmSt8cuc58SJY\nV6DhimRc8fHAgQMlc+PsjDPOkMxdv13BrSvhgy/xyc3NlcwVoblrxFtvvSVZSOFKaBGPG2euSMb9\nTPe7ZmdnS9alSxfJKApKNlcG7MqK3HmutHzdunXl88Twf9w9xq233ipZ586dJXP3mRMnTpTMzf2u\ntDzk8+y+A4Se565f/fr1k+zyyy8Pem5LliyRjHssz42zDh06SPb4449L5q4HpaWlksULfN39hSsz\ne+WVVyRzxWXFxcWSuXHMfU16qlevLpkr5u3fv79kZ511lmQnnHCCZO67b7169VKOXTGsW9dxBeXr\n16+XbMGCBZK5cebGlLselrUgj/um77j7jnjxZhRF0X333SeZK+2Mz3GhhdDufXRl5O6xPXv2lMzN\ncf/85z8lmzx5smTxcVsRY4W/sAYAAAAAAAAAJAIL1gAAAAAAAACARGDBGgAAAAAAAACQCCxYAwAA\nAAAAAAASocJKF+PcBt6bNm2SzBXp5eTkSOY253fFGm5zdVcCES8AcoVATs2aNSXLysoK+pnuNXHF\njq6wyG3EX5nEXxtXlLBs2TLJXHGie4927dolWWhpittQ/8gjj0w5HjFihJzjSvPcc3NjYOPGjZK5\nYojQMYVky8zMlMwViLix6MpBXJkHDg13LRk0aJBkruzQPdYVdcTnrs2bN8s57prhCm1q164tmbve\nujKusWPHSnbddddJtmXLFsmqGvfZdZ/74cOHS3bUUUdJlp+fL5krXNm5c6dkZS1dDCkgjiI/fvr0\n6SOZG48O17Rka9SokWQnn3yyZG5+c+PTXdMokEpP27ZtJRs9erRk7vPsSl/nzp0rWXmW0Ln3242f\nGjVqSDZgwADJ7r33Xsnc/fi8efMkc4VpjEc/Vtz3YVfu2alTp6CfEXIv4krv3VrA2WefLdnatWsl\nmzJlimQHe7xXdu79cPcEV1xxhWQnnXSSZG6NwF03nnjiCcni71thYaGc456vK1jctm2bZBs2bJDM\nrTe4e/uyFiziO/FCzSiKonHjxkk2fvx4ydz1IKRo3BWPu+uDO8/Nb/H1pSjy39MyMjIk++lPfyqZ\nWzubOXNmynFFzGX8hTUAAAAAAAAAIBFYsAYAAAAAAAAAJAIL1gAAAAAAAACARGDBGgAAAAAAAACQ\nCBVWuhjfYNwVxD377LOSuZIgV+TgijXq1KkjmduE3BXCtG7dOuW4RYsWck7Hjh0la9CggWRNmjQ5\n4L+/v+fmfteCggLJXBFjZRa6Yf3WrVslCy0nDC2QciUiY8aMSTm+8cYb5Ry3gb8rw3vppZckc6Uf\nH330kWSu8IHShsNPly5dJHOFZG7M/uMf/5CM0sWK4+aLO+64QzI3Pzhu7l+0aFHK8QsvvCDnuPmy\nffv2krlrlSuJdNfbIUOGSLZgwQLJHnvsMcmqWmmVKwxzxaojR46UzBWi/OUvf5GsqKhIMnc9ONiv\nvSuT7Nu3r2SunNqVW3FNS5b4WD7xxBPlnIYNGwb9WytXrpRsx44dZXtiiKLIzzU//vGPJXOFT8XF\nxZI99NBDkh3sItSQsvMo8iW1kyZNkszdT7nCvbvvvlsyV9oO/x517dpVssGDB0vmxp773L/33nuS\nxb/3uEJoVzLq7s3cuKhfv75k7n4KnhsXrVq1kuzqq6+WzN1TOq4I9qmnnpLsww8/lCzkvXRrTm7M\n/uhHuuzm5kYKFsufK1udOHGiZK7I0917uu9azz33nGTxdUu3DuXmEFec2L17d8nOP/98yVyZpPsd\n3PdKd+2fM2dOyjGliwAAAAAAAACAKosFawAAAAAAAABAIrBgDQAAAAAAAABIBBasAQAAAAAAAACJ\nkJjSRbeB986dOw/4uIPBFQDEM1dS4soYXJlQhw4dJJswYYJkJ510kmSuHM2VDlXEhuiHAzd+XOGB\nGwOOK1X42c9+Jtn48eNTjt1G9/v27ZPsmWeekcwVNpaUlEgWWhJZ1crMDkfxsgRXcufGopsvpk2b\nJhllHoeGu26MGDFCMld26D67bs547bXXJLvvvvtSjl0xkRsDrrTKFZdUq1ZNsnPOOUcyN+9dc801\nkj3xxBOSVbUSI/c6jx07VjJ337F06VLJXFmvu0842NcD9xnIzc2VLDs7WzL3fBcuXFguzwsHT/xz\nf/bZZ8s5odevxx9/XDI3D3JfE87Ny+4ew72mr776qmSujMqVjblrTsg9qhsrriDv0ksvlexXv/qV\nZO465wr9XEGXKwFl7Hnuve3Vq5dkGRkZkrnvae+8845k99577wF/7qhRo+Qcd8/lrlVuzG7ZskWy\ng10yWpm4+eeyyy6T7KyzzpLMFcm98cYbkrnPbryMM4rK/l1o7969krl5wN3DuHtbvpOlx3123XeS\nyy+/XDJ3rXLrkVdeeaVkL774omTxEl43D7q1whYtWkjWtGlTydK53oSOs/h5FbGWxF9YAwAAAAAA\nAAASgQVrAAAAAAAAAEAisGANAAAAAAAAAEgEFqwBAAAAAAAAAIlQYaWLcUkqqXDPJZ65jcq3bt0q\n2Z49eySrU6eOZKGFD5s3b5ZsyZIlkrFhf3rcGHDlDm4D/EsuuUSyeKmLKxNyBYuuIKaoqEiy0IJF\nN6aQfPECtmHDhsk5bnwWFBRItm7dOsmSNP9WZq5Ib/To0ZK5EkOnuLhYsvvvv1+yRYsWpRy7kjLH\nFU+5ecX9zDPOOEMy93vl5ORI5kqX3PW1snCvqbtPqFevnmTuHuOxxx6TLLSYtzy536t27dqSuRI+\n91lx5VbuM4BkiX/GTz31VDnHFR25+eeVV16RjIKz9LRu3VqyE044IeixrVq1kuwnP/mJZK7YsH79\n+pKFzIVuDuncubNkRx99tGSu4M2VRM6YMUMyV+bG2Avn3tu2bdsGnefeo4ceekiyvLw8yRo2bPhf\nj/f3M10Zniusjt9fRRH31N9H9+7dJXOFqe6z664Rv/zlLyVz948H+z1y5bBubYb1mvLn7p9vuOEG\nydx75Ioxn3/+eclc4XC8YDGK9Brh7nXcvf2QIUMkGz58eNBj3VpPaAmoKxJ25x1qrF4BAAAAAAAA\nABKBBWsAAAAAAAAAQCKwYA0AAAAAAAAASAQWrAEAAAAAAAAAiZCY0sXKILSo76KLLpKsRYsWkrmN\n+KdMmSLZxo0bQ58iArn3zZXLTJ48WbKOHTtKFi/0WLVqVdC/5Uqm3DhzG+y738GVnrliEVcKiYoT\nnx+aNWsW9Linn35asr1795bLc8L3d8wxx0jmiqFcAZD7TLo5wxVDlfU9d4VS7rmFzlPusTVq1JDM\nFaZU5tJFx5WUuffRlSm+/fbbklVEOZi7Brm5q3///pK5sTJ//nzJQgtEcWi4QqH4PW+DBg2C/q3F\nixdLtmnTJskoOEuPK1Ryxbfuve3Zs6dkubm5QY913BxXWFiYcrxixYqgf8vdF7vf1V2/8vPzJXPF\nfwgXWvruvvu6197dO3Tr1k2yU0455YDnhP7Mf//735K5ezPmpP2LX9vPPfdcOSe0GPPzzz+X7OOP\nP5asPN8P9zxcIWTjxo0lcyXRjJXy565fzZs3l8y9ly476qijJHPXvg8//FCyeDG6GysjR46UbMyY\nMZLVrVtXMnef7bhrn/usFBQUSJaEYlD+whoAAAAAAAAAkAgsWAMAAAAAAAAAEoEFawAAAAAAAABA\nIrCHdTly+94cf/zxko0dO1YytwfNunXrJJs9e7Zk7DecHve+1a5dW7LbbrtNsjPPPFMyt1dffN+q\n6667Ts5x+1q7PYccN36qV68e9Nzc3kTuNWGfrUPDvfbDhw9POXZ7YLl54K9//atkSdiLqipw+zWO\nGjVKMvc5dZ+1zZs3S7Z8+XLJDvb1wI3P3r17S+b2YHbc3sqh815l4caK28PRjYsdO3ZI5vZ1Ls85\n3f1b7ndw++2dfPLJkjVt2lQyt5ftjBkzJOO6lCxuf+r4/ozuPiS+z2MURdGdd94pmevcQHp27twp\nmduL0+3Z6eaa0M4Et0fw3LlzJZszZ07Ksdtjc+DAgZL9+te/lsz1uLjn4bqB3O/K/JMed7/iri9Z\nWVmS3X333ZK5fa3j9yKh34Pcv+X2Z2/Tpo1kbm9lxsp34t9Xjz32WDkndM97123i3rddu3ZJ5sZZ\nCNexctppp0nWqVMnyVwPx3vvvScZ39PS465Bbr9mt8+4Gxfdu3eX7JFHHpHMXTfj39Pc9Tb+HT+K\n/P1z6OfCzatFRUWSPfXUU5K53yGkf8CN2fKc8/gLawAAAAAAAABAIrBgDQAAAAAAAABIBBasAQAA\nAAAAAACJwII1AAAAAAAAACARKF0sR26D9AcffFCyWrVqSeZKP1w5Y2FhoWSutArh3GbyrgTi/PPP\nl8yVO7gN9eMli0uXLpVz0ikTcmPAlQ6435UikGRxY+riiy9OOXalEBs2bAjKcGi499EVQzmuMGPa\ntGmSrVy5UrKDfT1whZ+XXnqpZK4I1lm7dq1kbg6tzNzn2d0nuNfeldy5MuC///3vkm3fvl0yd42I\nl6m45+GeryudvvDCC4N+pisievvttyXj+lVxQgtYXYFo3AcffCDZihUryvbE8L3ES8GjSIsyoyiK\nunbtKpkrl3MFmu7+1s3zrhgqXsLrihPdNTO0tCovL08yN9e434tytHBurg4tvnPveaNGjYIeG3+P\nXKmzy9xY6dWrl2Q33HCDZFdeeaVkrvivKoqPA/f5c+XM7j7BFRtOnTpVstdff12y0tJSyVyxanzs\nDR06VM7p0aOHZK5QvUWLFpL99re/lezTTz+VrKqVkadj27Ztkt18882SuWLeDh06SObeS/cdp2XL\nlpLFS1/dtapJkyZB/77jvvO50uDnn39estmzZ0vmrsHxOfRgFyw6/IU1AAAAAAAAACARWLAGAAAA\nAAAAACQCC9YAAAAAAAAAgERgwRoAAAAAAAAAkAiULpaR2/z/iiuukCwnJ0cyt3H+1VdfLdnLL78s\nGQWL5c8VSLkSjdq1a0vmimTGjx8v2bPPPnvAx6XDbYAfWmaCZHHlC/HMvd9/+tOfJHMlQTg06tWr\nJ1mzZs2CHuuKrFw5hivNK8/iC1f64cpwXLmem3/c9evPf/6zZK6EuDJz9xOh52VlZUk2YcIEya66\n6irJXPmL+/fihTOu0HfLli2SrVq1SjL3GXD3RIsWLZLM/VxUHDceBw0aJFm8vMzd/0yePFmyqjYP\nVBT3+fvss8+CsnTuM921KuT65QqwLrvsMsncvb0rVXOlZ5s3b5aM71/pcfcTq1evlmzTpk2SuQJN\nN1bc+xa/n1qzZo2cU1hYKJkrHnUlx27OO+644yRzxX9VUfx9+9vf/ibnDB48WLKOHTtK5j7j5513\nnmTnnHOOZO465Iox49cvV6juroUuGzZsmGTu+9ykSZMkW79+fdBj4efqpUuXSuauG0cffbRk7nt5\n+/btJcvIyJAsOzs75ditC8aLGaMo/DvUW2+9JZlbD3jzzTclc4XLbkwlYZzxF9YAAAAAAAAAgERg\nwRoAAAAAAAAAkAgsWAMAAAAAAAAAEoEFawAAAAAAAABAIlC6WEbHHnusZLfddptkrmRiyZIlkrlC\nLVeEgvLXtm1byfr06RP02JKSEsnmzZsnWUW8l67woVq1apK5AglXxhUvvErCJvyHO1eqMGDAAMni\nhQyuTNEVl/AeVZw6depI5oo1nA0bNkjmSoHKWrDoxp2bB7p06SLZI488EvRYx/0OL7zwgmRVrdzK\n3Sfs2LFDsry8PMmaNm0qmRtnLVq0CPq57hoRH2dFRUVyjsvWrVsn2SmnnCKZe76tWrWSDMniyu96\n9+4tWfxeZOvWrXLOG2+8IVl5Fsji+wl97SviPercubNkvXr1ksw9t3/961+S5efnS1bVrkEVZdmy\nZZJNnTpVsoYNG0q2c+dOyVyxWmlpacqx+97mSh27du0q2cCBA4Mee/3110vmytFc8V9lF/9e8s47\n78g5l1xyiWTTp0+XLF5oF0X+viZenLi/80Luf0K5f9+NFVfE6AoWp0yZIpm7T4TnPmsFBQWSue9f\n7l6ndevWknXr1k2yNm3apBy3bNlSznHj0407d0995ZVXBp3nfv/D6R6Lv7AGAAAAAAAAACQCC9YA\nAAAAAAAAgERgwRoAAAAAAAAAkAgsWAMAAAAAAAAAEoHSRcMVUjVv3jzleNasWXJORkaGZPGiuiiK\noquuukqy3bt3f5+niDJyJQgXXXSRZFlZWZK54kRXFrF9+/YyPTc37kLPc79X7dq1JXNFcO3bt5es\nfv36kq1evTrl2G3qv2/fPskoD90/V/AxcuRIyeKlVc8//7yc40rPUHHcZzKU+/zl5uZK5orKXGFq\nfM5o0KCBnDNq1CjJbrzxRsnc3OjmJDcXPPDAA5J9/vnnklV2IXP9pk2bJHOFlzNmzAj6ma7sx5Ud\nuvETn/tdKY3jSmmuuOIKyVzhjBsXbkyh4jRu3Fiydu3aHfBxr776qmTbtm0rl+eEyid+Lb3//vvl\nHFf860r5xowZI1lVLL6rCO51XrlypWTFxcWSuXuimjVrBj12y5YtKcfuOuLuiV588UXJXKmamwf7\n9u0rmVsjcAW0VY0bFx988IFkp59+umS33HKLZKeeeqpkTZo0kcwV6bkSungBa+h3Wvf9zmXue/ll\nl10m2cyZMyVzc9zhVKRX0eIFoPvLXAmvu2epV6+eZD179kw5rlWrVtBzc4WaN998s2Rr166VzI3R\nw31c8BfWAAAAAAAAAIBEYMEaAAAAAAAAAJAILFgDAAAAAAAAABKBBWsAAAAAAAAAQCJQumi4Iodx\n48alHLds2VLOcRuav/LKK5J9/PHHQY9F+XPFU0OHDpXMlUC5coP8/HzJMjMzJYtv2O/ebzfu3PN1\nBQ3uvA4dOkjWp08fyXr06CGZK1aLlyxOmzZNznn55Zcl27x5s2Su1KCyc0VrjRo1kqxr166SxQsU\nZs+eLedUxdc0yUpKSiRzZT+uLKpNmzaSTZkyRbLbb79dsvXr10uWk5OTcjxixAg5x80NrpTGjWNX\nSLJ06VLJHnvsMcn27NkjWWUXn//duCgsLAzKQu8d0rnHCHmsGxdu/ISOqffff18yN85waMSLf6Mo\ninr16iWZu4+JX5vy8vIOeE4UcV+M78Tved09khuf06dPlyy0MBblz33Gd+/eLdnGjRslKy0tlcwV\nW7tr6d69ew/4PFxJ2axZsyRz5Y8TJkwIOm/gwIGSzZkzRzLmPX+tLygokMyV0LnX1JUY9u/fX7La\ntWtLFp9bQooZo8ivI7h7ndCCdsZFxXHXl9zcXMmuueYayZo1a5Zy7MaAKx59+OGHJXNFsJWxYNHh\nL6wBAAAAAAAAAInAgjUAAAAAAAAAIBFYsAYAAAAAAAAAJAIL1gAAAAAAAACARKjypYtuI/Vu3bpJ\nNnr06JRjVxzkSiHuuOMOyapiyVRSNGnSRDJXeOBKOdz71rRpU8muv/56yapVq5Zy3LhxYzmnefPm\nkrnxGd/AP4qiKCMjIygLLXxwv2u8RMQVw7mfie+417lnz56SudKPeGnM8uXL5ZzKWLJwOHOfIVfc\n6kpUXVlL69atJRs/frxkq1atkixeqOjmLXdNc1y5zH/+8x/Jxo4dK1lRUZFklIVWjtfAzT8ucyWj\n7vdfuXJl+TwxlAs3J3Xp0kUyd88SLwVy5Vlcv7A/rVq1Sjl21yo3fp544gnJKsNce7hy75F7P774\n4oug89xc4+5PQsp63c90xdkzZ86U7IILLpDMld67kuyFCxcG/Vz48eNeq0WLFknmvje777Dt27eX\nrFatWinHoQXT7rzQ4tGnn35aMsZFxXFl0pMmTZLsmGOOkSz+3d/NNW5ecf/+rl27JKsq9078hTUA\nAAAAAAAAIBFYsAYAAAAAAAAAJAIL1gAAAAAAAACARGDBGgAAAAAAAACQCFW+dNEVXrmixKysrJRj\nt3H+xIkTJcvPz5eM0o9DwxUeuHKDzz77TLK2bdtK5sbK0KFDJYsXLLrMlYWkw23i7zbnd+Vorix0\nzZo1khUXF6ccr169Ws7ZsmWLZFWlEOBA6tatK9nll18umSu3ir8f8fciinidk2bfvn2Svf7665K5\nOcSNAVfa6Yp9Qkpj3L/vxMvSoiiK1q1bJ9k111wj2YoVKyQLKT/C4cldb4866ijJXDmRu1a58lDm\nuIrjrl8DBgwIemy8gPaTTz4pj6eEKiJeOBx6/+zmGvdYvpNVnNA53d2LlPVnuJ/prl/uHs59h5oy\nZYpkf/iY7BThAAAIFklEQVTDHyRz92vjxo2T7He/+51k8cJuroXfcZ/d7du3SzZ37lzJ3H2wu6bl\n5OSkHDdv3lzOyczMlMy9R3v37pVs+fLlks2ePVsyt36B8ufmgosuukiyzp07S+a+p8W/9zz33HNy\nzm9+8xvJtm7dKllV/tzzF9YAAAAAAAAAgERgwRoAAAAAAAAAkAgsWAMAAAAAAAAAEoEFawAAAAAA\nAABAIlSp0kW3GXr//v0l69u3r2Txoo68vDw558knn5SMTfKTZceOHZI9/PDDkrnN7rt27SqZK21w\nWbz8JbT4xZVHvP/++5ItWLBAssWLF0vmfi9X2OieS/x3CH2+VbEkwL2/nTp1kqxXr16SucKH1157\n7YA/0z2uKr72SeFKgh588EHJmjVrJlmPHj0kq1mzZlDmxMeGGxeuYOitt96S7O6775Zs2bJlkrnf\nn/FYebn7qxNPPDHovHfffVcydy3BoeGuXy1atJDMlU858fsOV0zt7puYQ6oedx8TL713Y8BlTZo0\nkcwVMbprH+Os4oS+v26shP57ZTknivz3JVfo50raTjjhBMmGDRsmmSuvnzNnTsrxxo0b5RxKrb/j\n3kv3mrryO1cqnp2dnXLcr18/Oadnz56SuWva+vXrJZs4caJkrrT8yy+/lIx5qvy572S33nqrZO79\nde9HcXFxyvGjjz4q57hxQRlwKv7CGgAAAAAAAACQCCxYAwAAAAAAAAASgQVrAAAAAAAAAEAisGAN\nAAAAAAAAAEiEKlW6WKdOHcnuuOMOyWrUqCFZfLP7u+66S84pLS1N49mhvLnN712R0/z58yV74403\nJDvyyCMlc5viu6LN+HNxZUKuMMOd5zL3PELLGEKLS+LnpfMzKxP3+rlin7Zt20rmXsPNmzdL9tRT\nT6Ucu7HiirJCS1gobCx/7vVz5XJTp06VbMiQIZKdfPLJkmVmZgY9l/g42LNnj5yzdOlSyW666SbJ\nVq1adcB/P4oYP5WZmy9cAejgwYOD/r158+ZJ5sqtcGi4YsymTZsGnefet0WLFqUcx0uIoij8PgRV\nT/z64u6b3Pg5/vjjJXMFwZs2bZIstIyc61yyuHEQUjod+j6GlKpFURT9/Oc/l+yhhx6SrGHDhpKd\nd955ksXXL6ZPny7nuHG8d+9eyaoi99ktKSmRzN2jr1mzJuXYzSGtWrWSrHXr1pK5sswlS5ZI5t43\n5pry5wqgXWGqu/9xc41b/7nnnntSjhcvXiznuOJfpOIvrAEAAAAAAAAAicCCNQAAAAAAAAAgEViw\nBgAAAAAAAAAkQqXdw9rt5zpo0CDJOnXqFPTvLV++POX49ddfl3NC94tFxXHv0a5du4Kyyop9scqf\nG2d5eXmS3XnnnZK5PdTy8/NTjt1+V+m8j4yB8ude0x07dkg2a9YsyZ599lnJ3B76rpfB7ckWH49u\nfzy3r7V7vm4vQFQtbu++jIwMyerXry9ZUVGRZO5+ijnp0AjdO9rtvTlz5kzJ3LUvPsetXbtWzmHP\ncuzP+++/n3Ls7s/d9bFdu3aSde7cWTJ3PXR9N+4ayfe+ZElnf+qy/vvxjqsoiqKPPvpIskmTJkl2\n1llnSZadnS3ZiBEjUo7Xr18v5zzzzDOSYf/cNcftax3PCgoK5Bz3vc1dW9kHv+K49yMnJ0eya6+9\nVjLX1+HeS7cf+Zw5c1KO+V5VNvyFNQAAAAAAAAAgEViwBgAAAAAAAAAkAgvWAAAAAAAAAIBEYMEa\nAAAAAAAAAJAIlbZ00ZVRXXDBBZK5ckZXwDFv3rwDngOg6nGFGa6IZ82aNZK5Yhb3WIp9Kq+vvvoq\nKHOFT6WlpQflOQHflyuemjFjhmQ1a9aUzJUYUURUcdxrv27dOsnuueceyVwhcHxsUDyF/XHjYMOG\nDSnHbty5MeXur9555x3JXImju+dijCZLkt8Pt0Ywf/58yRYuXCjZcccdJ1m/fv1Sjl999VU5x90j\n4vsp65hK8ljEd1zpYpcuXSTLzMyUzL2/rrRz9uzZkhUXF6ccU7BYNvyFNQAAAAAAAAAgEViwBgAA\nAAAAAAAkAgvWAAAAAAAAAIBEYMEaAAAAAAAAAJAIlaJ00W2knpWVJdnWrVsl27Ztm2TvvfeeZMuX\nL085dsUybLoPIIp8qYKbMxzmkQNzcz6AQ8PNb+7+6plnngn690pKStJ+Tigbd70JLYJ18zDXL5S3\n7du3pxzfd999ck5o+bUbx4xZHAqumNitQbz55puSvfvuuwd8HOMY2D/3+cjPz5dsyZIlknXr1k2y\n1157TbLnnntOsvh3fz6nZcNfWAMAAAAAAAAAEoEFawAAAAAAAABAIrBgDQAAAAAAAABIBBasAQAA\nAAAAAACJUClKF53169dLNmHCBMluv/12yVw5WrzggOIOAN8H80P5+eEP+X+tQJK4gjN3H+bmQebG\nwxPvW9lQGvz9xMfZnj17KuiZAAffF198IVm8sJG5F0jfmjVrJLv44oslq169umTxMuAo8uuHfFbL\nB9/6AQAAAAAAAACJwII1AAAAAAAAACARWLAGAAAAAAAAACQCC9YAAAAAAAAAgEQILl0sKtLNxYFQ\njB+kg/GDdDB+kA7GD9LB+EE6GD9IB+MH6WD8IB2MH5QH/sIaAAAAAAAAAJAILFgDAAAAAAAAABLh\nB99++21FPwcAAAAAAAAAAPgLawAAAAAAAABAMrBgDQAAAAAAAABIBBasAQAAAAAAAACJwII1AAAA\nAAAAACARWLAGAAAAAAAAACQCC9YAAAAAAAAAgET4H4t0DgDfF5IUAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": { "tags": [] } } ] } ] }